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Temperature fluctuations in a 
changing climate: an ensemble-
based experimental approach
Miklós Vincze1,2, Ion Dan Borcia3 & Uwe Harlander3

There is an ongoing debate in the literature about whether the present global warming is increasing 
local and global temperature variability. The central methodological issues of this debate relate to the 
proper treatment of normalised temperature anomalies and trends in the studied time series which 
may be difficult to separate from time-evolving fluctuations. Some argue that temperature variability is 
indeed increasing globally, whereas others conclude it is decreasing or remains practically unchanged. 
Meanwhile, a consensus appears to emerge that local variability in certain regions (e.g. Western Europe 
and North America) has indeed been increasing in the past 40 years. Here we investigate the nature of 
connections between external forcing and climate variability conceptually by using a laboratory-scale 
minimal model of mid-latitude atmospheric thermal convection subject to continuously decreasing 
‘equator-to-pole’ temperature contrast ΔT, mimicking climate change. The analysis of temperature 
records from an ensemble of experimental runs (‘realisations’) all driven by identical time-dependent 
external forcing reveals that the collective variability of the ensemble and that of individual realisations 
may be markedly different – a property to be considered when interpreting climate records.

To quantify connections between climate change and the temporal variability of a climate index the typical 
procedure researchers follow is comparing its recently observed fluctuations to those from a base period1–9. 
This approach is inherently built on the naïve assumption of ergodicity, a property that does not apply to 
far-from-equilibrium processes. In ‘climate-like’ nonlinear, evolving systems the only way to acquire appropriate 
expectation values– as ‘climate is what you expect, weather is what you get’10– would be ensemble averaging over 
a multitude of parallel realisations of the system’s response to the same time-dependent forcing, all obeying the 
same physical laws and differing only in their initial conditions. It is to be emphasized that differences between 
the ensemble members represent an inherent property of the problem, internal variability, and cannot only be 
associated with ‘measurement errors’. The ensemble average of the paths of such parallel realisations in the space 
of essential variables would then trace out a time-evolving, so-called snapshot- or pullback- chaotic attractor11, 12.  
It seems quite appropriate to adapt this approach to the description of any highly nonlinear chaos-like process, 
like e.g. turbulence.

The concept’s applicability in climatology has been demonstrated in numerical models ranging from min-
imal models12–14 to intermediate complexity GCMs15, concluding that the snapshot attractor framework pro-
vides the only self-consistent definition of ‘climate’ from the dynamical systems point of view. Obviously, for the 
actual Earth system only a single observable realisation exists but experiments in a laboratory characterised by 
‘climate-like’ externally forced dynamics can be repeated multiple times and thus provide a real world test-bed for 
this approach, whose evaluation has so far been limited to numerical investigations.

The tabletop-size rotating, differentially heated annular wave tank we use for this purpose is a widely studied 
experimental minimal model of the mid-latitude Earth system16–19 (Fig. 1a, Methods). It captures the two essen-
tial components of large-scale atmospheric circulation: lateral (‘meridional’) temperature difference and rotation. 
The working fluid (de-ionised water) is located in the annular cavity between two vertically aligned co-axial 
cylindrical side walls: the one at the center (simulating the North Pole) is cooled, whereas the rim (representing 
the equator) is heated with computer-controlled thermostats. The tank is mounted on a turntable and rotates 
around its axis of symmetry. The adjustable parameters (fluid depth, rotation rate, temperature contrast) are set 
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to yield approximate dynamical similarity to the terrestrial atmosphere in terms of thermal Rossby number, RoT, 
and Taylor number, Ta (Fig. 1c, Methods)16, 17. We log simultaneously (sampling rate 1 Hz, differential resolution 
0.05 K) point-wise local temperature values via five digital co-rotating thermometers, three of which penetrates 
into the free top surface of the working fluid cavity from above, spaced uniformly along a radius (Fig. 1b). The 
spatial average, Ti(t), of these signals from three different ‘latitudes’ is used here as a surrogate for ‘meridional’ 
mean temperature (index i refers to the i-th ensemble member, i.e. experimental run). Since there is no azimuthal 
bias in the annulus — as there is, e.g. in the terrestrial atmosphere, due to land-ocean differences, topographical 
effects, etc. — we would expect the statistical properties of temperature fluctuations to be the same at different 
azimuths. Thus, it is safe to assume that such a longitudinal average can also be considered a proper surrogate 
of the global average. The other two identical sensors measure the forcing temperatures at the center (inner cyl-
inder) and in the outer sidewall, whose difference ΔT quantifies the temperature contrast driving the sideways 
convection.

The novelty of our experiments lies in the procedure of intentionally changing the thermal boundary condi-
tions in time, while keeping the rotation rate fixed (so that a ‘day’ i.e. one revolution of the tank takes P = 3 s). 
After a ‘base period’ of ca. 2600 revolutions of constant ΔT the cooling element at the center is turned off. 
Following this abrupt change in heat flux Ti(t) is kept logged for another 3000 revolutions of time, corresponding 
to a ‘global warming’ scenario with gradually increasing polar temperatures. We note, that it is generally accepted 
that the North-South temperature contrast has been decreasing (and will continue to decrease) in the Northern 
Hemisphere due to climate change as reported, e.g. in the latest assessment report of IPCC20. The recent alarming 
findings21 about the rapidly melting Arctic also underline the existence of this phenomenon, showing twice as fast 
warming of the Arctic as that of the global mean.

Results
Based on our criteria for the external forcing sequence ΔTi(t) to be accepted as ‘identical’ (Methods) the analysis 
was restricted to nine experimental runs and 10 000 s of continuous data from each of them with the onset of 
‘climate change’ (hereafter marked as time zero, t = 0) occurring exactly at half time in all cases. The forcing ΔT(t) 
in each considered realisation (Fig. 2a) follows an exponential decay with characteristic timescale τ = 1085 s for 
t > 0. The system’s response Ti(t) in each run, and even their ensemble average 〈T〉(t) shows significant fluctua-
tions (Fig. 2b and c) due to the geostrophic turbulent flow dominated by irregular cyclonic (warm) and anticy-
clonic (cold) vortices18.

Addressing variability in the system we first demonstrate the difference between the ‘traditional’ measures – 
based on single realisations – and the ensemble statistics through the example of standard deviations. We find that 
the centered running variances (within 501 s long windows) of the residuals of Ti(t) following a 4-degree polyno-
mial detrending in the different realisations may exhibit seemingly opposite tendencies (Fig. 3a), and are thus not 
representative. In the two chosen paths, one reaches the largest variability in the t < 0 base period. Although the 

Figure 1.  Thermal convection in planetary atmospheres and in the laboratory. (a) Schematic diagram of the 
mid-latitude atmosphere of Earth, illustrating the basic boundary condition with a meridional temperature 
contrast ΔT between the warm equator (red) and a polar region (blue). The system is rotating at angular 
velocity Ω. (b) Sketch of the differentially heated rotating annulus with its geometric parameters (a = 4.5 cm, 
b = 12 cm, d = 4.5 cm) for which the boundary conditions are similar to those of the real atmosphere: warm 
outer rim (red), cold inner rim (blue). The locations of the three co-rotating thermometers, which were 
submerged by 0.5 cm into the bulk from above the water surface are also shown (black dots). The average of 
these signals at each time t yielded ‘meridional mean temperature’ T(t). (c) Schematic regime diagram for 
rotating laterally heated systems16, 17 in terms of thermal Rossby number ∆∼ ΩRo T /T

2 and Taylor number 
ν∼ ΩTa /2 2, where ν denotes the kinematic viscosity of the medium (for the precise formulation of these 

nondimensional parameters see Methods). The main flow regimes are indicated and the approximate positions 
of three planetary mid-latitude circulations are also shown16: Ro 1T

Venus ; RoT
Mars ≈ 0.2; RoT

Earth ≈ 0.06. The 
vertical arrow represents the trajectory of the dynamics in our experiment during the imposed ‘climate change’ 
scenario: Ta ≈ 9.18 × 108 stays constant, whereas thermal Rossby number decreases from RoT ≈ 0.041 to 
RoT ≈ 0.013.
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statistical comparison of the t < 0 and t > 0 intervals yields no significant difference, the mean and median indeed 
are somewhat smaller in the latter case (not shown). Thus – if only this particular record was known – one could 
speculate that the fluctuations of temperature generally decreased in the ‘climate change’ phase compared to the 
base period. The other exemplary case shows just the opposite trend: a slight, statistically insignificant increase in 
mean variability after t = 0.

Meanwhile, in terms of the ensemble variance σe, i.e. the standard deviation of the nine considered reali-
sations Ti(t)(i = 1, …, 9) around 〈T〉(t) at each time instant t (Fig. 3a), the system’s real sensitivity to changing 
ΔT is revealed (Fig. 3b). The mean of σe(t) shifts significantly by ca. 6.5% from 0.35 to 0.38 °C at t > 0 and, more 
strikingly, the histogram changes from left-modal (skewness: 0.37) to right-modal (skewness: −0.10) after the 
initiation of ‘climate change’. This result indicates that the paths of the realisations differ from each other more 
in the presence of nonstationary forcing than in the base period: even if the transition is hardly noticable in the 
variance patterns of one single realisation its effect on the whole ensemble is apparent.

The typical time difference τc between successive local extrema of the fluctuating temperature records Ti(t) 
serves as a measure of the temporal variability of the ‘weather’ in the system. The local maxima (minima) indicate 
the crossing of cyclonic (anticyclonic) eddies at the thermometer locations. We calculate the peak-to-peak time 
differences for each ensemble members, after a removal of a 5th order polynomial trend and applying a 61-point 
running mean for smoothing. The statistics of the obtained values of τc combined from all experimental runs 
shows a significant shift when comparing the t < 0 and t > 0 periods; the mean increased from 199.2 s to 214.7 s 
(by around 8%), the median from 183 s to 209 s (by around 14%). This finding is consistent with the theoretical 
expectations: smaller ΔT yields cyclonic and anticyclonic eddies of smaller size, scaling with the so-called Rossby 
deformation radius LR, i.e. proportionally to the square root of the imposed temperature gradient22: ∝ ∆L TR . 
Whereas the drift velocity c of baroclinic eddies is determined by the thermal wind balance and scales as c ∝ ΔTμ, 
where the exponent μ has been found to be between 0.88 and 1.17 in earlier experiments19, 23, μ = 1 being the 
theoretical value. Thus, the crossing timescale is expected to follow a τc  ≈ LR/c ∝ ΔT0.5−μ dependence, yielding an 
increasing trend with decreasing ΔT(t) in time. Even in this respect, single-realisation statistics could be mislead-
ing: due to the (geostrophic) turbulent nature of the flow the values of τc exhibit large variance in all cases that can 
easily suppress the slight trend.

Further exploring temporal correlations we apply the method of detrended fluctuation analysis (DFA)24, 25, a 
strandard procedure for measuring the variability of a signal around its local trend in time windows of length n 
samples as a function of n. DFA4 removes local (cubic) trends, thus it is more suitable for our present purpose 
than e.g. Fourier transforms, since DFA4 can readily handle nonstationarities (Methods). The DFA4 spectra from 

Figure 2.  Temperature trends and fluctuations in the experiment ensemble. (a) Temperature difference ΔT as 
measured between the outer and inner cylindrical sidewalls of the annular tank in all runs are shown (green) 
alongside their ensemble average at each time t (black). (b) Time series T(t) for each experimental realisation, 
coloured turquoise in the base period and orange in the ‘climate change’ (t > 0) phase. One exemplary 
realisation of T(t) is repeated in red and shifted above by + 2.5 °C for better visibility. The ensemble average 〈T〉 
(t) of all nine realisations (black solid curve) and the corresponding ensemble standard deviation ± 1σe range 
(dotted black lines) is also indicated. (c) Two infrared thermographic snapshots (heat maps) of the surface 
temperature patterns (obtained in an additional control experiment) during the base period with temperature 
contrast ΔT = 11 K (left) and toward the end of the ‘climate change’ period (at t = 4640 s). Orange (blue) areas 
are warmer (colder) than average. (d) A blow-up of the ensemble average time series 〈T〉 (t) showing linear 
trend lines fitted to the t < 0 (dashed) and t > 0 (dotted) periods. Their crossing point is found at t = 212 s that 
serves as an empirical measure of the delay time of the system’s response (baroclinic adjustment) to the abrupt 
change in the forcing at t = 0.
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all realisations (Fig. 4a) follow the same scaling properties, exhibiting power law-type scaling with two scale 
breaks. Below tn ≈ 40 s and above tn ≈ 400 s the scaling exponents are δ = 0.87 and 1.1, respectively, implying 1/f 
noise-like correlated fluctuations. Between these crossover points δ = 2.1 is found, characteristic for geostrophic 
turbulence26, 27: it can be shown that if the DFA4 spectra exhibit power-law scaling then the Fourier power spec-
trum of the time series in the frequency domain, S(ω) also does, following S(ω) ∝ ω−β, where β = 2δ − 1 connects 
the two exponents28, yielding in the present case, β ≈ 3. This is in good agreement with the theoretical result for 
isotropic geostrophic (two dimensional) turbulence29. It is to be noted that the ΔT-dependence of the exponent β 
has been analyzed via comparing the ensemble-averaged power spectra of different (overlapping) sections of the 
time series Ti(t), but no trend could be established (for more details, we refer to the Supplementary information). 
Thus, it can be stated that the ‘quality’ of geostrophic turbulence did not change throughout the ‘climate change’ 
period.

Concerning the differences between the stationary (t < 0) and ‘changing’ (t > 0) records (turquoise and orange 
curves in Fig. 4a, respectively), their fluctuations up to a window size tn

* ≈ 160 s are perfectly identical in the 
statistical sense. This is also apparent from the averages of the two sets of spectra in Fig. 4a (red and black thick 
curves). On the tn > tn

* scale, however, the fluctuations of the ‘changing’ records are significantly larger. Note, 
that this timescale is still about an order of magnitude below τ = 1085 s i.e. the characteristic time of the ‘climate 
change’ ΔT(t > 0), but is of the same order as the empirical delay time of ∼200 s of the dynamics estimated from 
the crossover point of the linear temperature trends of 〈T〉(t) in the two periods (Fig. 2d).

Also shown are the DFA4 spectra of the ensemble averages 〈T〉(t < 0) (blue line) and 〈T〉(t > 0) (green line) 
following the same scaling and the same separation of the stationary and ‘changing’ branches at tn

*, as discussed 
above. Multiplying the fluctuation spectra of the ensemble averages by =N 3 (N = 9 being the sample size of the 
ensemble) yields perfect match with the average of the single-realisation spectra. This property shows that the 
fluctuations of different realisations are perfectly uncorrelated on all time scales tn < τ: uncorrelated fluctuations 
average out following N1/ , whereas ‘ensemble-correlated’ fluctuations would remain unaffected by the ensemble 
averaging. Here the latter are absent; no ‘collective variability’ can be identified in the ensemble, despite of the 

Figure 3.  Variances and characteristic times of the ‘global mean temperature’ time series. (a) The collective 
standard deviation σe of the ensemble at each time t (turquoise and orange curves) in the two periods (the 
colour coding is as in Fig. 2b). For comparison, time series of the 501-point running standard deviations of 
two experimental realisations are also shown (black and red curves) calculated after detrending with 4th order 
polynomials in both cases. (b) Histograms of the ensemble standard deviation σe for the base period (t < 0, 
turquoise) and the ‘climate change’ period (t > 0, orange). (c) Histograms of the peak-to-peak time differences 
τc of the fluctuations of Ti(t) in the two periods, determined after 61-point running averaging and 5th order 
polynomial detrending. Here data from all individual realisations Ti are combined. The colour coding is as in 
panels (a) and (b).
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identical forcing sequence ΔT(t). Obviously, on the time scale of τ collective behaviour does exist – the trend 
itself – but such large time windows are not sampled properly and are not evaluated in the spectra. The lack of 
collective fluctuations on the sub-τ scales highlights the largely nonlinear nature of the system’s response to 
changing forcing.

The time-scale–dependence of variability amplification caused by ‘climate change’ is visualized in Fig. 4b, 
where the ratios of DFA4 fluctuation spectra in the ‘changing’ phase relative to the ‘base period’ of the same run 
– and those of the ensemble average – are plotted. (Due to the logarithmic vertical axis this practically reflects 
the differences of the respective graphs in Fig. 4a). Here again it becomes manifest that ‘climate change’ does not 
affect the variability on the time scales below tn

* from the ensemble average point of view (the average amplifi-
cation is close to zero), still, one can also easily spot individual realisations with either markedly increased or 
decreased variability in this spectral band as well. Above tn

* all realisations exhibit clearly amplified variability. 
For the ensemble average it reaches a maximum increase of 47% at around tn

* and stays around 20% for the tn > tn
* 

timescales up to tn ≈ 800 s.
To determine the statistical significance of the above results, we have carried out Monte Carlo statistical testing 

using a standard inverse-Fourier surrogate data method30 (Methods). The null-hypothesis of the testing is that 
there are no fundamental changes in the dynamics of fluctuations between the t < 0 ‘base period’ and the t > 0 
‘warming phase’. If this was the case, the fluctuations during the warming would exhibit very similar distribution 
and spectral properties as in the base period, superimposed onto a warming trend. In order to model this hypoth-
esis, 10 model ‘warming’ time series were created for each of the 9 ensemble members (i.e. 90 time series in total) 
using the Fourier amplitude spectra of their corresponding ‘base periods’ but shuffling their phases. The resulting 
model series were then superimposed onto a polynomial warming trend, imitating the temporal development of 
the ensemble average 〈T〉(t > 0), shown in Fig. 2a, to yield a realistic increasing trend (Methods).

Comparing the DFA4 spectra of the model series to their respective base periods in the considered timescale 
range yields the ‘amplification factors’ shown with turquoise curves in Fig. 5. The green curves corresponding to 
the actual ensemble members and the thick black curve denoting the ensemble average are repeated from Fig. 4b. 
The red dashed curve shows the mean of the model results and the dotted curves represent the ±3σ interval. 
The vertical domain covered by the turquoise curves can be understood as a measure of variability that is due to 
finite-size effects and the imposed trend itself. It is apparent, however, that the measured ensemble data follow 
a markedly different distribution, thus the null-hypothesis in the considered timescale-range of tn > tn

* can be 
rejected with a high confidence. Towards the larger timescales, comparable to the typical eddy-crossing times τc 
and also to the characteristic time of baroclinic adjustment (as mentioned earlier), a clear increase of fluctuations 
can be observed, indicating real dynamical differences, not merely statistical artifacts.

Figure 4.  Detrended fluctuation analysis of the ‘global mean temperature’ ensemble. (a) The logarithm of DFA4 
fluctuations F nlog [ ( )]10  as a logarithm of window size nlog ( )10  (n is the length of the window length in seconds). 
The spectra from the base period (turquoise curves) and from the ‘climate change’ period (orange) exhibit 
indistinguishable behaviour (involving a scale break around = .nlog ( ) 1 610 , corresponding to time scale 
tn ≈ 40 s) up to = .nlog ( ) 2 210  (i.e. tn

* ≈ 160 s), where the two sets of graphs detach and those corresponding to 
‘climate change’ reach larger fluctuations. The averages of the spectra are also plotted for the base period (black) 
and the ‘changing’ period (red). The DFA4 spectra of the ensemble average 〈T〉 (t) in the base period (blue) and 
the ‘changing’ period (green) show practically the same behaviour as the corresponding spectral averages. 
Upward shifting of these ensemble average spectra by ≈ .log (3) 0 47710  on the log-scale graph would yield 
practically identical curves to the aforementioned averages. (b) Amplification factors of the DFA4 fluctuations 
of the ‘climate change’ period with respect to the base period in each individual run (green curves) and in the 
ensemble average 〈T〉 (t) (thick black curve).
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Discussion
The present work provides, to the best of our knowledge, the first results from any laboratory experiment aiming 
to model the effects of climate change on mid-latitude atmospheric circulation. The authors do not claim that the 
lessons learned from the presented experimental minimal model could be directly applied or compared to the 
processes of the Earth system and the ongoing climate change. Perfect hydrodynamic similarity is impossible to 
achieve, thus the ratios between all of the relevant timescales (corresponding to the rotation, baroclinic adjust-
ment, crossing time of cyclones, the changing of the temperature contrast ΔT) cannot be set to scale properly. 
Nevertheless, the studied model as a dynamical system does share some important features with the climate 
system on the conceptual level: both are rotating, turbulent hydrodynamic systems, driven by the incoming differ-
ential heat fluxes, a forcing that changes in time. Due to the time-dependence of the forcing, these systems cannot 
reach an equilibrium state. Therefore, if one intends to survey the variability between the possible outcomes of 
such a process at any time instant, it is essential to consider a whole ensemble of realisations, subject to the same 
forcing scenario and differing only in their initial conditions.

Despite of the large variability of the ensemble that is due to the nonlinear nature of the processes and the finite 
length of the studied records, the fluid dynamical interpretation of the observed flow phenomena is relatively 
straightforward. The system is in the state of well-developed geostrophic turbulence, that yields a power-law scal-
ing in the power spectra of the fluctuations in both the wavenumber- and the frequency domain (Supplementary). 
The characteristic size of the cyclonic and anticyclonic eddies (corresponding to warm and cold temperature 
anomalies, respectively) tends to decrease as the ‘meridional’ temperature gradient drops, in agreement with the 
theoretical expectations. In parallel, the zonal drift velocities decrease even faster during the process, therefore the 
characteristic timescale of ‘weather change’ at a fixed measurement location increases significantly. This timescale 
is of the same order as the typical response time of the flow to the changes in the forcing (baroclinic adjustment) 
therefore fluctuations were found to increase markedly in this spectral band.

‘One experiment is no experiment’ has been the mantra of researchers for ages, but the idea behind the saying 
has always been the separation of measurement errors from significant signals. Here, however, the fluctuations are 
just as inherent, fully deterministic and dominant features of the underlying nonlinear processes – just like in the 
Earth system – as the large-scale trends themselves. The reason for the increasing ensemble variance lies in the 
system’s extreme sensitivity to initial conditions – a ubiquitous property of chaotic, long-range correlated systems. 
The authors firmly believe that the only proper approach for carrying out laboratory experiments on non-stationary 
turbulence would be conducting and systematically evaluating, ensembles of runs. In observational climatology this 
is not a viable option; we have only one Earth. Yet, the present experimental demonstration may help to increase 
awareness of the fact that a climate-like dynamical system can undergo a transition towards larger variability even 
without noticeable effects on the temporal fluctuations of one particular realisation. This message applies to the 
GCM community as well: climate variability information from a single numerical run (e.g. CO2 doubling scenario) 
could be misleading as it does not necessarily represent the full complexity of the underlying ensemble dynamics.

Methods
Non-dimensional parameters, hydrodynamic similarity.  In large-scale environmental flows Rossby 
number Ro ≡ U/(2|Ω|L) – with U being the magnitude of the horizontal flow velocity, L the horizontal extent of 
the domain and Ω the angular frequency of the planetary rotation – quantifies the characteristic ratio of hydrody-
namic acceleration and Coriolis acceleration. In the dynamics of atmospheric convection the thermal boundary 
conditions and the relationship ρ(T) between the density and temperature of the fluid parcels are of fundamental 
importance just as well. A convenient nondimensional combination for quantifying all these factors is the thermal 
Rossby number RoT (or Hide number), defined as

Figure 5.  Significance testing of the amplification factors of the DFA4 fluctuations. The amplification of the 
DFA4 fluctuations of the ensemble members and of the ensemble average are repeated from Fig. 4b with 
the same color coding in the 100 ≤ n ≤ 1000 domain. The turquoise curves indicate the 90 surrogate model 
time series. The average of the model spectra (red dashed curve) and the upper and lower bounds of the ±3σ 
intervals (red dotted curves) are also plotted.
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where α is the coefficient of volumetric thermal expansion for the fluid, d is the vertical scale, and ΔT is the 
‘meridional’ temperature contrast22. For our calculations the annular gapwidth b − a was taken as horizontal scale 
L for the experiments. Besides RoT the kinematic viscosity ν of the medium also plays an important role in the 
dynamics; it introduces a ‘viscous cutoff ’ that dissipates too weak thermal winds and also damps the baroclinic 
instability of larger wavenumbers. This effect is parametrised by Taylor number Ta that accounts for the ratio of 
rotational and viscous effects, and reads as
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RoT and Ta are used in tandem to characterize the different dynamical regimes in rotating, thermally driven 
systems, such as planetary atmospheres and their minimal models in the laboratory (Fig. 1c).

Experimental procedures, data selection.  For a detailed description of the experimental wave tank 
and the heating and cooling mechanism we refer to ref. 19. The temperature records were obtained using an 
ALMEMO temperature sensor array of NiCr sensors with a relative resolution of 0.05 K and 1 Hz sampling rate. 
The sensors were fixed onto a co-rotating mast above the free surface of the rotating annulus, and penetrated 
by 0.5 cm into the water surface. The data was transported in real-time via the co-rotating data aquisition mod-
ule ALMEMO 8590-9, equipped with UHF/Bluetooth antenna. The initial temperature of the working fluid 
(de-ionised water) was set to 24.5 ± 0.5 °C before each measurement. After switching on the heating thermostats 
for the differential heating a transient period of 7600 s followed in order to reach quasi-equilibrium dynamics in 
each experimental run. Only after this period we started to log the data of the 5000 s long ‘base period’. The nine 
experimental runs considered in this work were selected based on the criterion that the forcing time series ΔT(t) 
of each realisation must not deviate by more than 0.3 °C from the ensemble average 〈ΔT〉 at any time t (two of the 
original 11 experiments were thus excluded). The thermographic images of Fig. 2c were obtained by an InfraTec 
VarioCam infrared camera mounted above the set-up, operating in the spectral wavelength range of 7.5–14 μm. 
These thermograms can be considered to represent surface temperature structures, since the penetration depth of 
this wavelength range into water is less than a millimeter. The images were taken during an additional experiment 
following the same forcing sequence, but with the thermometers removed from the working fluid for the sake of 
visibility. Therefore this run was not a member of the ensemble.

Detrended fluctuation analysis.  DFAp24, 28 is a robust and easily implemented analysis of the temporal 
scaling properties of a fluctuating and non-stationary bounded time series xt. Firstly a summation is applied to 
yield a cumulated (unbounded) time series Xt:

∑= − 〈 〉
=

X x x[ ],
(3)t

i

t

i
1

where 〈x〉 denotes the mean of the time series. Next, the profile is divided into non-overlapping time windows Yj 
of length n and for each a local least square polynomial fit ξ(p − 1)j of order p − 1 is calculated. Finally, the fluctu-
ation is obtained as the root-mean-square deviation from the trend as
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where N is the number of n-sized windows of the time series. Note, that care must be taken to the fact that the 
congruence between N and the length of the time series is often not zero. To preserve the remaining section the 
applied algorithm repeats the same dividing procedure from the end of xt, thus, practically 2N segments are gen-
erated and the applied fluctuations are combined accordingly. We determined the DFAp fluctuation functions 
with p = 2 … 8 for the time series Ti(t) and observed that no significant differences appear between the spectra for 
p > 4, therefore we limited our presentation of the results for the DFA4 computations only.

Surrogate data for the statistical testing.  The surrogate data for the model time series were generated 
using the method developed by Schreiber and Schmitz and described in ref. 30. The implementation of the algo-
rithm is included in the open source software package TiSeAn 3.0.1 for nonlinear time series analysis31 whose 
routine ‘surrogates’ have been used for the present work. The principle of the method is the following: if the null 
hypothesis was true, the typical realisations of the process are expected to share the same power spectrum and 
amplitude distribution, thus such model time series need to be generated. This is carried out iteratively by the 
following procedure from the prescribed distribution and Fourier spectra of the actual data. First, a sorted list of 
the values {xn} and the squared amplitudes of the Fourier transform of {xn}, π= |∑ |=

−S x i kn Nexp( 2 / )k n
N

n
2

0
1 2 are 

obtained, where N is the number of data points. Then a random shuffle of the data (without replacement) {xn
(0)} is 

obtained. In a given iteration step, the shuffled data {xn
(i)} is brought to the desired sample power spectrum by 

taking the Fourier transform of {xn
(i)}, replacing the squared amplitudes {Sk

2,(i)} by {Sk
2} and then transforming 

back. The phases of the complex Fourier components are kept. This step enforces the correct spectrum but usually 
the distribution will be modified. Therefore, in the next step the resulting series is rank–ordered to assume exactly 
the values taken by {xn}. Then, the spectrum of the resulting {xn

(i+1)} will be modified again. These steps have to be 
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repeated several times; at each iteration stage the remaining discrepancy between the obtained and the desired 
spectra and distributions is checked and the iterations continue until a given accuracy is reached. For finite N a 
convergence in the strict sense is not expected. Eventually, the transformation towards the correct spectrum will 
result in a change which is too small to cause a reordering of the values. Thus, after rescaling, the sequence is not 
changed.

For each resulting model series, an increasing (5th order polynomial) warming trend was added. The prop-
erties of this warming trend were derived from fitting the polynomial formula to 〈T〉(t) in the ‘climate change’ 
period (t > 0). Thus, 90 model time series were obtained – 10 for each ensemble member – inheriting the power 
spectra and the rank-ordering of the original corresponding base period (t < 0) data.
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