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Dynamical evolution of systems with sparse Hamiltonians can always be recognized as continuous-time
quantum walks (CTQWs) on graphs. In this paper, we analyze the short-time asymptotics of CTQWs. In
recent studies, it was shown that for the classical diffusion process the short-time asymptotics of the transition
probabilities follows power laws whose exponents are given by the usual combinatorial distances of the nodes.
Inspired by this result, we perform a similar analysis for CTQWs in both closed and open systems, including
time-dependent couplings. For time-reversal symmetric coherent quantum evolutions, the short-time asymptotics
of the transition probabilities is completely determined by the topology of the underlying graph analogously to
the classical case, but with a doubled power-law exponent. Moreover, this result is robust against the introduction
of on-site potential terms. However, we show that time-reversal symmetry-breaking terms and noncoherent
effects can significantly alter the short-time asymptotics. The analytical formulas are checked against numerics,
and excellent agreement is found. Furthermore, we discuss in detail the relevance of our results for quantum
evolutions on particular network topologies.
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I. INTRODUCTION26

Continuous-time quantum walks (CTQWs) on graphs27

[1–4] have been used frequently to successfully model coher-28

ent transport phenomena in those systems whose phenomeno-29

logical description allows the application of tight-binding30

approximations [5]. Examples of such exciton networks31

consist of light-harvesting complexes [6,7], dendrimers [8],32

trapped atomic ions [9], and arrays of quantum dots [10,11],33

to name just a few.34

From a quantum information perspective, CTQWs ap-35

peared as possible physically realizable implementations of36

quantum algorithms of search [12–16] and generic quantum37

computation [17–19] and were compared on various occa-38

sions with their classical counterpart, the continuous-time39

random walk (CTRW), that is, the diffusion process [20–22].40

A large number of experiments [23–26], numerical calcu-41

lations, and theoretical studies [2,27–32] have been devoted42

to analyzing the transport properties of these systems. Among43

the most investigated topics were the state transfer properties44

[33–38] and the long-time behavior [39–44] of these systems.45

Closed as well as open systems were studied, and now there46

are many examples where the supremacy of CTQW over47

CTRW has been demonstrated. However, there are some48

cases when CTQWs underperform the old diffusive transport49

[45,46].50

Contrary to the long-time asymptotics, the behavior of51

CTQWs at short timescales has missed such substantial52

attention. This is especially surprising if one notes that53

the short-time dynamics of local Hamiltonians appearing 54

in universal, continuous-time quantum computation offers 55

nontomographical, efficient reconstruction of the governing 56

Hamiltonian [47,48]. This resembles the situation in the the- 57

ory of CTRW: Though the study of the short-time asymptotics 58

of Brownian motion on Riemannian manifolds was initiated 59

nearly half a century ago [49] and the results obtained have 60

been subsequently extended and generalized in many ways 61

[50–52], theorems concerning short-time behavior of CTRW 62

on graphs have been appeared only recently. In two current 63

studies [53,54], it was shown that the short-time behavior 64

of the transition probabilities of diffusion processes differ in 65

a considerable amount when compared to their (in space) 66

continuous counterpart. While Brownian motion in locally 67

Euclidean spaces can be approximated by a Gaussian dis- 68

tribution for short timescales, the same type of asymptotics 69

tells that the transition probabilities p(y, t |x), corresponding 70

to distinct vertices x and y of a graph follow a power law. If 71

d (x, y) is the distance between the aforementioned vertices, 72

then [53,54] 73

lim
t→0

ln p(y, t |x)

ln t
= d (x, y); (1)

i.e., for small positive times t we have 74

p(y, t |x) = c(x, y)t d (x,y) + O(t d (x,y)+1). (2)
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Also the constant c(x, y) has been determined [54]. If �(x, y)75

denotes the number of shortest paths that connect x to y, then76

c(x, y) = �(x, y)

d (x, y)!
. (3)

In this paper, we show that similar results apply to CTQWs77

as well. Given a tight-binding model with adjacency matrix A78

and on-site potential V , the complex transition amplitudes of79

the CTQW between position eigenstates |x〉 and |y〉 follow the80

asymptotics81

〈x|U (t )|y〉 = �(x, y)

d (x, y)!
(−it )d (x,y) + O(t d (x,y)+1). (4)

Thus, the time evolution of the entries of the mixing matrix82

Mxy(t ) = |〈x|U (t )|y〉|2 of the CTQW possesses the short-time83

asymptotic form84

Mxy(t ) =
[

�(x, y)

d (x, y)!

]2

t2d (x,y) + O(t2d (x,y)+1). (5)

Since Mxy(t ) is the probability of finding the system in the85

position eigenstate |y〉 if initially it was prepared in the86

state |x〉, the comparison of Eq. (2) and Eq. (5) shows that87

CTQWs always underperform CTRWs at short timescales.88

Such a doubling effect has been also observed in the tail89

distribution of the first passage time of CTQW [55]: The90

long-time assymptotics of the first passage time of a quantum91

walker of a one-dimensional tight-binding model follows a92

power law in time with exponent −3, while a classic result of93

Lévy’s shows that such a scaling in CTRW has exponent −3/294

[56]. This is a rather general phenomenon which can appear95

when the spectrum of the Hamiltionian is continuous and the96

so-called measurement density of states contains Van Hove97

singularities [56]. The short-time analysis of the evolution98

of CTQWs coupled to its environment with the assumption99

of Markovian open system dynamics shows that a small100

amount of decoherence can halve the exponent in Eq. (5)101

to that of Eq. (2), resembling the well-studied properties of102

environment-assisted quantum transport [47,48]. Note that103

these statements cannot be obtained by the direct application104

of the usual approximation U (t ) ≈ 1 − iHt , which is the first-105

order approximation of the power series of the time evolution106

operator. Indeed, our results show that the first nonvanishing107

order in the power series of Mxy(t ) is 2d (x, y).108

Since the set of Hamiltonians is much larger than the set109

of symmetric generators of stochastic Markovian dynamics,110

the structure of the short-time asymptotics of CTQWs is111

more abundant compared to that of CTRWs. These noticeable112

differences, caused by interference patterns, become apparent113

when one considers chiral quantum walks [29,57]. It turns114

out that the interference patterns can increase the exponent in115

Eq. (5) resulting in further deceleration of the initial dynamics.116

Interestingly, the asymptotics of Eq. (4) is universal in117

the sense that the coefficients appearing do not depend on118

the on-site potential. The potential matrix V determines the119

timescale of only the short-time regime, where Eq. (4) is worth120

considering. Note, however, that a closer look at the evolution121

and the application of time-dependent perturbation theory can122

further improve Eq. (4) and widen the time horizon where123

results like Eq. (4) can approximate the initial dynamics.124

The paper is organized as follows. In Sec. II we present the 125

main propositions concerning the short-time asymptotics of 126

linear dynamical systems whose time evolution is governed 127

by a possibly time-dependent but sparse matrix. In Sec. III 128

we apply these statements to closed and open CTQWs and 129

illustrate our results by various case studies including chiral 130

walks. A conclusion and future direction of research are given 131

in Sec. IV. 132

II. MAIN MATHEMATICAL RESULTS 133

A. The main theorem 134

Throughout this section H will denote a finite-dimensional 135

Hilbert space with an orthonormal basis {|v〉}v∈V labeled by 136

the vertices of a graph G = (V, E ) with edge set E . The graph 137

is assumed to be simple and directed. For all distinct vertices 138

n, m of the graph G, we denote the set of the shortest, directed 139

paths connecting n to m by P (n, m). If p is a path in P (n, m) of 140

length d , then it can be represented by a sequence of vertices 141

p0, . . . , pd with p0 = n, pd = m, and the edges (pk, pk+1) ≡ 142

pk → pk+1 formed by the consecutive members of p0, . . . , pd 143

are just the edges of p. 144

We consider a continuous family of linear oper- 145

ators [0, T ] � t 	→ M(t ) ∈ B(H) satisfying the property 146

〈m|M(t )|n〉 
≡ 0 on [0, T ] if and only if the directed edge 147

(n, m) is a member of E . In that case, we say that G is the 148

graph of M(t ). Given distinct vertices n and m, and a shortest 149

path p ∈ P (n, m) of length d , we define the corresponding 150

path amplitude �p[M(t )] as 151

�p[M(t )] =
∫ t

0
dsd · · ·

∫ s2

0
ds1 〈pd |M(sd )|pd−1〉

× · · · 〈p1|M(s1)|p0〉. (6)

If A is a matrix operating on H, its norm is defined through 152

‖A‖ = max
ψ 
=0

‖Aψ‖
‖ψ‖ , (7)

where ‖ψ‖ = √〈ψ |ψ〉. Note that the norm satisfies the in- 153

equality 154

‖A + cB‖ � ‖A‖ + |c|‖B‖ (8)

for any complex c and has the submultiplicative property 155

‖AB‖ � ‖A‖ ‖B‖. (9)

Let τT denote the reciprocal of the maximum among the 156

norms of ‖M(t )‖ if t runs from zero to T : 157

τ−1
T = max

0�t�T
‖M(t )‖. (10)

We can now state and prove the main theorem on short- 158

time asymptotics. 159

Proposition 1. The solution of the matrix differential 160

equation 161

d

dt
X (t ) = M(t )X (t ), X (0) = 1 (11)
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satisfies the inequality162 ∣∣∣∣∣∣〈m|X (t )|n〉 −
∑

p∈P (n,m)

�p[M(t )]

∣∣∣∣∣∣ � et/τT
(t/τT )d (n,m)+1

[d (n, m)+1]!

(12)
for all n, m ∈ V of distance d (n, m). Here the sum goes over163

the set of shortest paths P (n, m) running from n to m in G, and164

�p[M(t )] is defined in Eq. (6).165

Before proving the statement, some remarks should be166

added. First, note that H (t ) = iM(t ) is not necessarily Her-167

mitian. Indeed, it can be any square matrix. This fact gives the168

opportunity to apply the statement also to Lindbladian dynam-169

ics in Sec. III. The characteristic measure of the short-time170

dynamics is τT , that the approximation contained in Eq. (12)171

is informative only whenever t is less than τT . For time-172

independent generators, τT is independent of T . Moreover, τT173

does not depend on a complex prefactor of modulus one multi-174

plying M(t ). Since every CTRW taking place on a symmetric175

weighted graph has a corresponding CTQW with the same176

generator but multiplied by −i, the scales of the short-time177

asymptotics are necessarily identical. In the case of chiral178

CTQW, the appearance of the path amplitudes �p[M(t )] in179

Eq. (12) results in interference patterns with which CTQW180

obtains a richer structure as compared to CTRW, where the181

amplitudes are always positive.182

Proof. As t 	→ M(t ) is a continuous map, the solution of183

the differential equation (11) can be written as the sum of the184

Dyson series185

X (t ) =
∞∑

N=0

∫ t

0
dsN · · ·

∫ s2

0
ds1 M(sN ) · · · M(s1). (13)

Let d be the graph distance between nodes n and m. Then,186

for any k < d and for any 0 � s1, s2, . . . sk � T , the identity187

〈m|M(sk ) · · · M(s1)|n〉 = 0 holds. Thus, when calculating the188

entry [X (t )]mn, the Dyson series reduces to189

〈m|X (t )|n〉

=
∞∑

N=0

∫ t

0
dsN · · ·

∫ s2

0
ds1〈m|M(sN ) · · · M(s1)|n〉

=
∫ t

0
dsd · · ·

∫ s2

0
ds1〈m|M(sd ) · · · M(s1)|n〉

+
∞∑

N=d+1

∫ t

0
dsN · · ·

∫ s2

0
ds1〈m|M(sN ) · · · M(s1)|n〉.

(14)

For any linear operator A, one has ‖A‖ � |〈m|A|n〉|, so we can190

bound each term in Eq. (14) as191 ∣∣∣∣
∫ t

0
dsN · · ·

∫ s2

0
ds1〈m|M(sN ) · · · M(s1)|n〉

∣∣∣∣
�

∫ t

0
dsN · · ·

∫ s2

0
ds1|〈m|M(sN ) · · · M(s1)|n〉|

�
∫ t

0
dsN · · ·

∫ s2

0
ds1‖M(sN ) · · · M(s1)‖

�
∫ t

0
dsN · · ·

∫ s2

0
ds1‖M(sN )‖ · · · ‖M(s1)‖

�
∫ t

0
dsN · · ·

∫ s2

0
ds1

1

τN
T

= (t/τT )N

N!
. (15)

Therefore, 192∣∣∣∣∣
∞∑

N=d+1

∫ t

0
dsN · · ·

∫ s2

0
ds1〈m|M(sN ) · · · M(s1)|n〉

∣∣∣∣∣
�

∞∑
N=d+1

(t/τT )N

N!
� (t/τT )d+1

(d + 1)!
eξ � (t/τT )d+1

(d + 1)!
et/τT ,

(16)

where we used Taylor’s theorem with the Lagrange form 193

of the remainder, which holds with a suitably chosen ξ ∈ 194

[0, t/τT ]. This implies 195∣∣∣∣〈m|X (t )|n〉 −
∫ t

0
dsd ...

∫ s2

0
ds1〈m|M(sd ) · · · M(s1)|n〉

∣∣∣∣
� et/τT

(t/τT )d+1

(d + 1)!
. (17)

Now, let us perform the expansion 196

[M(sd ) · · · M(s1)]mn =
∑

k1,...,kd−1

[M(sd )]mkd−1 · · · [M(s1)]k1n.

(18)

It is clear that only those indices contribute in the above sum 197

for which (n, k1, k2 . . . , kd−1, m) forms a path in G connecting 198

n to m. This means that one can replace the above sum over 199

vertex sets to a sum over the path set P (n, m): 200

[M(sd ) · · · M(s1)]mn =
∑

p∈P (n,m)

[M(sd )]mpd−1 · · · [M(s1)]p1n.

(19)

Inserting this into Eq. (17), we arrive at Eq. (12). � 201

B. Improvement of the timescale 202

The main drawback of Proposition 1 is the appearance of 203

the norms ‖M(t )‖. Choosing the Hilbert space basis |n〉, and 204

assuming that M is constant in time, then splitting M to a 205

sum of diagonal and off-diagonal parts (which is the case, 206

for instance, in tight-binding models) and varying only the 207

diagonal entries affect the timescale τ dramatically. However, 208

using time-dependent perturbation theory, more can be said 209

than what Eq. (12) would allow. Let M = V + M̂ be an arbi- 210

trary square matrix with diagonal part V and off-diagonal part 211

M̂. Let λ � 0 be the smallest real satisfying �(V − λ) � 0. 212

Let A be the adjacency matrix obtained by setting all nonzero 213

entries of M̂ to one. The graph G = (V, E ) described by A is 214

simple but directed: the edge (n, m) with tail n and head m is 215

a member of E if and only if 〈m|A|n〉 = 1. Define M̂(t ) as 216

M̂(t ) = exp(−V t )M̂ exp(V t ). (20)
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Proposition 2. The following inequality holds:217 ∣∣∣∣∣∣〈m| exp(Mt )|n〉 − eVmt
∑

p∈P (n,m)

�p[M̂(t )]

∣∣∣∣∣∣
� et/τ eλt (t/τ )d (n,m)+1

[d (n, m)+1]!
, (21)

for all n, m ∈ V , where218

τ−1 = ‖A‖ ‖M̂‖max = ‖A‖ max
n,m

|〈m|M̂|n〉|. (22)

Vm = 〈m|V |m〉 and P (n, m) is the set of shortest directed paths219

connecting n to m in G of length d (n, m).220

Proof. Define V̂ = V − λ. Note that221

exp(Mt ) = exp(λt ) exp(V̂ t )X (t ), (23)

where X (t ) is the solution to222

d

dt
X (t ) = M̂(t )X (t ), X (0) = 1. (24)

Also note223

M̂(t ) = exp(−V t )M̂ exp(V t ) = exp(−V̂ t )M̂ exp(V̂ t ). (25)

Let sN+1 = t and s0 = 0. Then, the N th-order term of the224

Dyson series of Eq. (24) multiplied by exp(V̂ t ) is of the form225

YN (t ) =
∫ t

0
dsN · · ·

∫ s2

0
ds1

[
N∏

k=1

eV̂ (sk+1−sk )M̂

]
eV̂ (s1−s0 ).

(26)
Since �(V − λ) � 0 and 0 = s0 � s1 � · · · � sN � sN+1 = t226

holds, we have the following upper bounds:227

|〈u|eV̂ (sk+1−sk )M̂|v〉| � |〈u|M̂|v〉| � ‖M̂‖maxAuv,

|〈u|eV̂ (s1−s0 )|v〉| � δuv, (27)

which hold for any two vertices u and v of G, so we can write228

|〈m|YN (t )|n〉|

� ‖M̂‖N
max

∫ t

0
dsN · · ·

∫ s2

0
ds1

∑
k1

· · ·
∑
kN

Am,kN · · · Ak1,n

= ‖M̂‖N
max〈m|AN |n〉 tN

N!
. (28)

Therefore, since |〈m|AN |n〉| � ‖A‖N holds, we find229

|〈m|eλtYN (t )|n〉| � eλt (‖M̂‖max‖A‖t )N

N!
= eλt 1

N!

(
t

τ

)N

, (29)

where τ is given in Eq. (22). From this point, the arguments230

of the proof of Proposition 1 can be repeated to obtain231

|〈m| exp(Mt )|n〉 − eλt 〈m|Yd (n,m)|n〉|

=
∣∣∣∣∣∣〈m| exp(Mt )|n〉 − eVmt 〈m|

∑
p∈P (n,m)

�p[M̂(t )]|n〉
∣∣∣∣∣∣

� eλt

[d (n, m) + 1]!

(
t

τ

)d (n,m)+1

, (30)

which proves the statement. �232

Since the adjacency matrix A of a simple, undirected graph 233

G is a non-negative matrix, the Perron-Frobenius theorem 234

guarantees that the largest eigenvalue of A is also largest in 235

magnitude. Assume Ax = λmaxx and its largest entry xi = 1, 236

which can be always chosen. Then 237

λmax = λmaxxi = sum jAi jx j � sum jAi jxi = di � dmax. (31)

Thus, λmax is bounded by the highest degree dmax(G) of G 238

from above. That is, when M̂ admits the property 〈u|M̂|v〉 = 0 239

if and only if 〈v|M̂|u〉 = 0, then A is symmetric, so 240

‖A‖ = λmax(A) � dmax(G). (32)

A particular example is the tight-binding model, taking 241

place on the simple, undirected graph G with adjacency 242

matrix A. Then, M can be replaced in Proposition 2 by 243

−iH = −i(V + A) to obtain 244∣∣∣∣∣∣〈m| exp(−iHt )|n〉 − e−iVmt
∑

p∈P (n,m)

�p[Ĥ (t )]

∣∣∣∣∣∣
� et/τ (t/τ )d (n,m)+1

[d (n, m)+1]!
, (33)

where 245

τ−1 = dmax(G) max
n 
=m

|〈n|Ĥ |m〉|. (34)

III. APPLICATION OF THE RESULTS 246

A. Comparison of CTRW and CTQW 247

In order to compare the short-time asymptotics of the 248

probabilistic and unitary versions of continuous time walks, 249

we fix a simple, undirected graph G = (V, E ), containing 250

no self-loops. Using the adjacency matrix A and the degree 251

matrix D, the CTRW dynamics is generated by the graph 252

Laplacian [20,22] L = D − A, that is, if u, v ∈ V are arbitrary 253

vertices, then the conditional probability of observing the 254

walker at vertex u if its initial position was v is 255

pR(u, t |v) = 〈u| exp(−Lt )|v〉. (35)

The unitary walk on the same graph is generated by −iL with 256

transition probabilities given by 257

pQ(u, t |v) = |〈u| exp(−iLt )|v〉|2. (36)

Since ‖L‖ = ‖ − iL‖, the norm of the generators which define 258

the timescale τ = ‖L‖−1 of the short-time regime are equal, 259

the two dynamics defined above and the hitting probabilities 260

are naturally comparable. We choose the graph G to be a 261

binary tree depicted in Fig. 1. It is clearly visible that the 262

numerical results fit very well to the theoretical curves in the 263

time horizon t < τ in the case of both CTQW and CTRW. 264

The only exception is the 0 → 1 transition, where the error 265

of the approximative formula becomes significant already for 266

t > τ/2. However, this is easily understandable if one notes 267

that in that case the denominator of the error bound appearing 268

in Eq. (4) becomes comparable to the numerator. 269

B. CTQWs with arbitrary on-site potential 270

In order to demonstrate the universality of the short- 271

time asymptotics in tight-binding models, we consider 272
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FIG. 1. Comparison of the CTRW and the CTQW taking place on the graph depicted in the top left corner. Transition and hitting
probabilities as functions of time have been calculated between vertex |0〉 and vertices |0〉, |1〉, |2〉, |3〉, |4〉, |5〉. Beside the results of the
numerical calculations, log-log plots depict the predictions of Eq. (2) and Eq. (5) with the corresponding exponents α = d in the case of
CTRW and α = 2d in the case of CTQW, respectively, d being the graph distance of the nodes. Note that these theoretical curves for the sake
of better comparison have been slightly shifted in the vertical direction. Whenever two time series overlap on the log-log plot, dashed lines
represent pX(2, t |0) and pX(4, t |0), while circles and diamonds represent pX(3, t |0) and pX(2, t |0) respectively, if X denotes either R or Q. For
a sake of better comparison, the linearly scaled diagram in the bottom left corner contains the numerics of 1 − pQ(0, t |0) instead of pQ(0, t |0).

Hamiltonians of the form H = A + V , where V is a diagonal273

matrix, called the on-site potential. The hitting probabilities274

are275

pTB(u, t |v) = |〈u| exp[−i(A + V )t]|v〉|2. (37)

Consider the graph that has been introduced in Sec, III A. We276

choose the on-site potentials from an ensemble of indepen-277

dent, identically distributed Gaussian random variables with278

mean zero and unit variance. Figure 2 illustrates the transition279

probabilities between vertices of different distances. The time280

series depicted in Fig. 2 has been obtained by first calculating281

the full time series of the hitting probabilities between fixed282

sites v and u for 75 different random realizations of V . If283

the index α = 1, . . . , 75 marks the different realizations of the284

on-site potential, then these numerical calculations resulted in285

sequences of pairs (tk/τα, p(α)
uv (tk/τα )), tk/τα , k = 1, . . . , 75286

varying between 0.5 × 10−5 and 1.5. Here τα = ‖A + Vα‖.287

After that, the diagonal sequence (tα/τα, p(α)
uv (tα/τα )) has been288

plotted. The figure provides strong evidence of the indepen-289

dence of the short-time asymptotics from the on-site potential.290

C. Chiral quantum walks291

Next, we discuss the short-time properties of chiral walks292

[29,57]. These walks are defined by modifying the adjacency293

matrix of a graph G by assigning a complex phase to a 294

transition |n〉 → |m〉 allowed by the adjacency matrix and the 295

conjugate phase to the transition |m〉 → |n〉, i.e., by defining 296

FIG. 2. Universality in tight-binding models with Gaussian dis-
tributed on-site potentials.
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the Hamiltonian297

Hch =
∑

{n,m}∈E
eiθnm |n〉〈m| + e−iθnm |m〉〈n|. (38)

Chiral quantum walks offer a flexible way to engineer298

transport properties of quantum networks. For example, while299

for a nonchiral CTQW the transition probabilities satisfy300

the time-reversal and reflection symmetries, i.e., p(x, t |y) =301

p(x,−t |y) and p(x, t |y) = p(y, t |x), for chiral walks these302

may be broken and only the composition of these symmetries303

are satisfied, p(y, t |x) = p(x,−t |y). This freedom has been304

used to direct, enhance, or suppress transport by tuning the305

complex phases [29,57–59].306

Similarly, it turns out that chiral walks also display highly307

adjustable short-time properties compared with their nonchi-308

ral counter parts. By varying the strength of the diagonal309

potential terms or the off-diagonal hopping terms of nonchiral310

CTQWs, one cannot change the leading exponent of t in311

the short-time expansion of the transition probabilities as312

discussed in the previous subsection. Contrary to this, one313

can (in case of some network topologies) change the leading314

exponent by adjusting the phase factors in a chiral walk315

Hamiltonian. This can be easily shown: Consider a chiral316

quantum walk Hamiltonian on G which we divide into a317

diagonal and an off-diagonal term, H = D + O, where exactly318

those entries Okl of the off-diagonal term are nonzero for319

which the nodes k and l are connected. As discussed in Sec. II,320

one can show for the transition probability that321

p(m, t |n) = |�(m, n)|2
(d (n, m)!)2

t2d (n,m) + O(t2d (n,m)+1), (39)

�(n, m) =
∑

p∈P (n,m)

�p[O], (40)

where the sum goes over the different shortest paths P (n, m)322

from n to m. If we tune the phases of the off-diagonal entries323

Okl to be positive reals, then �(n, m) is nonzero, and the lead-324

ing exponent is 2d (n, m). However, for certain geometries,325

we can choose the phases of these entries in such a way that326

the sums over different paths cancel each other and the first327

nonvanishing leading term will then have a leading exponent328

larger than 2d (n, m). The effect of such a cancellation on a329

specific graph G is illustrated in Fig. 3. Note that the particular330

graph we choose in this case could not be a tree graph, since331

the phases then can be transformed out yielding a nonchiral332

CTQW with the same transition probabilities as the original333

chiral walk [29] (see also the Appendix). It is clear that with334

the specified arrangement of complex phases with respect to335

the transition |0〉 → |1〉 the leading exponent is six, contrary336

to the nonchiral case when it is four.337

D. Time-dependent Hamiltonian dynamics338

To study CTQW in time-dependent tight-binding models,339

let us consider a time-dependent Hamiltonian of the form340

H (t ) = �+(t ) A �(t ), (41)

where A is the adjacency matrix of a simple, undirected graph,341

containing no self-loops, and �(t ) is a family of unitary342

matrices, not commuting with A for all time instances. Note343

FIG. 3. Comparison of time-reversal symmetric and chiral quan-
tum walks on the graph.

that, for any choice of �(t ), unitarity guarantees that τT 344

introduced in Eq. (10) is determined solely by A: 345

‖�+(t )A�(t )‖ = max
ψ 
=0

‖�+(t )A�(t )ψ‖
‖ψ‖

= max
ψ 
=0

‖A�(t )ψ‖
‖�(t )ψ‖ = ‖A‖. (42)

We choose the particular case when �(t ) = exp(−i�t ), � 346

being a real diagonal matrix. Due to [H (t ), H (t ′)] 
= 0 for 347

distinct time instances t and t ′, the resulting time evolution 348

of Eq. (41) can be significantly complicated. This is always 349

the case, even if A represents a tree, which cannot support a 350

nontrivial chiral walk. To illustrate the effect of the appearance 351

of �(t ) in Eq. (41), A is chosen such that it corresponds 352

to a linear chain of length n whose nodes are labeled in 353

linear order from 0 to n, while �(t ) = diag(e−i�t , 1, . . . , 1). 354

A short calculation shows that the short-time asymptotics of 355

the transition amplitudes 〈v|U (t )|0〉 are 356

〈v|U (t )|0〉 = 1

�d

[
−

v−1∑
u=0

(−i�)u tu

u!
+ e−i�t

]
+ O(t d+1).

(43)

Figure 4 shows the comparison of the exact numerical cal- 357

culations and the approximative formula of Eq. (43), which 358

corresponds to a chain of three links, one of them ad- 359

mitting a rotating phase. Figure 4 shows that the theoret- 360

ical curves fit well in the time horizon t < 0.5τ . In the 361

time horizon 0.5τ < t , the error of the approximative for- 362

mula becomes significant as we have seen in the previous 363

section. 364

According to Proposition 2, when � is replaced by V , 365

the potential matrix of a tight-binding model, one can think 366

about H (t ) in Eq. (41) as the Hamiltonian of the system in the 367

interaction picture. This allows one to extend the validity of 368

the short-time approximation from the time horizon defined 369

by τV = ‖A + V ‖−1 to that of τ = ‖A‖−1, which is usually 370
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FIG. 4. Comparison of numerical and theoretical results on time-
dependent tight-binding model. Black lines represent the theoretical
approximation up to fixed order of accuracy, while the marks rep-
resent the numerical calculation for the transition probabilities with
different path lengths, when � = 1. Theoretical curves are evaluated
by Eq. (11).

greater than τV according to Gershgorin’s circle theorem. One371

consequence of this is the claim that localization needs more372

time than τV to develop: at the timescale τV , Eq. (4) implies373

the constant increase of the transition probabilities in time.374

Here we show that such a behavior also persists at the time-375

scale τ .376

Let G be a simple, undirected graph and assume that the377

nonvanishing entries of V are i.i.d Gaussian random variables378

centered around the origin and have unit variance. Let n, m379

be two nonidentical nodes of G. We show that the disorder380

average of the approximative transition probability from n to381

m increases monotonically. Assume that the distance of nodes382

n and m is d and let n = p0, p1, . . . , pd−1, pd define a shortest383

path connecting n to m within G. Define s(t ) as a tuple of384

positive reals containing d + 1 elements with 0 = s0 � s0 �385

· · · � sd = t and let t be the set of such tuples. For any386

vertex w, tuple s(t ) and path p of length d let387

R(p,w, s(t )) =
d∑

k=0

δ(pk,w)(sk+1 − sk ), (44)

where δ stands for Kronecker’s delta function. Then, using 388

Proposition 2 we obtain 389

〈pTB(m, t |n)〉V

=
∑

p∈P (n,m)

∑
p′∈P (m,n)

∫
t

ds
∫

t

ds′

×
〈∏

w∈V

exp { − iVw[R(p,w, s(t )) − R(p′,w, s′(t ))]}
〉

V

+ O(t2d (n,m)+1). (45)

Define �(x) as the generating function of the Gaussian distri- 390

bution centered around the origin and having unit variance: 391

�(x) =
∫ ∞

−∞

1√
2π

e−V 2/2e−ixV dV = e−2x2
, (46)

and note that 392〈∏
w∈V

exp{−iVw[R(p,w, s(t )) − R(p′,w, s′(t ))]}
〉

V

=
∏
w∈V

〈exp{−iVw[R(p,w, s(t )) − R(p′,w, s′(t ))]}〉V

=
∏
w∈V

�[R(p,w, s(t )) − R(p′,w, s′(t ))]. (47)

Therefore, up to an accuracy of order O([t/τ ]2d+1), we obtain 393

〈pTB(m, t |n)〉V

=
∑

p∈P (n,m)

∑
p′∈P (m,n)

∫
t

ds
∫

t

ds′

×
∏
w∈V

�[R(p,w, s(t )) − R(p′,w, s′(t ))], (48)

which increases monotonically with t . 394

E. Open CTQW 395

The time evolution of a mixed state of a finite dimensional 396

open quantum system in the Markovian regime is described 397

by the Lindblad equation ρ̇(t ) = Lρ(t ), where L is given by 398

Lρ(t ) = −i[H, ρ(t )] +
∑

k

{
Lkρ(t )L+

k − 1

2
[L+

k Lk, ρ(t )]

}
,

(49)

where the Lk are linear operators acting on the Hilbert space H 399

of the system. Choosing a basis |1〉, . . . , |d〉 in H, the super- 400

operator L becomes a map between d × d matrices. Choosing 401

the basis Enm = |n〉〈m| in the space of d × d matrices, L can 402

be represented as a d2 × d2 matrix with entries Tr[E+
nmLEkl ]. 403

There is a natural way to realize this matrix as a generalized 404

process taking place on a graph L obtained from the complete, 405

directed graph Kd2 of d2 nodes, whose vertices are labeled by 406

the matrix units Enm and whose edges Ekl → Enm are deleted 407

when the corresponding matrix entry Tr[E∗
nmLEkl )] vanishes. 408

Then, splitting the matrix of L into diagonal and purely off- 409

diagonal matrices gives rise to a general walk on L to which 410

Proposition 1 can be applied. 411
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Assume that H in Eq. (49) is a Hamiltonian of a tight-412

binding model corresponding to the graph G = (V, E ). We413

would like to construct the graph Lω of a Lindbladian Lω414

which corresponds to a quantum stochastic walk (QSW) as415

has been first introduced in Ref. [60]. QSW keeps the locality416

structure of the original unitary process by incorporating417

Lindblad operators of the form |n〉〈m|, whenever the edge418

(n, m) is contained within the edge set of G. Note that G can be419

recognized as a symmetric directed graph, that is, (n, m) ∈ E420

if and only if (m, n) ∈ E . For convenience, to every vertex421

v of the complete, directed graph Kd = (V,F ) of d nodes,422

we assign the projection v̂ = |v〉〈v|, and to every directed423

edge e = (n, m) ≡ n → m in F , we associate the matrix unit424

ê = |m〉〈n|. Then we have the following equations:425

H =
∑
v∈V

Vvv̂ +
∑
e∈E

ê, Le = ê+, (50)

so the Lindbladian of the QSW acts on an arbitrary d × d426

matrix X as427

LωX = −i
∑
v∈V

Vv[v̂, X ] − i
∑
e∈E

[ê, X ]

+ω
∑
e∈E

(
ê+Xê − 1

2
{êê+, X }

)
, (51)

where ω measures the relative strength of the coherent and the428

dissipative parts of the dynamics. For any edge f of Kd , the429

tail and head vertex of f are denoted by t f and h f , respectively.430

Let u ∈ V . Then a short calculation gives431

Lωû = −i
∑
e∈E

[δ(te, u) − δ(he, u)]ê − ωduû + ω
∑
e∈E

δ(te, u)t̂e,

(52)

where du is the degree of the vertex u within G and δ(x, y) is432

just Kronecker’s delta. A similar calculation for any edge f of433

Kd results in434

Lω f̂ =
[
−i

(
Vh f − Vt f

) − ω
dt f + dh f

2

]
f̂

− i

⎛
⎝ ∑

v∼Gh f

|v〉〈t f | −
∑
v∼G t f

|h f 〉〈v|
⎞
⎠, (53)

where ∼G refers to adjacency within G. Grouping together the435

projections |v〉〈v| and separately the matrix units |u〉〈v|, u 
=436

v, the d2 × d2 matrix of Lω admits the following block-matrix437

form:438

Lω =
(
LVV (ω) LVF
LFV LFF (ω)

)
. (54)

Here LVV (ω) = −ωL, where L is the Laplacian of G, which439

generates CTRW on G according to Eq. (35). The nonsquare440

matrix LFV is equal to iI , where I is the signed incidence441

matrix of G within Kd , that is, for a given edge e ∈ F and442

a vertex v ∈ V:443

Iev =
⎧⎨
⎩

1 if he = v and e ∈ E,

−1 if te = v and e ∈ E,

0 if e /∈ E .

(55)

Furthermore, we have LVF = iI+. Finally, LFF (ω) is the sum 444

of the diagonal matrix composed of the entries 445

Vf (ω) = −ωdh f + 2iVh f

2
− ωdt f − 2iVt f

2
(56)

and the matrix −iÂ, where Â is the signed adjacency matrix 446

given by the entries 447

Âe f =
⎧⎨
⎩

1 if te = t f and (h f , he) ∈ E,

−1 if he = h f and (te, t f ) ∈ E,

0 otherwise.
(57)

Therefore, the block structure of Lω is of the form 448

Lω =
(−ωD + ωA iI+

iI V (ω) − iÂ

)
, (58)

where D is the degree matrix of G and V (ω) is the diagonal 449

matrix defined in Eq. (56). This determines Lω, the graph of 450

Lω completely. 451

The shortest paths of Lω can be illustrated in the following 452

way. Suppose that we would like to find the shortest directed 453

path connecting vertices of Lω labeled by matrix units |n〉〈m| 454

and |k〉〈l|. Pick up two copies of the original graph G. Any 455

pair of vertices which are formed by vertices of the distinct 456

copies of G represents a node of Lω and appears as a crosslink 457

between nodes of the copies of G (see Fig. 5). Then, to 458

find the shortest directed path connecting |n〉〈m| to |k〉〈l|, 459

one manipulates the endpoints of the crosslink initially repre- 460

senting |n〉〈m| by moving its endpoints through neighboring 461

vertices of G according to the following rules: On the one 462

hand, if ω = 0, one is allowed to move only one endpoint of 463

the crosslink in each step. On the other hand, when ω > 0, 464

the rules of moving the crosslinks are the same except of 465

those which correspond to projections: the endpoints of the 466

crosslink |n〉〈n| can be changed within one step to obtain 467

|m〉〈m| if m is adjacent to n within G. 468

The pictorial representation of the the shortest paths of Lω 469

described above gives the following distance of Enm and Ekl 470

within Lω. When ω = 0, then 471

dL0 (Enm, Ekl ) = dG (n, k) + dG (m, l ), (59)

and the number of such p paths is 472

�L0 (Enm, Ekl ) = �G (n, k)�G (m, l )

(
dL0 (Enm, Ekl )

dG (n, k)

)
, (60)

all of them carrying the amplitude 473

�p[L0] = idG (n,k)(−i)dG (m,l ). (61)

However, if ω > 0, then 474

dLω
(Enm, Ekl ) = min

(u,v)∈V×V

[
dL0 (Enm, Euu)

+ dG (u, v) + dL0 (Evv, Ekl )
]
. (62)

Every pair (u, v) ∈ V × V which minimizes the r.h.s of 475

Eq. (62) defines a directed path connecting the vertex corre- 476

sponding to Enm to the vertex corresponding to Ekl : This path 477

p is a concatenation of three paths p1, p2, and p3 within Lω: 478

p1 is a shortest path connecting Enm to Euu within L0, p3 is 479

a shortest path connecting Evv to Ekl within L0, and finally 480

p2 connects the projections |u〉〈u| to |v〉〈v| along projections 481
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FIG. 5. The time evolution of a mixed state according to Eq. (51)
on a particular small graph. The initial state is |1〉〈1|, which appears
as a crosslink between two copies of the graph. Shortest paths
|1〉〈1|, |n〉〈n| initial crosslink, and a |k〉〈l| final crosslink illustrated
by magenta lines are detailed step by step in the subfigures in the
right corners. An instance of the possible series of the intermediate
states is illustrated by blue crosslines. It is visible from the |ρlk (t )|
transition probabilities that in case of ω = 0 the shortest possible
path distance allowed by the rules of movements is larger than in
case of ω > 0.

|p2,1〉〈p2,1|, . . . , |p2,n〉〈p2,n| for which (p2,1, . . . , p2,n) is a482

shortest path connecting u to v within G. The number of the483

shortest paths with such a pair (u, v) is equal to484

�L0 (Enm, Euu)�G (u, v)�L0 (Evv, Ekl ), (63)

and such a p path carries the amplitude485

�p[Lω] = idG (n,u)(−i)dG (m,u)idG (v,k)(−i)dG (v,l )ωdG (u,v). (64)

In the finite dimensional linear space Md of d × d complex486

matrices, the map which assigns Tr(A+B) to every pair of487

matrices A and B is a Hermitian scalar product turning Md to488

a Hilbert space, the Hilbert-Schmidt space of d × d matrices.489

For the sake of brevity, we denote this scalar product by490

〈A|B〉HS. This also induces the norm ‖A‖HS = √〈A|A〉HS.491

Every superoperator K acting linearly on Md obtains a norm492

similar to that introduced in Sec. II: 493

‖K‖ = max
A
=0

‖KA‖HS

‖A‖HS
, (65)

and this norm satisfies the usual properties. Therefore, we can 494

apply the methods of Sec. II in order to obtain the short-time 495

evolution of density matrix entries. 496

If Lω is the Lindbladian of a QSW, the short-time asymp- 497

totics of the time evolution of the density matrix entries 498

ρnm(t ) of an initial pure state |u〉〈u| can be obtained by the 499

approximation of the scalar product 〈Enm|eL0t |Euu〉HS. If ω = 500

0, we obtain 501

ρnm(t ) = �G (n, u)�G (m, u)

(
dL0 (Enm, Euu)

dG (m, u)

)

× (it )dG (n,u)(−it )dG (m,u)

dG (n, u)!dG (m, u)!
+ O(t dG (n,u)+dG (m,u)+1).

(66)

Note that, for n 
= m, this equation is not the same as 502

the product of the approximative formulas of 〈n|U |u〉 and 503

〈u|U ∗|m〉 as given by Proposition 1. But this is not surprising 504

if one notes that L0 = −i[H, •] acting on the Hilbert-Schmidt 505

space of B(H) is different than H acting on H. Not even the 506

timescales where Eq. (4) and Eq. (66) are applicable are the 507

same. Indeed, if λn denote the eigenvalues of H, then τ−1
H = 508

max |λn|, while τ−1
L0

= max |λn − λm|, clearly indicating τH > 509

τL0 whenever H is non-negative. 510

If ω > 0, then the application of Eq. (62) and Eq. (63) 511

enables us to write 512

ρnm(t ) =
∑
(u,v)

�G (u, v)�L0 (Enm, Euu)�L0 (Evv, Euu)

× (it)dG (n,u)(−it)dG (m,u)(it)dG (v,u)

dLω
(Enm, Euu)!

ωdG (u,v)

+ O(t dLω (Enm,Euu )+1), (67)

where the sum runs over the the pairs (u, v) ∈ V × V , which 513

are the minimizers of the r.h.s of Eq. (64). 514

Results of comparison of numerical calculations and ap- 515

proximative formulas (66) and (67) in case of the small graph 516

introduced in Sec. III C are depicted in Fig. 5. 517

IV. CONCLUSION AND OUTLOOK 518

We studied the short-time asymptotics of quantum dynam- 519

ics on graphs considering both coherent and open continuous- 520

time quantum walks, including time-dependent couplings. In 521

the case of nonchiral coherent CTQWs, the short-time asymp- 522

totics is completely determined by the topology of the graph. 523

The transition probabilities follow the short-time asymptotics 524

|〈x|U (t )|y〉|2=
[

�(x, y)

d (x, y)!

]2

t2d (x,y)+O(t2d (x,y)+1). (68)

Furthermore, it has been shown that the on-site potential 525

does not affect this asymptotics. Similar results can be ob- 526

tained for chiral CTQWs, but it is important to note that 527

introducing time-reversal-breaking terms may increase the 528

exponent of the first nonvanishing term in the transition proba- 529

bilities. We have also studied open CTQWs through stochastic 530
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quantum walks and proved that the short-time dynamics of531

these systems are also significantly altered when they are532

coupled to the environment.533

Finally, we would like to mention possible future appli-534

cations of our results. We hope to be able to use these for535

designing quantum networks with efficient transport proper-536

ties. In particular, the fact that one can reduce some transition537

probabilities by tuning the phases of the hopping amplitudes538

in chiral walks could be utilized to design certain preferred539

(and nonpreferred) transportation directions. Similar features540

for designing (non)preferred directions or even generating541

dark states by tuning the hopping were already studied in542

Refs. [29,61,62]; our methods could provide a more system-543

atic treatment of this. Another possible application of our re-544

sults comes from the observation that the actual measurement545

of the short-time asymptotics resulting in the distance of the546

nodes can be interpreted as a distance oracle. Such an oracle547

can be used to reconstruct the graph of the Lindbladian of the548

system. One may hope that such a reconstruction would be549

efficient, as it is known that there exist randomized algorithms550

for the reconstruction problem with query complexity O(n3/2)551

[63]. These two possible directions are left for future work.552
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APPENDIX: GAUGE TRANSFORMATION561

OF CHIRAL WALKS562

Let G = (V, E ) be a directed graph without self-loops.563

Assume that whenever the edge (u, v) with tail u and head564

v appears in G, then (v, u) ∈ E also holds. Let zuv denote 565

the complex phase of modulus one attached to the edge 566

(u, v). Denote by H the Hermitian matrix containing entries 567

Huv = ruvzuv , where ruv > 0 if (u, v) ∈ E and zero otherwise. 568

By Hermiticity, we have zuv = zvu. Let us denote the matrix 569

composed of the numbers ruv by R. We prove the following 570

statement. 571

Proposition. There exists a unitary, diagonal matrix � such 572

that �†H� = R if and only if along any closed, directed path 573

p = (p0, p1, . . . , pn), p0 = pn the product of complex phases 574

φp is equal to one: 575

φp = zp0 p1 · · · zpn−1 pn = 1. (A1)

Proof. Assume that �†H� = R holds and let � = 576

diag(λ1, . . . , λ|V |). Then zuv = λuλv , so for a given closed 577

path p = (p0, p1, . . . , pn) we have 578

φp = zp0 p1 · · · zpn−1 pn = λp0λp1 · λp1λp2 · · · λpn−1λpn

= λp0λpn = 1. (A2)

In the reversed direction of the statement, assume that the 579

condition holds. Choose a vertex � and for each other vertex 580

u, a path p(u) = (�, p(u)
1 , . . . , p(u)

nu
) connecting � to u = p(u)

nu
. 581

Let � be defined through the diagonal entries λ� = 1 and 582

λu = φp(u) . Then, if u 
= v, 583

(�†H�)uv = λuRuvλv = φp(u) zuvφp(v) ruv = rnmφq, (A3)

where q is the closed path 584

q = (
�, p(u)

1 , . . . , p(u)
nm−1

, u, v, p(v)
nv−1, . . . , p(v)

1 , �
)
. (A4)

Since the condition of Eq. (A1) holds, we have φq = 1, thus 585

the statement is proved. � 586

Note that such a global trivialization of U (1) phases can 587

be always achieved for Hamiltonians corresponding to tree 588

graphs, since the walks generated by �†H� and H have 589

identical site-to-site transition probabilities [29], a chiral walk 590

on a tree has identical short-time asymptotics as its nonchiral 591

counterpart. 592
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