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Dynamical evolution of systems with sparse Hamiltonians can always be recognized as continuous-time
quantum walks (CTQWs) on graphs. In this paper, we analyze the short-time asymptotics of CTQWs. In
recent studies, it was shown that for the classical diffusion process the short-time asymptotics of the transition
probabilities follows power laws whose exponents are given by the usual combinatorial distances of the nodes.
Inspired by this result, we perform a similar analysis for CTQWs in both closed and open systems, including
time-dependent couplings. For time-reversal symmetric coherent quantum evolutions, the short-time asymptotics
of the transition probabilities is completely determined by the topology of the underlying graph analogously to
the classical case, but with a doubled power-law exponent. Moreover, this result is robust against the introduction
of on-site potential terms. However, we show that time-reversal symmetry-breaking terms and noncoherent
effects can significantly alter the short-time asymptotics. The analytical formulas are checked against numerics,
and excellent agreement is found. Furthermore, we discuss in detail the relevance of our results for quantum
evolutions on particular network topologies.

DOI: 10.1103/PhysRevA.100.062320

I. INTRODUCTION

Continuous-time quantum walks (CTQWs) on graphs
[1–4] have been used frequently to successfully model coher-
ent transport phenomena in those systems whose phenomeno-
logical description allows the application of tight-binding
approximations [5]. Examples of such exciton networks
consist of light-harvesting complexes [6,7], dendrimers [8],
trapped atomic ions [9], and arrays of quantum dots [10,11],
to name just a few.

From a quantum information perspective, CTQWs ap-
peared as possible physically realizable implementations of
quantum algorithms of search [12–16] and generic quantum
computation [17–19] and were compared on various occa-
sions with their classical counterpart, the continuous-time
random walk (CTRW), that is, the diffusion process [20–22].

A large number of experiments [23–26], numerical calcu-
lations, and theoretical studies [2,27–32] have been devoted
to analyzing the transport properties of these systems. Among
the most investigated topics were the state transfer properties
[33–38] and the long-time behavior [39–44] of these systems.
Closed as well as open systems were studied, and now there
are many examples where the supremacy of CTQW over
CTRW has been demonstrated. However, there are some
cases when CTQWs underperform the old diffusive transport
[45,46].

Contrary to the long-time asymptotics, the behavior of
CTQWs at short timescales has missed such substantial
attention. This is especially surprising if one notes that

the short-time dynamics of local Hamiltonians appearing
in universal, continuous-time quantum computation offers
nontomographical, efficient reconstruction of the governing
Hamiltonian [47,48]. This resembles the situation in the the-
ory of CTRW: Though the study of the short-time asymptotics
of Brownian motion on Riemannian manifolds was initiated
nearly half a century ago [49] and the results obtained have
been subsequently extended and generalized in many ways
[50–52], theorems concerning short-time behavior of CTRW
on graphs have been appeared only recently. In two current
studies [53,54], it was shown that the short-time behavior
of the transition probabilities of diffusion processes differ in
a considerable amount when compared to their (in space)
continuous counterpart. While Brownian motion in locally
Euclidean spaces can be approximated by a Gaussian dis-
tribution for short timescales, the same type of asymptotics
tells that the transition probabilities p(y, t |x), corresponding
to distinct vertices x and y of a graph follow a power law. If
d (x, y) is the distance between the aforementioned vertices,
then [53,54]

lim
t→0

ln p(y, t |x)

ln t
= d (x, y); (1)

i.e., for small positive times t we have

p(y, t |x) = c(x, y)t d (x,y) + O(t d (x,y)+1). (2)
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Also the constant c(x, y) has been determined [54]. If �(x, y)
denotes the number of shortest paths that connect x to y, then

c(x, y) = �(x, y)

d (x, y)!
. (3)

In this paper, we show that similar results apply to CTQWs
as well. Given a tight-binding model with adjacency matrix A
and on-site potential V , the complex transition amplitudes of
the CTQW between position eigenstates |x〉 and |y〉 follow the
asymptotics

〈x|U (t )|y〉 = �(x, y)

d (x, y)!
(−it )d (x,y) + O(t d (x,y)+1). (4)

Thus, the time evolution of the entries of the mixing matrix
Mxy(t ) = |〈x|U (t )|y〉|2 of the CTQW possesses the short-time
asymptotic form

Mxy(t ) =
[

�(x, y)

d (x, y)!

]2

t2d (x,y) + O(t2d (x,y)+1). (5)

Since Mxy(t ) is the probability of finding the system in the
position eigenstate |y〉 if initially it was prepared in the
state |x〉, the comparison of Eq. (2) and Eq. (5) shows that
CTQWs always underperform CTRWs at short timescales.
Such a doubling effect has been also observed in the tail
distribution of the first passage time of CTQW [55]: The
long-time assymptotics of the first passage time of a quantum
walker of a one-dimensional tight-binding model follows a
power law in time with exponent −3, while a classic result of
Lévy’s shows that such a scaling in CTRW has exponent −3/2
[56]. This is a rather general phenomenon which can appear
when the spectrum of the Hamiltionian is continuous and the
so-called measurement density of states contains Van Hove
singularities [56]. The short-time analysis of the evolution
of CTQWs coupled to its environment with the assumption
of Markovian open system dynamics shows that a small
amount of decoherence can halve the exponent in Eq. (5)
to that of Eq. (2), resembling the well-studied properties of
environment-assisted quantum transport [47,48]. Note that
these statements cannot be obtained by the direct application
of the usual approximation U (t ) ≈ 1 − iHt , which is the first-
order approximation of the power series of the time evolution
operator. Indeed, our results show that the first nonvanishing
order in the power series of Mxy(t ) is 2d (x, y).

Since the set of Hamiltonians is much larger than the set
of symmetric generators of stochastic Markovian dynamics,
the structure of the short-time asymptotics of CTQWs is
more abundant compared to that of CTRWs. These noticeable
differences, caused by interference patterns, become apparent
when one considers chiral quantum walks [29,57]. It turns
out that the interference patterns can increase the exponent in
Eq. (5) resulting in further deceleration of the initial dynamics.

Interestingly, the asymptotics of Eq. (4) is universal in
the sense that the coefficients appearing do not depend on
the on-site potential. The potential matrix V determines the
timescale of only the short-time regime, where Eq. (4) is worth
considering. Note, however, that a closer look at the evolution
and the application of time-dependent perturbation theory can
further improve Eq. (4) and widen the time horizon where
results like Eq. (4) can approximate the initial dynamics.

The paper is organized as follows. In Sec. II we present the
main propositions concerning the short-time asymptotics of
linear dynamical systems whose time evolution is governed
by a possibly time-dependent but sparse matrix. In Sec. III
we apply these statements to closed and open CTQWs and
illustrate our results by various case studies including chiral
walks. A conclusion and future direction of research are given
in Sec. IV.

II. MAIN MATHEMATICAL RESULTS

A. The main theorem

Throughout this section H will denote a finite-dimensional
Hilbert space with an orthonormal basis {|v〉}v∈V labeled by
the vertices of a graph G = (V, E ) with edge set E . The graph
is assumed to be simple and directed. For all distinct vertices
n, m of the graph G, we denote the set of the shortest, directed
paths connecting n to m by P (n, m). If p is a path in P (n, m) of
length d , then it can be represented by a sequence of vertices
p0, . . . , pd with p0 = n, pd = m, and the edges (pk, pk+1) ≡
pk → pk+1 formed by the consecutive members of p0, . . . , pd

are just the edges of p.
We consider a continuous family of linear oper-

ators [0, T ] � t 	→ M(t ) ∈ B(H) satisfying the property
〈m|M(t )|n〉 
≡ 0 on [0, T ] if and only if the directed edge
(n, m) is a member of E . In that case, we say that G is the
graph of M(t ). Given distinct vertices n and m, and a shortest
path p ∈ P (n, m) of length d , we define the corresponding
path amplitude �p[M(t )] as

�p[M(t )] =
∫ t

0
dsd · · ·

∫ s2

0
ds1 〈pd |M(sd )|pd−1〉

× · · · 〈p1|M(s1)|p0〉. (6)

If A is a matrix operating on H, its norm is defined through

‖A‖ = max
ψ 
=0

‖Aψ‖
‖ψ‖ , (7)

where ‖ψ‖ = √〈ψ |ψ〉. Note that the norm satisfies the in-
equality

‖A + cB‖ � ‖A‖ + |c|‖B‖ (8)

for any complex c and has the submultiplicative property

‖AB‖ � ‖A‖ ‖B‖. (9)

Let τT denote the reciprocal of the maximum among the
norms of ‖M(t )‖ if t runs from zero to T :

τ−1
T = max

0�t�T
‖M(t )‖. (10)

We can now state and prove the main theorem on short-
time asymptotics.

Proposition 1. The solution of the matrix differential
equation

d

dt
X (t ) = M(t )X (t ), X (0) = 1 (11)

062320-2
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satisfies the inequality∣∣∣∣∣∣〈m|X (t )|n〉 −
∑

p∈P (n,m)

�p[M(t )]

∣∣∣∣∣∣ � et/τT
(t/τT )d (n,m)+1

[d (n, m)+1]!

(12)
for all n, m ∈ V of distance d (n, m). Here the sum goes over
the set of shortest paths P (n, m) running from n to m in G, and
�p[M(t )] is defined in Eq. (6).

Before proving the statement, some remarks should be
added. First, note that H (t ) = iM(t ) is not necessarily Her-
mitian. Indeed, it can be any square matrix. This fact gives the
opportunity to apply the statement also to Lindbladian dynam-
ics in Sec. III. The characteristic measure of the short-time
dynamics is τT , that the approximation contained in Eq. (12)
is informative only whenever t is less than τT . For time-
independent generators, τT is independent of T . Moreover, τT

does not depend on a complex prefactor of modulus one multi-
plying M(t ). Since every CTRW taking place on a symmetric
weighted graph has a corresponding CTQW with the same
generator but multiplied by −i, the scales of the short-time
asymptotics are necessarily identical. In the case of chiral
CTQW, the appearance of the path amplitudes �p[M(t )] in
Eq. (12) results in interference patterns with which CTQW
obtains a richer structure as compared to CTRW, where the
amplitudes are always positive.

Proof. As t 	→ M(t ) is a continuous map, the solution of
the differential equation (11) can be written as the sum of the
Dyson series

X (t ) =
∞∑

N=0

∫ t

0
dsN · · ·

∫ s2

0
ds1 M(sN ) · · · M(s1). (13)

Let d be the graph distance between nodes n and m. Then,
for any k < d and for any 0 � s1, s2, . . . sk � T , the identity
〈m|M(sk ) · · · M(s1)|n〉 = 0 holds. Thus, when calculating the
entry [X (t )]mn, the Dyson series reduces to

〈m|X (t )|n〉

=
∞∑

N=0

∫ t

0
dsN · · ·

∫ s2

0
ds1〈m|M(sN ) · · · M(s1)|n〉

=
∫ t

0
dsd · · ·

∫ s2

0
ds1〈m|M(sd ) · · · M(s1)|n〉

+
∞∑

N=d+1

∫ t

0
dsN · · ·

∫ s2

0
ds1〈m|M(sN ) · · · M(s1)|n〉.

(14)

For any linear operator A, one has ‖A‖ � |〈m|A|n〉|, so we can
bound each term in Eq. (14) as∣∣∣∣

∫ t

0
dsN · · ·

∫ s2

0
ds1〈m|M(sN ) · · · M(s1)|n〉

∣∣∣∣
�

∫ t

0
dsN · · ·

∫ s2

0
ds1|〈m|M(sN ) · · · M(s1)|n〉|

�
∫ t

0
dsN · · ·

∫ s2

0
ds1‖M(sN ) · · · M(s1)‖

�
∫ t

0
dsN · · ·

∫ s2

0
ds1‖M(sN )‖ · · · ‖M(s1)‖

�
∫ t

0
dsN · · ·

∫ s2

0
ds1

1

τN
T

= (t/τT )N

N!
. (15)

Therefore,∣∣∣∣∣
∞∑

N=d+1

∫ t

0
dsN · · ·

∫ s2

0
ds1〈m|M(sN ) · · · M(s1)|n〉

∣∣∣∣∣
�

∞∑
N=d+1

(t/τT )N

N!
� (t/τT )d+1

(d + 1)!
eξ � (t/τT )d+1

(d + 1)!
et/τT ,

(16)

where we used Taylor’s theorem with the Lagrange form
of the remainder, which holds with a suitably chosen ξ ∈
[0, t/τT ]. This implies∣∣∣∣〈m|X (t )|n〉 −

∫ t

0
dsd ...

∫ s2

0
ds1〈m|M(sd ) · · · M(s1)|n〉

∣∣∣∣
� et/τT

(t/τT )d+1

(d + 1)!
. (17)

Now, let us perform the expansion

[M(sd ) · · · M(s1)]mn =
∑

k1,...,kd−1

[M(sd )]mkd−1 · · · [M(s1)]k1n.

(18)

It is clear that only those indices contribute in the above sum
for which (n, k1, k2 . . . , kd−1, m) forms a path in G connecting
n to m. This means that one can replace the above sum over
vertex sets to a sum over the path set P (n, m):

[M(sd ) · · · M(s1)]mn =
∑

p∈P (n,m)

[M(sd )]mpd−1 · · · [M(s1)]p1n.

(19)

Inserting this into Eq. (17), we arrive at Eq. (12). �

B. Improvement of the timescale

The main drawback of Proposition 1 is the appearance of
the norms ‖M(t )‖. Choosing the Hilbert space basis |n〉, and
assuming that M is constant in time, then splitting M to a
sum of diagonal and off-diagonal parts (which is the case,
for instance, in tight-binding models) and varying only the
diagonal entries affect the timescale τ dramatically. However,
using time-dependent perturbation theory, more can be said
than what Eq. (12) would allow. Let M = V + M̂ be an arbi-
trary square matrix with diagonal part V and off-diagonal part
M̂. Let λ � 0 be the smallest real satisfying �(V − λ) � 0.
Let A be the adjacency matrix obtained by setting all nonzero
entries of M̂ to one. The graph G = (V, E ) described by A is
simple but directed: the edge (n, m) with tail n and head m is
a member of E if and only if 〈m|A|n〉 = 1. Define M̂(t ) as

M̂(t ) = exp(−V t )M̂ exp(V t ). (20)
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Proposition 2. The following inequality holds:∣∣∣∣∣∣〈m| exp(Mt )|n〉 − eVmt
∑

p∈P (n,m)

�p[M̂(t )]

∣∣∣∣∣∣
� et/τ eλt (t/τ )d (n,m)+1

[d (n, m)+1]!
, (21)

for all n, m ∈ V , where

τ−1 = ‖A‖ ‖M̂‖max = ‖A‖ max
n,m

|〈m|M̂|n〉|. (22)

Vm = 〈m|V |m〉 and P (n, m) is the set of shortest directed paths
connecting n to m in G of length d (n, m).

Proof. Define V̂ = V − λ. Note that

exp(Mt ) = exp(λt ) exp(V̂ t )X (t ), (23)

where X (t ) is the solution to

d

dt
X (t ) = M̂(t )X (t ), X (0) = 1. (24)

Also note

M̂(t ) = exp(−V t )M̂ exp(V t ) = exp(−V̂ t )M̂ exp(V̂ t ). (25)

Let sN+1 = t and s0 = 0. Then, the N th-order term of the
Dyson series of Eq. (24) multiplied by exp(V̂ t ) is of the form

YN (t ) =
∫ t

0
dsN · · ·

∫ s2

0
ds1

[
N∏

k=1

eV̂ (sk+1−sk )M̂

]
eV̂ (s1−s0 ).

(26)
Since �(V − λ) � 0 and 0 = s0 � s1 � · · · � sN � sN+1 = t
holds, we have the following upper bounds:

|〈u|eV̂ (sk+1−sk )M̂|v〉| � |〈u|M̂|v〉| � ‖M̂‖maxAuv,

|〈u|eV̂ (s1−s0 )|v〉| � δuv, (27)

which hold for any two vertices u and v of G, so we can write

|〈m|YN (t )|n〉|

� ‖M̂‖N
max

∫ t

0
dsN · · ·

∫ s2

0
ds1

∑
k1

· · ·
∑
kN

Am,kN · · · Ak1,n

= ‖M̂‖N
max〈m|AN |n〉 tN

N!
. (28)

Therefore, since |〈m|AN |n〉| � ‖A‖N holds, we find

|〈m|eλtYN (t )|n〉| � eλt (‖M̂‖max‖A‖t )N

N!
= eλt 1

N!

(
t

τ

)N

, (29)

where τ is given in Eq. (22). From this point, the arguments
of the proof of Proposition 1 can be repeated to obtain

|〈m| exp(Mt )|n〉 − eλt 〈m|Yd (n,m)|n〉|

=
∣∣∣∣∣∣〈m| exp(Mt )|n〉 − eVmt 〈m|

∑
p∈P (n,m)

�p[M̂(t )]|n〉
∣∣∣∣∣∣

� eλt

[d (n, m) + 1]!

(
t

τ

)d (n,m)+1

, (30)

which proves the statement. �

Since the adjacency matrix A of a simple, undirected graph
G is a non-negative matrix, the Perron-Frobenius theorem
guarantees that the largest eigenvalue of A is also largest in
magnitude. Assume Ax = λmaxx and its largest entry xi = 1,
which can be always chosen. Then

λmax = λmaxxi = sum jAi jx j � sum jAi jxi = di � dmax. (31)

Thus, λmax is bounded by the highest degree dmax(G) of G
from above. That is, when M̂ admits the property 〈u|M̂|v〉 = 0
if and only if 〈v|M̂|u〉 = 0, then A is symmetric, so

‖A‖ = λmax(A) � dmax(G). (32)

A particular example is the tight-binding model, taking
place on the simple, undirected graph G with adjacency
matrix A. Then, M can be replaced in Proposition 2 by
−iH = −i(V + A) to obtain∣∣∣∣∣∣〈m| exp(−iHt )|n〉 − e−iVmt

∑
p∈P (n,m)

�p[Ĥ (t )]

∣∣∣∣∣∣
� et/τ (t/τ )d (n,m)+1

[d (n, m)+1]!
, (33)

where

τ−1 = dmax(G) max
n 
=m

|〈n|Ĥ |m〉|. (34)

III. APPLICATION OF THE RESULTS

A. Comparison of CTRW and CTQW

In order to compare the short-time asymptotics of the
probabilistic and unitary versions of continuous time walks,
we fix a simple, undirected graph G = (V, E ), containing
no self-loops. Using the adjacency matrix A and the degree
matrix D, the CTRW dynamics is generated by the graph
Laplacian [20,22] L = D − A, that is, if u, v ∈ V are arbitrary
vertices, then the conditional probability of observing the
walker at vertex u if its initial position was v is

pR(u, t |v) = 〈u| exp(−Lt )|v〉. (35)

The unitary walk on the same graph is generated by −iL with
transition probabilities given by

pQ(u, t |v) = |〈u| exp(−iLt )|v〉|2. (36)

Since ‖L‖ = ‖ − iL‖, the norm of the generators which define
the timescale τ = ‖L‖−1 of the short-time regime are equal,
the two dynamics defined above and the hitting probabilities
are naturally comparable. We choose the graph G to be a
binary tree depicted in Fig. 1. It is clearly visible that the
numerical results fit very well to the theoretical curves in the
time horizon t < τ in the case of both CTQW and CTRW.
The only exception is the 0 → 1 transition, where the error
of the approximative formula becomes significant already for
t > τ/2. However, this is easily understandable if one notes
that in that case the denominator of the error bound appearing
in Eq. (4) becomes comparable to the numerator.

B. CTQWs with arbitrary on-site potential

In order to demonstrate the universality of the short-
time asymptotics in tight-binding models, we consider
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FIG. 1. Comparison of the CTRW and the CTQW taking place on the graph depicted in the top left corner. Transition and hitting
probabilities as functions of time have been calculated between vertex |0〉 and vertices |0〉, |1〉, |2〉, |3〉, |4〉, |5〉. Beside the results of the
numerical calculations, log-log plots depict the predictions of Eq. (2) and Eq. (5) with the corresponding exponents α = d in the case of
CTRW and α = 2d in the case of CTQW, respectively, d being the graph distance of the nodes. Note that these theoretical curves for the sake
of better comparison have been slightly shifted in the vertical direction. Whenever two time series overlap on the log-log plot, dashed lines
represent pX(2, t |0) and pX(4, t |0), while circles and diamonds represent pX(3, t |0) and pX(2, t |0) respectively, if X denotes either R or Q. For
a sake of better comparison, the linearly scaled diagram in the bottom left corner contains the numerics of 1 − pQ(0, t |0) instead of pQ(0, t |0).

Hamiltonians of the form H = A + V , where V is a diagonal
matrix, called the on-site potential. The hitting probabilities
are

pTB(u, t |v) = |〈u| exp[−i(A + V )t]|v〉|2. (37)

Consider the graph that has been introduced in Sec, III A. We
choose the on-site potentials from an ensemble of indepen-
dent, identically distributed Gaussian random variables with
mean zero and unit variance. Figure 2 illustrates the transition
probabilities between vertices of different distances. The time
series depicted in Fig. 2 has been obtained by first calculating
the full time series of the hitting probabilities between fixed
sites v and u for 75 different random realizations of V . If
the index α = 1, . . . , 75 marks the different realizations of the
on-site potential, then these numerical calculations resulted in
sequences of pairs (tk/τα, p(α)

uv (tk/τα )), tk/τα , k = 1, . . . , 75
varying between 0.5 × 10−5 and 1.5. Here τα = ‖A + Vα‖.
After that, the diagonal sequence (tα/τα, p(α)

uv (tα/τα )) has been
plotted. The figure provides strong evidence of the indepen-
dence of the short-time asymptotics from the on-site potential.

C. Chiral quantum walks

Next, we discuss the short-time properties of chiral walks
[29,57]. These walks are defined by modifying the adjacency

matrix of a graph G by assigning a complex phase to a
transition |n〉 → |m〉 allowed by the adjacency matrix and the
conjugate phase to the transition |m〉 → |n〉, i.e., by defining

FIG. 2. Universality in tight-binding models with Gaussian dis-
tributed on-site potentials.
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the Hamiltonian

Hch =
∑

{n,m}∈E
eiθnm |n〉〈m| + e−iθnm |m〉〈n|. (38)

Chiral quantum walks offer a flexible way to engineer
transport properties of quantum networks. For example, while
for a nonchiral CTQW the transition probabilities satisfy
the time-reversal and reflection symmetries, i.e., p(x, t |y) =
p(x,−t |y) and p(x, t |y) = p(y, t |x), for chiral walks these
may be broken and only the composition of these symmetries
are satisfied, p(y, t |x) = p(x,−t |y). This freedom has been
used to direct, enhance, or suppress transport by tuning the
complex phases [29,57–59].

Similarly, it turns out that chiral walks also display highly
adjustable short-time properties compared with their nonchi-
ral counter parts. By varying the strength of the diagonal
potential terms or the off-diagonal hopping terms of nonchiral
CTQWs, one cannot change the leading exponent of t in
the short-time expansion of the transition probabilities as
discussed in the previous subsection. Contrary to this, one
can (in case of some network topologies) change the leading
exponent by adjusting the phase factors in a chiral walk
Hamiltonian. This can be easily shown: Consider a chiral
quantum walk Hamiltonian on G which we divide into a
diagonal and an off-diagonal term, H = D + O, where exactly
those entries Okl of the off-diagonal term are nonzero for
which the nodes k and l are connected. As discussed in Sec. II,
one can show for the transition probability that

p(m, t |n) = |�(m, n)|2
(d (n, m)!)2

t2d (n,m) + O(t2d (n,m)+1), (39)

�(n, m) =
∑

p∈P (n,m)

�p[O], (40)

where the sum goes over the different shortest paths P (n, m)
from n to m. If we tune the phases of the off-diagonal entries
Okl to be positive reals, then �(n, m) is nonzero, and the lead-
ing exponent is 2d (n, m). However, for certain geometries,
we can choose the phases of these entries in such a way that
the sums over different paths cancel each other and the first
nonvanishing leading term will then have a leading exponent
larger than 2d (n, m). The effect of such a cancellation on a
specific graph G is illustrated in Fig. 3. Note that the particular
graph we choose in this case could not be a tree graph, since
the phases then can be transformed out yielding a nonchiral
CTQW with the same transition probabilities as the original
chiral walk [29] (see also the Appendix). It is clear that with
the specified arrangement of complex phases with respect to
the transition |0〉 → |1〉 the leading exponent is six, contrary
to the nonchiral case when it is four.

D. Time-dependent Hamiltonian dynamics

To study CTQW in time-dependent tight-binding models,
let us consider a time-dependent Hamiltonian of the form

H (t ) = �+(t ) A �(t ), (41)

where A is the adjacency matrix of a simple, undirected graph,
containing no self-loops, and �(t ) is a family of unitary
matrices, not commuting with A for all time instances. Note

FIG. 3. Comparison of time-reversal symmetric and chiral quan-
tum walks on the graph.

that, for any choice of �(t ), unitarity guarantees that τT

introduced in Eq. (10) is determined solely by A:

‖�+(t )A�(t )‖ = max
ψ 
=0

‖�+(t )A�(t )ψ‖
‖ψ‖

= max
ψ 
=0

‖A�(t )ψ‖
‖�(t )ψ‖ = ‖A‖. (42)

We choose the particular case when �(t ) = exp(−i�t ), �

being a real diagonal matrix. Due to [H (t ), H (t ′)] 
= 0 for
distinct time instances t and t ′, the resulting time evolution
of Eq. (41) can be significantly complicated. This is always
the case, even if A represents a tree, which cannot support a
nontrivial chiral walk. To illustrate the effect of the appearance
of �(t ) in Eq. (41), A is chosen such that it corresponds
to a linear chain of length n whose nodes are labeled in
linear order from 0 to n, while �(t ) = diag(e−i�t , 1, . . . , 1).
A short calculation shows that the short-time asymptotics of
the transition amplitudes 〈v|U (t )|0〉 are

〈v|U (t )|0〉 = 1

�d

[
−

v−1∑
u=0

(−i�)u tu

u!
+ e−i�t

]
+ O(t d+1).

(43)

Figure 4 shows the comparison of the exact numerical cal-
culations and the approximative formula of Eq. (43), which
corresponds to a chain of three links, one of them ad-
mitting a rotating phase. Figure 4 shows that the theoret-
ical curves fit well in the time horizon t < 0.5τ . In the
time horizon 0.5τ < t , the error of the approximative for-
mula becomes significant as we have seen in the previous
section.

According to Proposition 2, when � is replaced by V ,
the potential matrix of a tight-binding model, one can think
about H (t ) in Eq. (41) as the Hamiltonian of the system in the
interaction picture. This allows one to extend the validity of
the short-time approximation from the time horizon defined
by τV = ‖A + V ‖−1 to that of τ = ‖A‖−1, which is usually
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FIG. 4. Comparison of numerical and theoretical results on time-
dependent tight-binding model. Black lines represent the theoretical
approximation up to fixed order of accuracy, while the marks rep-
resent the numerical calculation for the transition probabilities with
different path lengths, when � = 1. Theoretical curves are evaluated
by Eq. (11).

greater than τV according to Gershgorin’s circle theorem. One
consequence of this is the claim that localization needs more
time than τV to develop: at the timescale τV , Eq. (4) implies
the constant increase of the transition probabilities in time.
Here we show that such a behavior also persists at the time-
scale τ .

Let G be a simple, undirected graph and assume that the
nonvanishing entries of V are i.i.d Gaussian random variables
centered around the origin and have unit variance. Let n, m
be two nonidentical nodes of G. We show that the disorder
average of the approximative transition probability from n to
m increases monotonically. Assume that the distance of nodes
n and m is d and let n = p0, p1, . . . , pd−1, pd define a shortest
path connecting n to m within G. Define s(t ) as a tuple of
positive reals containing d + 1 elements with 0 = s0 � s0 �
· · · � sd = t and let 
t be the set of such tuples. For any
vertex w, tuple s(t ) and path p of length d let

R(p,w, s(t )) =
d∑

k=0

δ(pk,w)(sk+1 − sk ), (44)

where δ stands for Kronecker’s delta function. Then, using
Proposition 2 we obtain

〈pTB(m, t |n)〉V

=
∑

p∈P (n,m)

∑
p′∈P (m,n)

∫

t

ds
∫


t

ds′

×
〈∏

w∈V

exp { − iVw[R(p,w, s(t )) − R(p′,w, s′(t ))]}
〉

V

+ O(t2d (n,m)+1). (45)

Define �(x) as the generating function of the Gaussian distri-
bution centered around the origin and having unit variance:

�(x) =
∫ ∞

−∞

1√
2π

e−V 2/2e−ixV dV = e−2x2
, (46)

and note that〈∏
w∈V

exp{−iVw[R(p,w, s(t )) − R(p′,w, s′(t ))]}
〉

V

=
∏
w∈V

〈exp{−iVw[R(p,w, s(t )) − R(p′,w, s′(t ))]}〉V

=
∏
w∈V

�[R(p,w, s(t )) − R(p′,w, s′(t ))]. (47)

Therefore, up to an accuracy of order O([t/τ ]2d+1), we obtain

〈pTB(m, t |n)〉V

=
∑

p∈P (n,m)

∑
p′∈P (m,n)

∫

t

ds
∫


t

ds′

×
∏
w∈V

�[R(p,w, s(t )) − R(p′,w, s′(t ))], (48)

which increases monotonically with t .

E. Open CTQW

The time evolution of a mixed state of a finite dimensional
open quantum system in the Markovian regime is described
by the Lindblad equation ρ̇(t ) = Lρ(t ), where L is given by

Lρ(t ) = −i[H, ρ(t )] +
∑

k

{
Lkρ(t )L+

k − 1

2
[L+

k Lk, ρ(t )]

}
,

(49)

where the Lk are linear operators acting on the Hilbert space H
of the system. Choosing a basis |1〉, . . . , |d〉 in H, the super-
operator L becomes a map between d × d matrices. Choosing
the basis Enm = |n〉〈m| in the space of d × d matrices, L can
be represented as a d2 × d2 matrix with entries Tr[E+

nmLEkl ].
There is a natural way to realize this matrix as a generalized

process taking place on a graph L obtained from the complete,
directed graph Kd2 of d2 nodes, whose vertices are labeled by
the matrix units Enm and whose edges Ekl → Enm are deleted
when the corresponding matrix entry Tr[E∗

nmLEkl )] vanishes.
Then, splitting the matrix of L into diagonal and purely off-
diagonal matrices gives rise to a general walk on L to which
Proposition 1 can be applied.
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Assume that H in Eq. (49) is a Hamiltonian of a tight-
binding model corresponding to the graph G = (V, E ). We
would like to construct the graph Lω of a Lindbladian Lω

which corresponds to a quantum stochastic walk (QSW) as
has been first introduced in Ref. [60]. QSW keeps the locality
structure of the original unitary process by incorporating
Lindblad operators of the form |n〉〈m|, whenever the edge
(n, m) is contained within the edge set of G. Note that G can be
recognized as a symmetric directed graph, that is, (n, m) ∈ E
if and only if (m, n) ∈ E . For convenience, to every vertex
v of the complete, directed graph Kd = (V,F ) of d nodes,
we assign the projection v̂ = |v〉〈v|, and to every directed
edge e = (n, m) ≡ n → m in F , we associate the matrix unit
ê = |m〉〈n|. Then we have the following equations:

H =
∑
v∈V

Vvv̂ +
∑
e∈E

ê, Le = ê+, (50)

so the Lindbladian of the QSW acts on an arbitrary d × d
matrix X as

LωX = −i
∑
v∈V

Vv[v̂, X ] − i
∑
e∈E

[ê, X ]

+ω
∑
e∈E

(
ê+Xê − 1

2
{êê+, X }

)
, (51)

where ω measures the relative strength of the coherent and the
dissipative parts of the dynamics. For any edge f of Kd , the
tail and head vertex of f are denoted by t f and h f , respectively.
Let u ∈ V . Then a short calculation gives

Lωû = −i
∑
e∈E

[δ(te, u) − δ(he, u)]ê − ωduû + ω
∑
e∈E

δ(te, u)t̂e,

(52)

where du is the degree of the vertex u within G and δ(x, y) is
just Kronecker’s delta. A similar calculation for any edge f of
Kd results in

Lω f̂ =
[
−i

(
Vh f − Vt f

) − ω
dt f + dh f

2

]
f̂

− i

⎛
⎝ ∑

v∼Gh f

|v〉〈t f | −
∑
v∼G t f

|h f 〉〈v|
⎞
⎠, (53)

where ∼G refers to adjacency within G. Grouping together the
projections |v〉〈v| and separately the matrix units |u〉〈v|, u 
=
v, the d2 × d2 matrix of Lω admits the following block-matrix
form:

Lω =
(
LVV (ω) LVF
LFV LFF (ω)

)
. (54)

Here LVV (ω) = −ωL, where L is the Laplacian of G, which
generates CTRW on G according to Eq. (35). The nonsquare
matrix LFV is equal to iI , where I is the signed incidence
matrix of G within Kd , that is, for a given edge e ∈ F and
a vertex v ∈ V:

Iev =
⎧⎨
⎩

1 if he = v and e ∈ E,

−1 if te = v and e ∈ E,

0 if e /∈ E .

(55)

Furthermore, we have LVF = iI+. Finally, LFF (ω) is the sum
of the diagonal matrix composed of the entries

Vf (ω) = −ωdh f + 2iVh f

2
− ωdt f − 2iVt f

2
(56)

and the matrix −iÂ, where Â is the signed adjacency matrix
given by the entries

Âe f =
⎧⎨
⎩

1 if te = t f and (h f , he) ∈ E,

−1 if he = h f and (te, t f ) ∈ E,

0 otherwise.
(57)

Therefore, the block structure of Lω is of the form

Lω =
(−ωD + ωA iI+

iI V (ω) − iÂ

)
, (58)

where D is the degree matrix of G and V (ω) is the diagonal
matrix defined in Eq. (56). This determines Lω, the graph of
Lω completely.

The shortest paths of Lω can be illustrated in the following
way. Suppose that we would like to find the shortest directed
path connecting vertices of Lω labeled by matrix units |n〉〈m|
and |k〉〈l|. Pick up two copies of the original graph G. Any
pair of vertices which are formed by vertices of the distinct
copies of G represents a node of Lω and appears as a crosslink
between nodes of the copies of G (see Fig. 5). Then, to
find the shortest directed path connecting |n〉〈m| to |k〉〈l|,
one manipulates the endpoints of the crosslink initially repre-
senting |n〉〈m| by moving its endpoints through neighboring
vertices of G according to the following rules: On the one
hand, if ω = 0, one is allowed to move only one endpoint of
the crosslink in each step. On the other hand, when ω > 0,
the rules of moving the crosslinks are the same except of
those which correspond to projections: the endpoints of the
crosslink |n〉〈n| can be changed within one step to obtain
|m〉〈m| if m is adjacent to n within G.

The pictorial representation of the the shortest paths of Lω

described above gives the following distance of Enm and Ekl

within Lω. When ω = 0, then

dL0 (Enm, Ekl ) = dG (n, k) + dG (m, l ), (59)

and the number of such p paths is

�L0 (Enm, Ekl ) = �G (n, k)�G (m, l )

(
dL0 (Enm, Ekl )

dG (n, k)

)
, (60)

all of them carrying the amplitude

�p[L0] = idG (n,k)(−i)dG (m,l ). (61)

However, if ω > 0, then

dLω
(Enm, Ekl ) = min

(u,v)∈V×V

[
dL0 (Enm, Euu)

+ dG (u, v) + dL0 (Evv, Ekl )
]
. (62)

Every pair (u, v) ∈ V × V which minimizes the r.h.s of
Eq. (62) defines a directed path connecting the vertex corre-
sponding to Enm to the vertex corresponding to Ekl : This path
p is a concatenation of three paths p1, p2, and p3 within Lω:
p1 is a shortest path connecting Enm to Euu within L0, p3 is
a shortest path connecting Evv to Ekl within L0, and finally
p2 connects the projections |u〉〈u| to |v〉〈v| along projections
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FIG. 5. The time evolution of a mixed state according to Eq. (51)
on a particular small graph. The initial state is |1〉〈1|, which appears
as a crosslink between two copies of the graph. Shortest paths
|1〉〈1|, |n〉〈n| initial crosslink, and a |k〉〈l| final crosslink illustrated
by magenta lines are detailed step by step in the subfigures in the
right corners. An instance of the possible series of the intermediate
states is illustrated by blue crosslines. It is visible from the |ρlk (t )|
transition probabilities that in case of ω = 0 the shortest possible
path distance allowed by the rules of movements is larger than in
case of ω > 0.

|p2,1〉〈p2,1|, . . . , |p2,n〉〈p2,n| for which (p2,1, . . . , p2,n) is a
shortest path connecting u to v within G. The number of the
shortest paths with such a pair (u, v) is equal to

�L0 (Enm, Euu)�G (u, v)�L0 (Evv, Ekl ), (63)

and such a p path carries the amplitude

�p[Lω] = idG (n,u)(−i)dG (m,u)idG (v,k)(−i)dG (v,l )ωdG (u,v). (64)

In the finite dimensional linear space Md of d × d complex
matrices, the map which assigns Tr(A+B) to every pair of
matrices A and B is a Hermitian scalar product turning Md to
a Hilbert space, the Hilbert-Schmidt space of d × d matrices.
For the sake of brevity, we denote this scalar product by
〈A|B〉HS. This also induces the norm ‖A‖HS = √〈A|A〉HS.
Every superoperator K acting linearly on Md obtains a norm

similar to that introduced in Sec. II:

‖K‖ = max
A
=0

‖KA‖HS

‖A‖HS
, (65)

and this norm satisfies the usual properties. Therefore, we can
apply the methods of Sec. II in order to obtain the short-time
evolution of density matrix entries.

If Lω is the Lindbladian of a QSW, the short-time asymp-
totics of the time evolution of the density matrix entries
ρnm(t ) of an initial pure state |u〉〈u| can be obtained by the
approximation of the scalar product 〈Enm|eL0t |Euu〉HS. If ω =
0, we obtain

ρnm(t ) = �G (n, u)�G (m, u)

(
dL0 (Enm, Euu)

dG (m, u)

)

× (it )dG (n,u)(−it )dG (m,u)

dG (n, u)!dG (m, u)!
+ O(t dG (n,u)+dG (m,u)+1).

(66)

Note that, for n 
= m, this equation is not the same as
the product of the approximative formulas of 〈n|U |u〉 and
〈u|U ∗|m〉 as given by Proposition 1. But this is not surprising
if one notes that L0 = −i[H, •] acting on the Hilbert-Schmidt
space of B(H) is different than H acting on H. Not even the
timescales where Eq. (4) and Eq. (66) are applicable are the
same. Indeed, if λn denote the eigenvalues of H, then τ−1

H =
max |λn|, while τ−1

L0
= max |λn − λm|, clearly indicating τH >

τL0 whenever H is non-negative.
If ω > 0, then the application of Eq. (62) and Eq. (63)

enables us to write

ρnm(t ) =
∑
(u,v)

�G (u, v)�L0 (Enm, Euu)�L0 (Evv, Euu)

× (it)dG (n,u)(−it)dG (m,u)(it)dG (v,u)

dLω
(Enm, Euu)!

ωdG (u,v)

+ O(t dLω (Enm,Euu )+1), (67)

where the sum runs over the the pairs (u, v) ∈ V × V , which
are the minimizers of the r.h.s of Eq. (64).

Results of comparison of numerical calculations and ap-
proximative formulas (66) and (67) in case of the small graph
introduced in Sec. III C are depicted in Fig. 5.

IV. CONCLUSION AND OUTLOOK

We studied the short-time asymptotics of quantum dynam-
ics on graphs considering both coherent and open continuous-
time quantum walks, including time-dependent couplings. In
the case of nonchiral coherent CTQWs, the short-time asymp-
totics is completely determined by the topology of the graph.
The transition probabilities follow the short-time asymptotics

|〈x|U (t )|y〉|2=
[

�(x, y)

d (x, y)!

]2

t2d (x,y)+O(t2d (x,y)+1). (68)

Furthermore, it has been shown that the on-site potential
does not affect this asymptotics. Similar results can be ob-
tained for chiral CTQWs, but it is important to note that
introducing time-reversal-breaking terms may increase the
exponent of the first nonvanishing term in the transition proba-
bilities. We have also studied open CTQWs through stochastic

062320-9



SZIGETI, HOMA, ZIMBORÁS, AND BARANKAI PHYSICAL REVIEW A 100, 062320 (2019)

quantum walks and proved that the short-time dynamics of
these systems are also significantly altered when they are
coupled to the environment.

Finally, we would like to mention possible future appli-
cations of our results. We hope to be able to use these for
designing quantum networks with efficient transport proper-
ties. In particular, the fact that one can reduce some transition
probabilities by tuning the phases of the hopping amplitudes
in chiral walks could be utilized to design certain preferred
(and nonpreferred) transportation directions. Similar features
for designing (non)preferred directions or even generating
dark states by tuning the hopping were already studied in
Refs. [29,61,62]; our methods could provide a more system-
atic treatment of this. Another possible application of our re-
sults comes from the observation that the actual measurement
of the short-time asymptotics resulting in the distance of the
nodes can be interpreted as a distance oracle. Such an oracle
can be used to reconstruct the graph of the Lindbladian of the
system. One may hope that such a reconstruction would be
efficient, as it is known that there exist randomized algorithms
for the reconstruction problem with query complexity O(n3/2)
[63]. These two possible directions are left for future work.
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APPENDIX: GAUGE TRANSFORMATION
OF CHIRAL WALKS

Let G = (V, E ) be a directed graph without self-loops.
Assume that whenever the edge (u, v) with tail u and head

v appears in G, then (v, u) ∈ E also holds. Let zuv denote
the complex phase of modulus one attached to the edge
(u, v). Denote by H the Hermitian matrix containing entries
Huv = ruvzuv , where ruv > 0 if (u, v) ∈ E and zero otherwise.
By Hermiticity, we have zuv = zvu. Let us denote the matrix
composed of the numbers ruv by R. We prove the following
statement.

Proposition. There exists a unitary, diagonal matrix � such
that �†H� = R if and only if along any closed, directed path
p = (p0, p1, . . . , pn), p0 = pn the product of complex phases
φp is equal to one:

φp = zp0 p1 · · · zpn−1 pn = 1. (A1)

Proof. Assume that �†H� = R holds and let � =
diag(λ1, . . . , λ|V |). Then zuv = λuλv , so for a given closed
path p = (p0, p1, . . . , pn) we have

φp = zp0 p1 · · · zpn−1 pn = λp0λp1 · λp1λp2 · · · λpn−1λpn

= λp0λpn = 1. (A2)

In the reversed direction of the statement, assume that the
condition holds. Choose a vertex � and for each other vertex
u, a path p(u) = (�, p(u)

1 , . . . , p(u)
nu

) connecting � to u = p(u)
nu

.
Let � be defined through the diagonal entries λ� = 1 and
λu = φp(u) . Then, if u 
= v,

(�†H�)uv = λuRuvλv = φp(u) zuvφp(v) ruv = rnmφq, (A3)

where q is the closed path

q = (
�, p(u)

1 , . . . , p(u)
nm−1

, u, v, p(v)
nv−1, . . . , p(v)

1 , �
)
. (A4)

Since the condition of Eq. (A1) holds, we have φq = 1, thus
the statement is proved. �

Note that such a global trivialization of U (1) phases can
be always achieved for Hamiltonians corresponding to tree
graphs, since the walks generated by �†H� and H have
identical site-to-site transition probabilities [29], a chiral walk
on a tree has identical short-time asymptotics as its nonchiral
counterpart.
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