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ABSTRACT

Using an intermediate complexity climate model (Planet Simulator), we investigate the so-called snowball Earth transition. For certain values
(including its current value) of the solar constant, the climate system allows two di�erent stable states: one of them is the snowball Earth, covered
by ice and snow, and the other one is today’s climate. In our setup, we consider the case when the climate system starts from its warm attractor
(the stable climate we experience today), and the solar constant is changed according to the following scenario: it is decreased continuously
and abruptly, over one year, to a state, where only the Snowball Earth’s attractor remains stable. This induces an inevitable transition or climate
tipping from the warm climate. The reverse transition is also discussed. Increasing the solar constant back to its original value in a similar way,
in individual simulations, depending on the rate of the solar constant reduction, we �nd that either the system stays stuck in the snowball state
or returns to warm climate. However, using ensemble methods, i.e., using an ensemble of climate realizations di�ering only slightly in their
initial conditions we show that the transition from the snowball Earth to the warm climate is also possible with a certain probability, which
depends on the speci�c scenario used. From the point of view of dynamical systems theory, we can say that the system’s snapshot attractor
splits between the warm climate’s and the snowball Earth’s attractor.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5108837

Ever since its discovery, the snowball Earth, i.e., when the Earth’s
surface is nearly entirely frozen, received much attention within
the climate science community. Much of the details of the transi-
tion to the planet’s frozen state are still unexplored. Here, instead
of focusingon the true snowball events ofEarth’s history,we inves-
tigate the transition in an intermediate complexity climate model
(PlaSim), with a continuously drifting solar constant (a hypothet-
ical climate change scenario), in which a full return to the original
value occurs. Using an ensemble based method, we obtain both
of the possible stable states as possible outcomes. We also show
that the process is probabilistic and the probabilities of the cor-
responding outcomes are given by the ensemble’s distribution. In
addition, the third unstable state (referred to as the edge state) is
also recovered.

I. INTRODUCTION

Snowball Earth refers to the planet’s coldest possible global cli-
mate. In this state, the whole Earth, from the poles to the equator,

is covered in ice and snow.1,2 Since the thick ice covering the surface
re�ects much of the energy radiated by the Sun, the global average
temperature is very low, around 230K.3

Modern �ndings suggest that during the Earth’s history, there
were periods when such snowball events occurred. For example, sev-
eral traces of glacial activity point to the presence of glaciers along
the so-called Paleoequator.4

This suggests that also the current con�guration of the Earth
system may be bistable, the two stable states being the snowball state
and our current climate. The question arises naturally whether in
the current tectonic con�guration a snowball Earth might occur.5 To
better understand the phenomenon, there are simple models avail-
able that only take the global energy balance into account (energy
balance models). The �rst such attempts to understand snowball
dynamics were made by Budyko6 and Sellers.7 These describe the
Earth system’s energy balance by a set of di�erential equations that
allow two stable equilibrium solutions. This bistability also arises
in more complex climate models,8,9 even in di�erent planetary and
stellar con�gurations.10
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Qualitatively, the transition can be explained by the “ice-albedo
feedback.”11 Because of ice’s higher albedo, if ice starts to accumu-
late on the planet, it causes even faster cooling. This is also true in
reverse, i.e., melting ice decreases the overall albedo and causes a
faster warming.

To start the feedback mechanism (that is, to initiate a transi-
tion between the stable climates), global processes are necessary,12–14

which alter the amount of solar radiation absorbed by the surface. For
example, the eruption of a supervolcano or a series of volcanoes may
set o� the global freezing.Miller et al. suggest that the little ice agewas
probably caused by a 50-year-long episode with four large volcano
eruptions.15 Even single large eruptions can also have a remarkable
impact on the climate launching a huge amount of volcanic ash and
sulfur into the atmosphere, which shadows the planet and global tem-
perature decreases.16,17 For example, the Pinatubo’s eruption in 1991
caused a global surface temperature drop by about 0.5 ◦C–0.7 ◦C for
the years 1991–199318,19 due to considerable decrease in the irradia-
tion. The largest volcanic eruption in the last several million years,
the Toba supereruption approximately 74000 years ago, was followed
by a long “volcanic winter.” This giant eruption resulted in a drop of
the global mean surface temperature by 3–5 ◦C for years.20

The reverse process, the sudden melting of a snowball Earth
can be induced by greenhouse gases (e.g., CO2). This can be also
attributed to volcanic activity. Furthermore, the frozen planet pre-
vents various processes that would extract CO2 from the atmosphere,
the most important of which are the outage of the entire biosphere
and the frozen oceans.21

On top of these natural causes, nowadays the idea of
“geoengineering”22,23 emerged. Its main goal is to decelerate global
warming by either reducing the concentration of greenhouse gases
or by arti�cially reducing the surface’s absorbed radiation. Especially,
the solar radiationmanagement techniques aim to reduce the incom-
ing solar radiation (i.e., the e�ective solar constant) by e.g., injecting
particles with appropriate properties in the atmosphere providing
a cooling e�ect to counteract the e�ect of greenhouse gases/global
warming.24 So far, it faces obvious technical di�culties. Nevertheless,
an overdone geoengineering activity could have possible catastrophic
consequences, which may result in global cooling.

Here, we follow a model-oriented approach. We investigate the
transition between Earth’s multiple equilibrium states using an inter-
mediate complexity climate model. We induce the desired transition
(both the planet’s freezing and then the melting) by changing one of
the model’s parameters in time. For simplicity, we choose the solar
constant, which determines the amount of radiation that the Earth
is subjected to. In the following, this parameter will be made time
dependent, with a prescribed scenario. It is important to empha-
size that in reality, the solar constant is only a function of the Sun’s
activity and the distance from the Sun. In the last 400 years, its
temporal variability was much smaller (about 0.2%25) than what we
will be considering in the main part of the text. Although there
are certain processes in solar physics that may cause a considerable
decrease in solar output (see, e.g., the Faint Young Sun Paradox26),
these happened on much longer time scales than those relevant for
our purposes.

However, in a model unable to describe the volcanic activity, to
compensate this, it is feasible to consider this parameter to change
considerably, especially if the main driving force is considered to be

the change in the radiation hitting the planet’s surface. If the surface is
subjected to a radiation-�ux of80 and then it changes to γ80 (either
as a result of volcanic activity or increased greenhouse gas concentra-
tion), we will simply model it by changing the solar constant’s value
from S0 to γ S0.

Furthermore, the comparison of solutions of our system (that
only di�er in their initial conditions) reveals that the framework of
“snapshot attractors”27,28 is the appropriate formulation of our prob-
lem. Practically, this means that all investigations are carried out
over an ensemble of climate realizations. From a dynamical point of
view, the ensemble of trajectories can be interpreted as a “snapshot
attractor” (or “pullback attractor”29–32 in the mathematical litera-
ture). After an initial convergence time, a numerical ensemble is
thought to be close to the actual snapshot attractor. In this case,
for any time instant, the ensemble de�nes a probability distribution
over phase space. This is, of course, also time dependent in gen-
eral. For low dimensional systems, it is even possible to visualize
the snapshot attractor and its natural distribution.31–34 The idea is
that all statistical measures should be determined with respect to the
snapshot attractor’s natural distribution, e.g., the typical, expected
behavior should correspond to the distribution’s average, and the
internal variability can be quanti�ed by the distribution’s standard
deviation.

The main goal of our research is to study the snapshot attrac-
tor’s behavior when the system goes through a realm ofmultistability.
This is realized by a time dependent control parameter. We show
that for certain parameter drift scenarios, this may result in a new,
bifurcationlike behavior in which the snapshot attractor splits. We
demonstrate this phenomenon on an example motivated by climate
science, i.e., the snowball Earth transition. To our knowledge, the
present study is the �rst in investigating the snowball Earth transition
through the theory of snapshot attractors.

The paper is organized as follows. In Sec. II, we introduce the cli-
mate model and its behavior in the case of constant parameters. We
also comment on the choice of the parameter drift scenario. Then,
in Sec. III, we present results of individual simulations obtained
with di�erently parametrized scenarios. We demonstrate the unpre-
dictability of individual climate realizations. Section IV contains
results of an ensemble of simulations, followed by Sec. V where we
discuss the climate’s unstable state, the edge state. Finally, in Sec. VI,
we summarize the results and mention possible future directions of
research.

II. THE SETUP

To simulate Earth’s climate system, we use the intermedi-
ate complexity climate model Planet Simulator (PlaSim).35 PlaSim
was designed to understand the main physical processes in climate
dynamics. In previous studies (see, e.g., Refs. 8, 36, and 37), it proved
to be an appropriate numerical tool to detect possible behavior of
the climate system on the global scale. For the study, we use the
same setup as Ref. 8, i.e., the horizontal resolution of the simulations
is T21, which yields a grid of approximately 5.61◦ × 5.61◦. PlaSim
uses a terrain following sigma-coordinate system, with 10 vertical
nonequidistant atmospheric layers. The atmosphere is coupled to
a stationary mixed layer ocean with a depth of 50m without any
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hydrodynamical activity, as a heat bath. The atmospheric dynam-
ics are described by primitive equations that represent conservation
laws, thermodynamics, and the hydrostatic approximation. These
equations are solved on a sphere using a spectral method. With this
resolution of the variables, the system has ∼105 degrees of freedom.
Through parametrization, the model accounts for numerous unre-
solved processes, including sea ice formation, which will be central in
our study. For each marine cell on the grid, sea ice is allowed to form
when the surface temperature is below 271.25K (−1.90 ◦C). The sea
ice model is based on the zero layer model of Ref. 38. This model
computes the thickness of the sea ice from the thermodynamic bal-
ances at the top and the bottom of the sea ice. The zero layer assumes
the temperature gradient in the ice to be linear and eliminates the
capacity of the ice to store heat. If the surface temperature of open
ocean water is below the freezing point, sea ice is formed. If a grid
point is covered by sea ice, snowfall is accumulated on top of the ice.
Snow is converted to sea ice if there is su�cient snow to suppress the
ice/snow interface below the sea level. The typical sea ice thickness
for the fully ice covered sea is around 10m.

Solar irradiance is treated as a boundary condition, which is
mainly parametrized by the solar constant, S. Its value correspond-
ing to the present climate is S0 = 1367W/m2, measured at the top
of the atmosphere. There are numerous studies on the relationship
between the climate system and the solar constant in the same setup
in PlaSim. The authors of Refs. 8 and 9 constructed the model’s sta-
ble climatic states and investigated their thermodynamic properties,
such as entropy production. The resulting hysteresis curves are quali-
tatively similar to those arising from simple energy-balancemodels6,7

(as also presented e.g., in Ref. 12). In a di�erent study,39 the model’s
multistability was discussed from a dynamical point of view, through
the construction of the coarse grained transfer operator. The phe-
nomenon known as critical slowing down was also demonstrated.
Based on these studies, we note that the PlaSim model faithfully
re�ects the fact, that for a wide range of S, two alternative stable states
are possible, i.e., the climate is bistable. As a �rst step, we construct
the two stable branches of the bifurcation diagram in the same spirit
as presented in Ref. 8. This is shown in Fig. 1. Note that the bifurca-
tion diagram is constructed as usual, without any parameter drift, i.e.,
the system reached a steady state for every point on the graph. The
convergence time needed to reach these stable branches is around
20 years for the warm states and 100 years for the snowball states,
respectively (see Fig. 2).

The climate’s two possible stable states are attractors, and these
are marked with solid curves in Fig. 1. The branches of the attrac-
tors show a nearly linear relationship between the average surface
temperature of the NorthernHemisphere (Ts) and the solar constant.
For completeness, the upper and lower panels of the �gure show this
quantity both on July 1st and on January 1st.

There are two bifurcation points, at which one of the attractors
lose stability. Between them, for 1297W/m2 < S < 1450W/m2, the
system has two attractors. In a simulation, the climate’s �nal state is
determined by which basin of attraction the initial condition falls
in. It is also known that there is a third equilibrium state, which is
unstable (represented by the dashed curve of Fig. 1). This is a sad-
dle type state, which is embedded in the boundary between the two
attractors basins. It is referred to as “the edge state”40,41 (or sometimes
“Melancholia state”42,43).

FIG. 1. The system’s bifurcation diagram. In the upper panel, the Northern Hemi-
sphere’s average surface temperature (Ts) is shown, measured in year 100 on
July 1st, in stable equilibrium states with the given S. In the lower panel, the
same quantity is shown, measured in year 100 on January 1st. The red curve
corresponds to the warm state, resembling today’s climate, while blue marks the
snowball state. The vertical line marks the value of S0. The dashed line repre-
sents the unstable state. It is a schematic line to guide the eye only for illustrative
purposes. Two values, at which bifurcations occur, are indicated by arrows.

For our purposes, the behavior near the bifurcation point
Sbif. = 1295W/m2 is in the focus of interest. This is shown in Fig. 2,
with the trajectories illustrating the behavior below and above the
bifurcation point. It is remarkable that the two trajectories have
considerably di�erent character. The red trajectory converges to a
temperature around 280K, with a characteristic time of 10 years. The
blue trajectory also seems to follow this behavior initially, but later
leaves the plateau of 280K in a much quicker fashion, �nally ending
up on the snowball state’s attractor, which is the only remaining sta-
ble one. Although for S < Sbif. the warm attractor (and with it, also
the edge state) has already disappeared, the initial slowing down near
280K seems to re�ect some remanents (or ghost44) of the saddle type
unstable climate.
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FIG. 2. Two simulations which start with solar constant values near the Sbif. =

1295W/m2 bifurcation point. The initial conditions are taken to be similar to today’s
climate. In the upper panel, the Northern Hemisphere’s average surface tempera-
ture on July 1st is shown as a function of time. The lower panel shows the results
measured on January 1st. The simulation marked with red starts with an initial
condition falling into the basin of the warm attractor, while the blue one goes to the
snowball state (since for that value of S, no warm attractor exists). The simulation
time is 100 years, with year 0 signaling the start of the simulation.

The bifurcation diagram presented above is a property of the
system with constant parameters. Our aim is to observe a dynamical
transition (tipping45) between the two attractors, which can be real-
ized by introducing a parameter drift through the bifurcation point.
To this end, we introduce a time dependent solar constant S(t) that
follows a parameter drift scenario. It is important to note that usu-
ally, tipping transitions are investigated by using slow, monotonous
parameter drifts. In order to also observe the transition in the oppo-
site direction (that ends in the warm state), we use a qualitatively
di�erent scenario, where the parameter is returned to its original
value.46 For the sake of simplicity, we choose a piecewise linear
function, which is described as

S(t) =



























S0 for t ≤ 50 years,

S0 − r(t − 50 years) for 50 years < t ≤ 51 years,

S0 · γ for 51 years < t ≤ 101 years,

S0 · γ + r(t − 101 years) for 101 years < t < 102 years,

S0 for t ≥ 102 years,
(1)

FIG. 3. Upper and middle panels: individual simulations with different S(t)

parameter drift scenarios, with Ts values measured on July 1st and January
1st, respectively. Bottom panel: sketch of the parameter drift scenario (1). The
blue curves end up in the frozen state with γ = 0.92 (S0γ = 1257.64W/m2)
and γ = 0.943 (S0γ = 1289W/m2). The red curves are trajectories returning
to the warm state with γ = 0.944 (S0γ = 1290.45W/m2), γ = 0.96 (S0γ =

1312.32W/m2). Dashed horizontal lines mark the two stable states that coexist
for fixed S = S0.

where r = (1 − γ )S0/year. This function describes a 50 year-long
initial plateau of constant S = S0, followed by a very quick (1 year
long) linear ramp, which ends at S0γ (γ < 1). This value is kept con-
stant for another 50 years, after which S increases again to the value
of S0. The function can be seen in the lower panel of Fig. 3.

The time dependent solar constant itself may seem ad hoc, but it
successfully incorporates multiple e�ects that in�uence solar irradia-
tion. Furthermore, it is a standard choice of control parameter when
investigating the snowball Earth transition.6,8,41,42,47 The two fast lin-
ear ramps of the S(t) scenario can be interpreted as instantaneous
events that trigger a snowball transition (e.g., erupting supervolcano,
meteor impact). For example, a su�ciently large volcanic eruption
would decrease the surface’s solar irradiation by up to an order of a
few percents.48

In Sec. III, we brie�y present results of individual simulations.
However, these turn out to be not representative of the dynamics of
all the possible climate histories under the given forcing. Instead, we
turn to the framework of parallel climate realizations,49 i.e., to the
application of “snapshot attractors”27,28,33,50 to the climate dynamical
model.

It is clear, that in our case, a single climate realization and the
ensemble yield di�erent results. This is because the system subjected
to the parameter drift becomes nonautonomous and is no longer
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ergodic. In these cases, following the ensemble of trajectories (or cli-
mate realizations) leads to a complete description of the statistics
underlying the climate. In the following, we construct the chang-
ing climate’s snapshot attractor and deduce the expected (or typical)
behavior, along with other statistical features.

III. CASE STUDIES IN INDIVIDUAL SIMULATIONS

First, we investigate the impact of the solar constant’s decrease,
which is controlled by parameter γ . To illustrate this, we calculate the
mean surface temperature of the Northern Hemisphere. For simplic-
ity, in the remainder of the paper, we will refer to this quantity simply
as the mean surface temperature, Ts.

Figure 3 shows themean surface temperature’s time dependence
plotted with four values of γ both on July 1st and on January 1st. It
is obvious, that if γ is su�ciently close to 1, the solar constant S is
not decreased enough to make the system freeze over. This can be
seen as the red curves of Fig. 3, corresponding to γ = 0.96 and 0.944.
The three plateaus of the scenario are easily discerned. Ts converges,
in an exponential fashion, to the equilibrium values corresponding
to S = S0 and S = γ S0. Comparing the Ts(t) curves measured on
July 1st and January 1st (upper and middle panels of Fig. 3), we see
that although the temperature di�erences are bigger in the winter,
the qualitative behavior of the curves is the same. Because of this,
later discussions will only focus on mean surface temperature values
measured in the summer, on July 1st.

Conversely, when γ is much farther from 1, the mean surface
temperature drops almost immediately and the system freezes over.
In this case, even after the solar constant is increased back up to
S = S0, there is no hope to return to the warm attractor, because of
the strong ice-albedo feedback.

The interesting behavior is seen for intermediate values of γ .
With γ = 0.943 and γ = 0.944, the Ts(t) curves are initially very
similar. On the plateau corresponding to S = γ S0, the two curves
do not saturate at an equilibrium value, but their deviation from the
value Ts = 280K is still very slow. Then, just before the second linear

ramp at t =100 years, the trajectories separate, with one ending up
in the warm climate’s attractor and the other falling to the snowball
Earth’s attractor.

We identify this instability as the in�uence of the remanents
of the system’s unstable equilibrium, the edge state, since the phe-
nomenon is very similar to the usual slowing down near a saddle
in dynamical systems. For certain values of γ , the drifting system
spends a considerable amount of time near the edge state, and this
causes it not to reach the equilibrium solution at S = γ S0. In the
following, we concentrate on this threshold value of γ .

Figure 4 shows the temperature �eld in three di�erent time
instants, during two simulations in the same scenario (with
γ = 0.943). The upper and lower panels show results of simulations
started from two di�erent initial conditions. The di�erence in initial
conditions is realized by taking a state “close” to Earth’s current cli-
mate (the same one as in Fig. 2), and then perturbing the pressure
�eld in speci�c places. These are on the order of 1 hPa. This results
in two initial states that are di�erent but still very close in the high
dimensional phase space.

The �rst panel shows the temperature �elds at the moment,
when the solar constant starts to decrease. By this time, the system
has reached its attractor (the convergence time is about 20 years, as it
is also seen in Fig. 3) that exists at S = S0. Notice that the two�elds are
very similar to each other with a warmer Northern and cooler South-
ernHemisphere due to their respective summer and winter season in
July. Themiddle panel shows the time instant right before the second
ramp, when the solar constant starts increasing from S = γ S0. The
di�erence between the two �elds is still barely noticeable. However,
in the third panel, we see some drastic di�erences. In the upper row,
the simulation simply returns to the attractor of the warm climate.
While in the bottom row, we see that at the end of the simulation, the
temperatures are much lower. This shows that in the second case a
“tipping transition”45 to the snowball state has occurred.

The same general features are perhaps more pronounced in a
di�erent representation. Figure 5 shows the distribution of sea ice
in the same two simulations. By year 50, only the regions near the

FIG. 4. Surface temperature fields along two different trajectories, with γ = 0.943. We show the temperature in three time instants, in years 50, 100, and 140 after the start
of the simulation on July 1st. The colors indicate temperature measured in kelvin. In the top row, a simulation that is returning to the warm climate is shown (this is the same
simulation that also appears in Fig. 3), while in the bottom row, the trajectory ends up in the snowball state.
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FIG. 5. Sea ice cover over two different simulations. Distribution of sea ice is
shown in the same time instants as Fig. 4. The violet points indicate water at the
sea surface, while white points mark the presence of surface ice.

poles are covered in sea ice, as it is expected on the attractor belong-
ing to S0 (today’s climate). Then, as the solar constant is decreased,
the area of sea ice starts to grow. By year 100, the di�erence between
the two (initially nearly identical) simulations becomes apparent: one
of them has a wider band of ice-free sea along the equator than the
other. The tipping transition is clearly seen in terms of sea ice cover-
age: by year 140, in the bottom panel of Fig. 5 the simulation results
in a completely frozen planet, with all of the oceans covered in ice.

IV. THE ENSEMBLE VIEW: VISUALIZING THE

SNAPSHOT ATTRACTOR

Looking at the two simulations of Figs. 4 and 5, we see that both
thewarm climate and the snowball state can be reachedwith the same
parameter drift scenario. That is, despite the model being completely
deterministic, the transition does not occur with certainty.

However, we still have no information on the “typical behav-
ior” of the system. To study this question in detail, we initialize an
ensemble of trajectories and follow their time evolution. We gener-
ate di�erent initial conditions by adding randomperturbations to the
pressure �eld, as described in Sec. III.

Following an ensemble of trajectories is becoming increasingly
popular in the study of climate dynamics,51,52 even in experimental
studies.53They are referred to as “parallel climate realizations” and are
used for extracting statistical properties. For example, one can esti-
mate the “typical” behavior (the “mean state”) and the characteristics
of the �uctuations (“internal variability”).

As mentioned in Sec. I, from a dynamical point of view, an
ensemble of trajectories approximates well the snapshot attractor and
its natural distribution at each time instant. Figure 6 illustrates the
time evolution of the system’s snapshot attractor during the parame-
ter drift scenario. In the upper panel, the mean surface temperature
Ts is shown in all 125 members of the ensemble. During the �rst 50
years, all trajectories converge to a unique equilibrium temperature.
This temperature characterizes the warm climate with S = S0. It is
followed by a gradual decrease in temperature, in a similar manner
as the individual simulation Fig. 3 (with γ = 0.943).

After 50 years, up until about 90 years after the start of the sim-
ulation, all of the trajectories still behave in the same way. They show
a steady convergence toward the snowball state’s attractor, which is
the only stable one at S = γ S0. Here, the snapshot attractor has a very

FIG. 6. Top panel: time dependence of the mean surface temperature in the sys-
tem that has a solar constant drifting according to Eq. (1) with γ = 0.943. There
are 125 different climate realizations, representing the drifting climate’s snapshot
attractor. The three insets show the probability distribution of mean surface tem-
perature on the snapshot attractor in different time instants (marked by dashed
lines). The black thick curve is the ensemble average. In the lower panel, the
parameter drift scenario, the graph of Eq. (1) is displayed.

small extension in phase space, and its natural measure is a single,
very narrow peak (see the inset of Fig. 6).

However, when the trajectories reach the temperature values
around 280K, the peak in the distribution starts to widen. This is
the temperature value, which is expected to be very close to the
remanents of the unstable edge state, which was a part of the basin
boundary between the two stable attractors, at the value S = S0. The
trajectories are coming to their vicinity along the ghost of the edge
state’s stable direction but quickly leave along the unstable direc-
tion. It is this mechanism that makes the snapshot attractor more
extended. By the time the solar constant starts to increase again, at
the 100 year mark, the natural distribution is quite wide. After the
second ramp, both of the stationary attractors are stable again, and
the basin boundary splits the ensemble into two parts: the trajecto-
ries start to converge to one of the two globally stable attractors at
S = S0. This results in either a fully ice covered snowball Earth or a
return to the fairly warm climate. From the point of view of a single
realization, it is completely random whether it returns to the state of
warm climate or not. Considering the snapshot attractor reveals that
the process is indeed random, but the probability of ending up on
a given attractor is given by the natural distribution of the snapshot
attractor.

Speci�cally, when multiple �nal states are possible after the
parameter drift, this distribution will exhibit multiple peaks. Then,
we obtain the probabilities of each �nal outcome as the relative
weights of these peaks. For example, if one is interested in the prob-
ability of the whole Earth freezing over, it is reasonable to talk about
the “probability of tipping” to the snowball attractor. Practically, we
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FIG. 7. Sea ice cover in the two different climates (as snapshot attractors). Distribution of sea ice is shown in the same time instants as Fig. 4. The color coding reflects the
local probability of the formation of sea ice.

calculate this quantity as the ratio of ensemble members ending up
in the snowball state and the number of total ensemble members. In
our numerical study, this probability is P = 0.85, indicating that the
snowball Earth is the more probable outcome. However, we note that
the exact value of the probability is not particularly signi�cant: by
slightly changing the parameters of the scenario this probability may
alter rapidly. It is expected based on Fig. 3 that the fate of individ-
ual trajectories is sensitive to the choice of γ . The important feature,
which is worth emphasizing, is the ability to obtain the probability
of tipping into the snowball climate using the snapshot attractor’s
natural distribution.

This is in contrast to the way tipping transitions are usually dis-
cussed in deterministic systems, where as a result of a monotonous

parameter drift, either all trajectories tip or none of them do.54,55

Advances and extensions to the existing theory were made recently,
with the introduction of “partial tipping.”56 It was found that, in the
presence of a periodic attractor, the parameter drift could result in
tipping for some trajectories but not for others. In principle, one
could also determine the ratio of the number of tipping trajectories
to the total number of trajectories under investigation. This was done
in Ref. 57, where the tipping probability turned out to depend on
the speci�c choice of initial conditions. However, we believe that our
setup enables a proper de�nition for the probabilities of tipping, in
which the initial convergence to the snapshot attractor plays a cru-
cial role. The objective distribution observed on the attractor (before
the parameter drift would take place) is independent of the initial

FIG. 8. A climate realization that approximates the edge state. In the top row, the sea ice cover, and in the bottom row, the surface temperature is displayed.
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conditions of the trajectories. This allows us to calculate the relative
weights (which are now objective, independent on the initial con-
ditions) of the possible end states at the end of the parameter drift
scenario, using the snapshot attractor’s natural distribution.

The “typical behavior,” the ensemble average 〈Ts〉 computed
over the snapshot attractor, is the black curve in Fig. 6. It is important
to note, that because the natural distribution becomes bimodal for
t > 100 years, the average lies somewhere between the two peaks (the
two stable attractors). Paradoxically, the average climate is almost
never realized. Instead, it is much clearer to say that because of the
mechanism described above, the snapshot attractor “splits,” and after
the second ramp, two snapshot attractors exist. Strictly speaking,
the snapshot attractor remains a single object, but its two parts can
be considered separately. This is because no transition is possible
between them. By year 140, the two parts (practically, two snapshot
attractors) reach the two attractors that are stable for the stationary
value of S = S0. The averages taken with respect to the natural dis-
tributions of the two snapshot attractors describe a freezing climate
and a warm climate. Note, however, that the relative weights of the
two disjoint parts are precisely that characterize the probability of
each outcome.

Figure 7 shows the sea ice cover in the typical freezing andwarm
climates. Computing the sea ice cover in the di�erent members of
the ensemble in each location gives the probability of the sea freezing
over locally. This probability is re�ected in the color coding of Fig. 7.
The top row shows the typical behavior, that ends in the warm state,
while in the middle row, the typical snowball climate can be seen.

Finally, it is important to notice that there is one trajectory that
has a mean surface temperature of approximately 280K, for surpris-
ingly long times (orange curve of Fig. 6). This means that it stays far
away from the two stable attractors for a considerable time.Only after
140 years does it �nally converge to the snowball Earth’s attractor.
This simulation is thought to approximate the saddlelike edge state.

V. THE EDGE STATE BETWEEN WARM AND

SNOWBALL CLIMATES

The edge state has an important role in the transition to the
snowball Earth’s attractor. The one (orange colored) trajectory that
stays far away from both of the attractors is thought to approximate
the edge state very well.

Figure 8 shows both the sea ice and surface temperature distri-
butions of this simulation, that we will refer to as “the edge state.”42

The surface temperature �elds re�ect the slight decrease of the orange
curve of Fig. 6, for times between 100 and 140 years.

It is worth comparing the sea ice distribution to that of the typ-
ical behaviors (Fig. 7). For example, we see that at year 100, the edge
state (Fig. 8) is similar to a climate that ends on the warm attractor,
with a wideband of ice-free sea remaining at the equator. Despite the
solar constant’s increase after this time, the sea ice cover is slightly
increasing. In the edge state, this process stops with only a narrow
band (1 or 2 grid cells wide) of water remaining at the equator. This
is themain di�erence between the two typical behaviors: themajority
of the planet becomes ice covered, but a continuous mass of ice does
not form.

For a �xed S, the edge state is embedded in the basin bound-
ary between the two stable attractors. Because of the parameter drift,

FIG. 9. Distribution of freezing times within the ensemble. A realization is consid-
ered to be frozen when its average temperature falls below 260 K. The probability
of a siamulation having a certain freezing time (with respect to the snapshot attrac-
tor’s natural measure) is displayed. The dashed line shows an exponential tail
fitted to the distribution, P ∼ e−αt , with α = 0.22 ± 0.05 1/year.

eachmember of the ensemble seems to cross the basin boundary and
approach this saddle type instability. Or equivalently, we can think
of the snapshot attractor itself approaching the edge state. The edge
state causes the snapshot attractor to widen, because of the repulsion
along the remanents of the unstable directions. When the parameter
returns to the value of S = S0, the members of the ensemble will fall
in the basins of either of the stable attractors (or in special cases, some
members fall close to the basin boundary and stay near the edge state
for long times). This mechanism leads to the probabilistic outcome
of the parameter drift.

A further argument in favor of the edge state’s role in the snow-
ball Earth transition is the distribution of “freezing times.”We choose
a value in the mean surface temperature, below which a climate real-
ization is considered to have converged to the frozen state. Then, the
freezing time of a trajectory is the time instant at which it crosses this
threshold temperature (i.e., the sharp drop in the curves of Fig. 6). In
Fig. 9, the distribution of this variable can be seen. The distribution
appears to have an exponential tail, the probability decreases as∼e−αt

for large values of the freezing time t. From the probability distribu-
tion of Fig. 9, we get α = 0.22 1/year, which implies a characteristic
time scale of 1/α = 4.5 years. This exponentially decaying behavior
is a characteristic of escape processes: for example, the probability of
staying in the neighborhood of a saddle58 or in a given region of phase
space.59–61

VI. SUMMARY

We investigated parameter drift induced transitions between a
warm climate (resembling today’s climate) and the snowball Earth in
an intermediate complexity climate model. The system has a bistable
regime in the solar constant, where the two stable attractors are
separated by the unstable edge state.

We constructed the system’s bifurcation diagram in Fig. 1. Fol-
lowing this, we chose a continuous drift with a �nite rate, to induce
a transition between the two attractors. A piecewise linear param-
eter drift scenario [de�ned by Eq. (1)] was used, parametrized by
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the fractional decrease in solar constant, γ . Although the particular
choice of scenario was a special one (in the sense that it consisted of
mainly constant plateaus), the qualitative observations would remain
the same for a more general choice of parameter drift. We showed
that for a certain, critical value of γ , the trajectories of the system
are expected to go near the edge state. From the results of Fig. 3, this
value is γ = 0.943.

Instead of investigating individual simulations, we turned to the
theory of snapshot attractors, that requires following an ensemble of
parallel climate realizations. The whole ensemble was subject to the
parameter drift scenario with the critical γ = 0.943. The ensemble
of 125 members provides an approximation to the snapshot attrac-
tor and its natural distribution. Figure 6 shows a projection of the
snapshot attractor, the mean surface temperature. We see that ini-
tially it has a small extension, but near the end of the plateau at
S = γ S0, the snapshot attractor grows (its distribution widens), and
eventually splits. The resulting subensembles converge to the station-
ary attractors existing at S = S0. We say that the two subsets of the
ensemble (that converge to either attractor after 150 years) belong to
two di�erent, coexisting snapshot attractors.62

The snapshot attractor’s natural distribution plays an important
role in climate prediction. In the beginning, when the system has a
constant S = S0, the distribution is sharp, trajectories (the possible
climate states) are close to each other, i.e., the feasible values of a given
variable have a narrow range, therefore, fairly accurate predictions are
possible. When the parameter starts to drift, this changes. The snap-
shot attractor’s extension, and with it, internal variability drastically
increases. At the end of the plateau of S = γ S0, 30 K di�erences are
possible between certain members of the ensemble. For a prescribed
parameter drift scenario, this can be interpreted as being a precursor
to the splitting of the snapshot attractor, which is the projection of
a future catastrophic event, in the language of climate science. The
increase in standard deviation is the same phenomenon that is well
known in statistical physics. The phase transition (or critical transi-
tion) is usually preceded by the divergence of the ensemble’s standard
deviation.63

The exactmoment, when the planet freezes over is just as hard to
predict. In this regard, 20 year di�erences are observed in the freezing
times of the ensemble members.

It is important to emphasize that the transition from the vicin-
ity of the snowball state to the warm climate is possible but only
with a certain probability. This means that out of a number of ran-
domly selected climate histories, the number of those that (after the
parameter drift) return to the warm climate is given by the snapshot
attractor’s natural distribution, which splits into two sharp peaks (by
the end of the parameter drift scenario). Even though we are deal-
ing with a purely deterministic system, randomness is present, due
to internal variability, the chaoslike behavior of the climate system.
The probability of the transition depends on the snapshot attractor’s
natural distribution, at the time of the splitting. The whole process
naturally depends on all the parameters of the scenario used. The
precise investigation of the relation between the transition’s proba-
bility and the parameter drift scenario could be a subject of further
studies.

Applying the theory of snapshot attractors, we were also able to
obtain a climate realization that, for long times, stays near the third
equilibrium climate, the edge state. With a critical value of γ , the

ensemble members (which approximate the snapshot attractor) get
close to the edge state. Even with the ensemble of size 125, there was
one simulation, that remained close to the unstable solution during
the whole parameter drift scenario (orange curve of Fig. 6). This cor-
responds to a climate realization that is only partly frozen, as seen in
the top row of Fig. 8.

Many of our observations, for example, the splitting of the snap-
shot attractor, are expected to carry over to possibly much more
complex, up to date climate models.
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