
TYPE Original Research
PUBLISHED 15 November 2023
DOI 10.3389/feart.2023.1267473

OPEN ACCESS

EDITED BY

Uwe Harlander,
Brandenburg University of Technology
Cottbus-Senftenberg, Germany

REVIEWED BY

Abdel Hannachi,
Stockholm University, Sweden
Christoph Zülicke,
Leibniz Institute of Atmospheric Physics
(LG), Germany

*CORRESPONDENCE

Mátyás Herein,
hereinm@gmail.com

†These authors share first authorship

RECEIVED 26 July 2023
ACCEPTED 25 October 2023
PUBLISHED 15 November 2023

CITATION

Herein M, Jánosi D and Tél T (2023), An
ensemble based approach for the effect
of climate change on the dynamics of
extremes.
Front. Earth Sci. 11:1267473.
doi: 10.3389/feart.2023.1267473

COPYRIGHT

© 2023 Herein, Jánosi and Tél. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

An ensemble based approach for
the effect of climate change on
the dynamics of extremes

Mátyás Herein1,2,3*†, Dániel Jánosi2,3,4† and Tamás Tél1,3

1HUN-REN-ELTE Theoretical Physics Research Group, Budapest, Hungary, 2HUN-REN Institute of Earth
Physics and Space Science (EPSS), Sopron, Hungary, 3Department of Theoretical Physics, Eötvös
Loránd University, Budapest, Hungary, 4Institute of Nuclear Techniques, Budapest University of
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In view of the growing importance of climate ensemble simulations, we propose
an ensemble approach for following the dynamics of extremes in the presence
of climate change. A strict analog of extreme events, a concept based on single
time series and local observations, cannot be found. To study nevertheless typical
properties over an ensemble, in particular if global variables are of interest, a
novel, statistical approach is used, based on a zooming in into the ensemble.
To this end, additional, small sub-ensembles are generated, small in the sense
that the initial separation between the members is very small in the investigated
variables. Plume diagrams initiated on the same day of a year are generated
from these sub-ensembles. The trajectories within the plume diagram strongly
deviate on the time scale of a fewweeks. By defining the extreme deviation as the
difference between the maximum and minimum values of a quantity in a plume
diagram, i.e., in a sub-ensemble, a growth rate for the extreme deviation can be
extracted. An average of these taken over the original ensemble (i.e., over all sub-
ensembles) characterizes the typical, exponential growth rate of extremes, and
the reciprocal of this can be considered the characteristic time of the emergence
of extremes. Using a climate model of intermediate complexity, these are found
to be on the order of a few days, with some difference between the global mean
surface temperature and pressure. Measuring the extreme emergence time in
several years along the last century, results for the temperature turn out to be
roughly constant, while a pronounced decaying trend is found in the last decades
for the pressure.

KEYWORDS

climate ensembles, parameter drift, extreme behavior, global variables, plume diagrams,
ensemble average, emergence of extremes

1 Introduction

Public media typically combines climate change with an increase in the frequency
and intensity of extreme events (e.g., cold outbreaks, heatwaves, droughts, hurricanes).
The scientific literature is more careful and less unique [see, e.g., (Knutson et al., 2010;
Sillmann et al., 2013a; Herring et al., 2015; Stendel et al., 2021)]. Some publications support
the intensification of extreme events [e.g., (Knutson et al., 2010; Lehmann et al., 2014;
Sheshadri et al., 2021; Simmonds and Li, 2021; Franzke, 2022; Sun et al., 2022)], some
others, however, provide counterarguments (Shaw et al., 2016; Stendel et al., 2021). A typical
argument is that climate change might weaken the north-south temperature gradient on
the surface leading to the jet stream meandering more actively, leading to more extremes
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(Francis and Stephen, 2015), while complicated dynamical
mechanisms contribute to the mid-latitude wave amplification
(Shaw et al., 2016; Sun et al., 2022). In the upper levels of the
troposphere, however, the north-south temperature contrast
increases, which would imply less extreme events. In the particular
example of the variability of the global surface temperature, most
credible climate models show practically constant variance of a
climate ensemble over the last century [see, e.g., (Deser et al., 2020;
Ghil and Lucarini, 2020; Pierini and Ghil, 2021; Herein et al.,
2023)]. We note that the field of predicting and studying local
extreme events evolves in conjunction with dynamical systems
theory (Ansmann et al., 2013; Lucarini et al., 2014; Bódai, 2015;
Mishra et al., 2020; Li et al., 2022).Wenote that due to the chaos-like
nature of the atmosphere (and other climate- and weather-related
spheres of Earth) weather and climate “predictions” share that
meaningful results are gained by ensemble methods only (Inness
and Dorling, 2013; Deser, 2020).

Recently, there is a new approach for the exploration of
climate extremes via experiments. The idea goes back to Fultz
(Fultz et al., 1951; Folis and Hide, 1965) who suggested the use
of a rotated annulus to model large-scale atmospheric motions at
mid latitudes by maintaining a horizontal temperature difference
across the annulus. This setup was used in (Vincze et al., 2017) to
mimic climate change by letting the horizontal temperature contrast
decrease continuously in time. The mean surface temperature of
the fluid was measured (via a thermo camera) in an ensemble of
experiments. The variance of this quantity was found to remain
practically constant over a time span of the annulus rotations
corresponding in reality to several decades. More recently however,
the experiments only concentrate on a discrete set of fixed
temperature contrasts, and on individual runs in order to focus
on extreme behavior. In (Harlander et al., 2022) the authors find
that the probability density distributions of extreme events from
the experiment compare well with the atmospheric probability
density distributions. Full temperature anomaly distributions were
determined in the polar, mid-latitude and subtropical regions of the
experiment in (Rodda et al., 2022). The standard deviation of this
distribution increases with the temperature contrast in the polar and
mid-latitude regions, but decreases in the subtropics. The frequency
of extreme events decreases, however, with increasing temperature
contrast everywhere.

In this paper, we concentrate on climatemodels, in particular on
single model initial condition large ensemble (SMILE) simulations.
Typically, these can be considered credible in the projection of global
variables only see, e.g., (Deser, 2020). However, in the spirit of the
above-mentioned ensemble approaches (including experiments), a
statistical characterization is needed, and a novel quantity will be
investigated: the deviation between the maximum and minimum
of global climate variables within an ensemble as time goes on. We
call this quantity extreme deviation. We initialize 3 sub-ensembles on
the first of January on those members of the ensemble which are
closest to the ensemble mean of the global surface temperature and
to its standard deviation in both positive andnegative directions.The
deviation between themaximumandminimumof a climate variable
is followed in each sub-ensemble, and from these data we take an
appropriate weighting by associating smaller weights to those close
to the standard deviation than to the average. An initial exponential
growth is found. Its strength is characterized by a quantity we

call the growth rate of extremes. The average deviation between
the maximum and minimum grows rather rapidly, and after about
3 weeks it goes into approximate saturation. The effect of climate
change on extremes can be monitored by repeating the initialization
of these three ensembles in subsequent years and checking if the
growth rate of extremes exhibits any trend.

The paper is organized as follows. In Section 2, the most
basic features of the utilized climate model are discussed, and
its credibility is illustrated in an ensemble simulation (at least
for the global mean surface temperature), and details concerning
the convergence properties are also given. Besides the widely
investigated global mean surface temperature, it is worth including
in our study another global quantity. Among many candidates, we
choose the global mean surface pressure, a relevant thermodynamic
variable of the atmosphere. Section 3 is devoted to the discussion
of the chaotic features of the climate for these two variables,
in particular, to the investigation of plume diagrams, which
illustrate the sensitivity to initial conditions, or, in other words,
the presence of the butterfly effect. In Section 4 the extreme
behavior observable in a plume diagram, as well as the particular
choice of the three sub-ensembles are discussed in detail, and
examples are shown for a given year. Section 5 provides a discussion
of the weighting method applied among sub-ensembles, and a
precise definition of the growth rate of extremes is given. The
fitting procedure is illustrated, and results are given for the
global mean surface temperature and the global mean surface
pressure, for every 10 years in the last century. For completeness,
in Section 6 we make some remarks about two related aspects: the
comparison of the maps of the instantaneous maximum pressure
deviation in two different years, and a critical discussion on a
method related to the growth rate of the baroclinic instability,
already available in the literature. Our conclusions are given in
Section 7.

2 The climate model

2.1 General setup

We use a freely available intermediate complexity climate
model, the Planet Simulator (PlaSim) (Fraedrich et al., 2005;
Lunkeit et al., 2011). In previous studies [see, e.g., (Lucarini et al.,
2010; Herein et al., 2017)] even its basic setup proved to be
appropriate for the investigation of certain atmospheric features of
the climate. Here we apply an upgraded version, which, besides the
atmospheric setup, contains non-standard aspects:

• Concerning the CO2 content, we follow the historical forcing
(Taylor et al., 2012) up to 1958, after which the available
measured data (Keeling et al., 2001) are taken.
• The atmosphere is coupled to a large scale geostrophic (LSG)

ocean (The Hamburg Large Scale Geostrophic Ocean General
Circulation Model) (Maier-Reimer and Mikolajewicz, 1991;
Maier-Reimer et al., 1993). This is an ocean module that was
used to successfully model the climate impact of the Drake
Passage opening (Vincze et al., 2021).
• The BIOME (SimBA) module is also active, mimicking

vegetation (Kleidon, 2006).
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FIGURE 1
The annual global mean surface temperature TS of all the 20 members
of PlaSim in the period 1920–2020 (uniform grey shading). The Met
Office Hadley Centre’s observation dataset HadCRUT5 (Morice et al.,
2021) is superimposed in black in the full time window.

We use PlaSim’s default KICK routine to generate random initial
conditions for the climate ensemble using white noise at the very
beginning of the computation as a slight perturbation in the surface
pressure only (on the order of 10–8 hPa) in each grid point. This
initial perturbation generates the different time evolution of all the
variables of the different ensemble members.

With this setup, an ensemble simulation is performed with 20
members, so-called parallel climate realizations (Herein et al., 2017;
Tél et al., 2020). The global mean surface temperature and surface
pressure are followed in them, and the time evolution of these
trajectories after a convergence time approaches what is called the
snapshot attractor of the climate, see next section. This is represented
in Figure 1 by a grey band for the temperature; this is a region fully
shaded by the ensemble of trajectories.The black line corresponds to
the measured, observed global mean surface temperature. The fact
that the black curve is within the gray band of the ensemble and
convergence is reached as discussed in (Herein et al., 2023) illustrates
that PlaSim can be considered a credible model (Deser, 2020;
Tokarska et al., 2020; Suárez-Gutiérrez et al., 2021). Our simulations
reported below are carried out with this PlaSim setup.

2.2 Model convergence

It is worth noting that a climate model can only be credible if
it is converged to the snapshot attractor of the climate (Deser, 2020;
Herein et al., 2023). Previous studies show that the convergence
time is approximately 40 years in PlaSim (Drótos et al., 2017; Drótos
and Bódai, 2022), and similar values are found for more complex
climate models, too (Drótos and Bódai, 2022). To ensure that we
study only the converged climate data we drop the first 70 years of
our simulation and consider data starting from 1920. The applied
LSG ocean model is a carefully “spun up” ocean reaching a steady
state numerically after around 10,000 years. To completely reach a
steady state of the ocean and the vegetation to the initial climate
“state” of pre-industrial conditions in 1850 [CO2 level of 286 ppm

(Lamarque et al., 2010; Taylor et al., 2012)], we integrate a single
climate trajectory, which is approximately 2,000 years long. We
use here the default resolution (3.5° × 3.5°) in 22 non-equidistant
vertical layers with a realistic present-day bathymetry, the typical
depth is 5,500 m. We emphasize, that the quoted convergence
time characterizes the upper ocean and the atmosphere, while the
deep ocean has a much longer characteristic time scale (hundreds
of years). Since, however, we do not perturb the ocean, we
can assume that its dynamics is slow enough to not affect our
investigation.

3 Plume diagrams

The dynamics of the climate system is chaotic-like, possessing
a high-dimensional attractor. Since we are examining a changing
climate, the concept appropriate in this context is that of snapshot
attractors (Romeiras et al., 1990; Ghil et al., 2008). Such an attractor
represents the plethora of all permitted states at any instant of time,
and ensemble simulations provide a good numerical approximation
of it. When one of the parameters of the system is explicitly
time-dependent (the equivalent of a changing climate), not even
the long-term behavior of different single trajectories leads to
the same outcome, meaning that this method does not yield
representative results. An ensemble approach, however, proves to be
useful in determining the snapshot attractor, a set whose shape (and
probability distribution) is changing in time in a non-periodic manner
(Serquina et al., 2008; Ku et al., 2015; Jánosi et al., 2021). It then
follows, that in dissipative systems with explicit time-dependence,
like the changing climate, the ensemble method is superior to
the single-trajectory one (Tél et al., 2020). In parallel with other
ideas, the ensemble approach led to the application of an increasing
number of ensemble climate simulations [see, e.g., (Collins, 2007;
Kay et al., 2015; Danabasoglu et al., 2020; Maher et al., 2021)]. In
fact, the gray band of Figure 1 is the projection of the high-
dimensional snapshot attractor on the single variable of the
global mean surface temperature TS, obtained from a 20-member
ensemble. Based on the above arguments, we use ensembles to
follow the evolution of the detailed internal dynamics. To do this,
we need a small ensemble, that is, all trajectories in this ensemble
have to be initially very close to each other. In regular, non-
chaotic dynamics members of such an ensemble would remain
close to one another throughout the whole motion. However,
one of the defining characteristics of chaos is that even small
changes in the initial conditions lead to significant separation of
the trajectories. This is called the sensitivity to initial conditions,
or unpredictability (Ott, 1993; Tél and Gruiz, 2006). In the popular
literature, this phenomenon is referred to as the butterfly effect
(Gleick, 1987). Because of this, one finds that close members of
the initially small ensemble quickly deviate from each other. A
graphical representation of this process is provided by so-called
plume diagrams. On a plume diagram, one plots one of the relevant
phase space variables for all of the members of the small ensemble
as a function of time, so that the fast separation in that variable can
be observed.

In our study, we consider as phase space variables the global
mean surface temperature (TS) and the global mean surface
pressure (PS). Although the latter is a somewhat rarely used
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FIGURE 2
Plume diagrams showing the spread of variables (A) TS and (B) PS starting on the 1st of January 1960, over 50 days. These ensembles were created
using the member of the original ensemble that was closest to the ensemble average, and scattering 20 trajectories around it with (A) order ΔT = 10−5 K
temperature differences and (B) order Δp = 10−8 hPa pressure differences. We also show the time evolution of the ensemble members next to each
other in panels (C,D), where the temperature and pressure values are represented as colormaps.

quantity in climate science, observations show a remarkable
increasing trend in the surface pressure (Gillett et al., 2003;
Gillett and Stott, 2009; Gillett et al., 2013) on the order of hPa-
s over half a century. The changes in the pressure field could
be associated with the enhanced evapotranspiration due to the
warming climate. In PlaSim, we found that the trend for PS
between 1950 and 2010 for the winters are compatible with the
observations. We note that the emphasis of our research is not on
the global surface pressure (PS), rather on its ensemble extreme
behavior.

In Figure 2, we show plume diagrams with a small ensemble
containing 20 members initiated in the year 1960, for TS and
PS. Here, since convergence of the original ensemble has already
taken place, we single out the member being initially closest
to the ensemble average, and launch 20 additional trajectories
around it, with random initial pressure differences on the order of
Δp = 10–8 hPa (by means of the KICK routine). After a short time
(approx. 1 day) these lead to initial differences in the other variables,
too. In particular, the initial temperature differences turn out to be
on the order of ΔT = 10–5 K.

In panels (c) and (d), we show a novel type of representation,
plotting the ensemble members next to each other (vertical axis)
as a function of time, with the temperature and pressure values
shown as a colormap. Since we only have 20 sub-ensemble
members, the image would naturally appear quite coarse, thus

for illustrative purposes we show a smoothed-out contourplot
version. The labelling of the trajectories on the vertical axis does
not correspond to any specific order among them, since the
purpose of the image is only to show the differences between
these trajectories as early as possible. The range of colors is chosen
so that red and blue correspond to the maximum and minimum
values within the plume diagrams. The two panels, therefore, do
not start with the same color. The characteristic feature is that
the panels exhibit a uniform columnar pattern first, indicating
that all members carry approximately the same value. After some
time, however, the pattern becomes granular with significantly
different colors within the same column, corresponding to a
considerable separation of the trajectories (around approximately
the 27 day mark). The full pattern of each panel is thus similar
to that of a flow exhibiting a transition between laminarity to
turbulence about this instant. This transition is well symbolized
by the dashed red vertical dividing “grid line” on panels (c) and
(d), drawn at the approximate boundary between “laminarity” and
“turbulence”.

It is worth noting that plume diagrams, called error growth
diagrams, have recently been used in the context of baroclinic
instability and its effects on extreme events in (Sheshadri et al.,
2021). Their approach however, concentrates on midlatitudes, in
contrast with ours which is about global averages. A more detailed
comparison is given in Section 6.
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FIGURE 3
Plume diagrams initiated close to the mean and standard deviations (in either direction) of the daily temperature distribution, evaluated for the
temperature (A) and the pressure (B) initiated on the first of January 1960. Red and green sub-ensembles are initiated at ± the standard deviation, σ, of
TS. The initial order of the ensemble members on the vertical axis is not the same in the two panels, since both were generated using the temperature
distribution, which translates to different initial conditions when evaluating the pressure. The plume diagrams shown in blue are the same as the ones
depicted in Figure 2.

4 Using sub-ensembles to obtain the
extreme deviations

The traditional concept of weather and climate extreme events
arose in observations as time intervals during which a measured
quantity exceeded a threshold value in any direction, and their
dynamics can be captured by so-called extreme climate indices
(Sillmann et al., 2013b; Lee et al., 2022). These observations of
course can only depict a single climate history, which is equivalent
to the single trajectory/single run approach in climate simulations
(Seneviratne et al., 2021). These typically refer to smaller than large-
scale events which hardly turned out to be credible in climate
models so far. We note however, that the potential of using climate
ensembles to analyze and predict local extremes has recently begun
to be explored (Bruyère et al., 2022; Franzke et al., 2023), with their
trend-like behaviour studied in state-of-the-art climate models
(Seneviratne et al., 2021). Being interested in global quantities,
however, the concept of extremes we are after will significantly differ
from those widely used in meteorology and climate science.

By accepting that the ensemble view is in general superior to
the traditional one in modeling and laboratory experiments, new
quantities are needed. One might consider the variance of the full
ensemble, e.g., in relation to TS, the approximate width of the grey
band in Figure 1.This remains, however, practically constant in time,
and other climate models exhibit the same property.

We therefore propose to follow a novel approach implying a
zooming in into the dynamics of the full ensemble, opening up details
on a much shorter time scale. To this end as mentioned earlier, a set
of small ensembles can be used, initiated close to themembers of the
full ensemble, generating plume diagrams. In each of them, a rapid
spreading of the initially localized climate variable can be observed.
If the spread of these values becomes large enough (also implying
that they become considerably different from that of the original
member of the full ensemble), we can call the difference between the
maximumandminimumvalues at any instant the extreme deviation,
characterizing that instant. Then, the rate at which these extreme

deviations change in time can be considered as a measure of the
evolution of extremes in any plume diagram. The maxima and
minima are of course always given by different trajectories, since
they can wander along the whole width of the plume diagram.

This “zoomed-in” characterization of extremes can result in
vastly different plume diagrams. To illustrate this, we refer to
Figure 3, where we show the plume diagram of sub-ensembles
initiated around three different members of the full ensemble.
Observe that not only the shapes are different but also the times
and forms of the start of considerable spreading, implying that
the extreme deviations have different time evolution in the sub-
ensembles. This observation holds even if more plume diagrams are
initiated. The reason for this difference is that the distribution of
the data of the full ensemble, obtained on the day of the initiation
of the small ensemble is extended, furthermore, it is usually not
uniform either. It is natural then to take, as representative examples,
three members of the full ensemble, with one being closest to the
mean temperature (i.e., the one associated with the plume diagram
of Figure 2, here also shown in blue), as well as the other two being
closest to the standard deviation σ of the distribution, in either
directions. The data of the full ensemble are represented by colored
dots in Figure 3. With these three ensemble members, the plume
diagrams describing the temperature and the pressure are illustrated
in panels (a) and (b), respectively, of Figure 3. The colored dots are
not in the same order in the two panels, since coloring is chosen to
be based on temperature.

In order to characterize the typical growth of extremes in the
full ensemble based on its distribution, some kind of averaging has
to be performed. The most accurate approach would be to launch
small sub-ensembles around all members of the full ensemble,
generate the plume diagram for all of them, and then average over
the measured extreme deviations. However, due to considerations
of numerical efficiency (see next section), we will only use the
three members of the full ensemble already depicted in Figure 3, to
represent all the other plume diagrams. These plume diagrams, and
the observed extreme deviations on them are then assigned a weight
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and are averaged, in order to follow the typical evolution of extremes
in the full ensemble. The details of this process are discussed in the
next section.

5 The time-dependence of averaged
extreme deviations

Our goal is to quantitatively characterize the increase of the
spread of extremes based on the plume diagrams of Figure 3. To this
end we recall (Ott, 1993; Tél and Gruiz, 2006) that the spread of the
difference between initially nearby trajectories is characterized by
the so-called Lyapunov exponent. This is evaluated by considering
trajectory pairs of initial phase space distance Δr0 and following the
time evolution Δr(t) of this distance. Taking several such trajectory
pairs, and performing the average over this ensemble, the (largest)
Lyapunov exponent is the initial slope λ of the quantity

Λ (t) = ⟨ln
Δr (t)
Δr0
⟩, (1)

where the bracket denotes average taken over an ensemble. The
logarithm is taken since the differences are expected to grow in
chaos, on average, exponentially in time. It is worth emphasizing that
the Lyapunov exponent, by this definition, only describes the initial
behavior of the trajectories. We note that the investigation of the
Lyapunov exponent of climate models is of current interest, and not
only the largest exponent but even the spectrum of such exponents
can be determined, as e.g., in (De Cruz et al., 2018).

Here, instead of phase space distances, we are interested in
differences of extremes. This means, that we are not interested in
determining the Lyapunov exponent in the climate model (since
it is not about extremes), rather, we use (Eq. 1) as a guide
when examining the magnitude of extreme deviations in time.
Considering an arbitrary variable of the climate model A in a plume
diagram, one can determine its maximum and minimum value,
Amax(t) and Amin(t), respectively, at any instant of time. As an
analog of Δr(t), we consider the differenceAmax(t) −Amin(t) between
extremal values. For normalization, we take the full spread ΔA0
of the full ensemble at the start of the plume diagram. We thus
concentrate on the quantity

Γ (t) = ⟨[ln
Amax (t) −Amin (t)

ΔA0
]
N
⟩, (2)

where the inner bracket indicates that the extrema are taken over the
small ensemble of size N of a single plume diagram and the outer
bracket denotes the average over the full ensemble of the climate
simulation. We propose to call Γ(t) the Double-Ensemble Extreme
Deviation (DEED). Its initial slope γ characterizes the increase of
the differences between the extremes of quantity A, and is going to
be called the growth rate of extremes.

Distinguishing small ensembles and plume diagrams by index j
within the full ensemble of sizeM, quantity (Eq. 2) can be written as

Γ (t) = 1
M
∑
j
[ln

Amax j (t) −Amin j (t)
ΔA0

]
N
= 1
M
∑
j
Γj (3)

The uniform summation over the full ensemble implies a natural
weighting, since more members of the full ensemble fall close to

the ensemble mean than to, say, the standard deviations σ+ or σ−
above and below the mean. The evaluation of this sum requires the
evaluation of altogether N ⋅M ensemble members.

Following the original, full climate ensemble of size M = 20
according to (Eq. 3) would require 20 sub-ensembles, technically
resulting in a 400-element ensemble with daily time resolution.
However, for numerical efficiency and based on our previous
experiences (Herein et al., 2023), we now follow a simplified
approach with three representative 20-member sub-ensembles,
corresponding to a 60-member ensemble. It is known to be usually
sufficient to examine ensembles with a relatively low number of
members to gain a proper characterization of internal variability
for global quantities, at least [see (Milinski et al., 2020) concerning
variable TS]. It has been shown in (Milinski et al., 2020; Pierini,
2020) that one can have acceptable statistics starting from a few tens
of members, which is indeed the case for us.

Out of all possible small ensembles, we take the three
representative members, the ones shown in Figure 3, one initiated
around the mean and two others at about a distance σ+ and σ−
away. The corresponding Γj-s will be denoted by Γ0, Γ+, and Γ−,
respectively. The averaging over the full ensemble is replaced by
associating weights w0 and w+, w− < w0 (w0 +w+ +w− = 1) to these
plume diagrams. The sum is then replaced by

Γ (t) ≈ w0Γ0 (t) +w+Γ+ (t) +w−Γ− (t) . (4)

The choice of the weights is somewhat subjective. The daily
temperature distribution of the sub-ensembles of the initial
50 days reliably (p-value between 0.3–0.9, with the standard alpha
significance level of 0.05) passes the Shapiro-Wilk test (Shapiro and
Wilk, 1965), so we can say that the temperature distribution is
not in contradiction with a standard normal distribution. We then
choosew0 as the maximum andw+ = w− as the variance value of the
standard distribution. These are w0 = 0.45, w+ = w− = 0.275.

In chaos theory the typical time-dependence of the phase space
distance is estimated as Δr(t) ∼ eλt. In analogy with this, we also
expect to see an exponential growth on average of the extreme
deviations approximated as

Amax (t) −Amin (t) ∼ eγt, (5)

where γ is the growth rate of extremes. In Figure 4 we show the
time evolution of Γ, that is the DEED quantity in the first 50 days
of 1960. We can clearly observe, in analogy with the Lyapunov
exponent, an initial exponential growth. The slope of the fitted red
linear curve is then the above-mentioned growth rate of extremes,
γ. The fit is taken over the linear range of the graphs, which is
a standard practice in chaos theory. Its value for the temperature
(panel a) is γTS = 0.163± 0.006 (1/day), while for the pressure (panel
b) γPS = 0.245± 0.005 (1/day).

We can also observe that the DEED value quickly goes into
saturation (compared to the time scale of the climate model), the
time scale of measuring the growth rate of extremes is thus quite
small, around 20 days, which is nowhere near the about 40 years
required for the convergence to the climate attractor. This means
thatwe cannot obtain representative information about the changing
climate by measuring γ in only one year. We can, however, precisely
because of the short time scale, associate γ to the year it was
measured in. It gives the initial slope of the DEED curve, that is, the
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FIGURE 4
The time evolution of DEED for temperature TS (A) and pressure PS (B). The red curves indicate the linear fit to the initial, exponential phase, from
which the slopes γTS = 0.163 (1/day) and γPS = 0.245 (1/day) are obtained.

FIGURE 5
Reciprocals of the γ slopes, the EETs (day) for discrete years with estimated errors of linear fits for temperature TS (A) and pressure PS (B). The dashed
line in panel (A) shows the time average over the whole period, while the solid lines indicate the averages before and after 1960. In panel (B), the solid
line represents the average before 1960, and after 1960 a linear fit was applied to the data, resulting in a slope of about 1 day/100 years, also
symbolized by a solid line.

growth rate of the extremes at the beginning of that year. It naturally
follows then, that we are able to characterize the changing climate by
measuring γ in different years and follow its value as time goes on.

We could now plot γ in each investigated year, but instead we
turn to a more natural value, in analogy with chaos theory, where
the reciprocal of the λ Lyapunov exponent is understood as the so-
called Lyapunov time, the time until trajectories of a plume diagram
remain close to each other. Since the γ growth rate of extremes is
also derived based on plume diagrams, we can nowmake an analogy
with the Lyapunov time and associate a characteristic time with the
emergence of extremes as the quantity 1/γ. This will describe the
time after which large differences (i.e., the extreme deviations) can
occur in the plume diagrams.

We measured this extreme emergence time (EET) for every
10 years between 1920 and 2020, the results of which can be seen

in Figure 5, with the errorbars indicating the fitting errors of γ in
each case. Since 1958 is the start of precise CO2 measurements
(Keeling et al., 2001) and CO2 growth shows a significant positive
trend since then, our expectation is that any pronounced effects
might appear from here onwards. For the pressure (panel b) before
around 1960 the EET values are close to constant, however, after
this point they exhibit a decreasing linear trend, supporting our
hypothesis in this case. Then we can say that we can observe the
effect of climate change in the EET of this variable, suggesting that
the emergence of extreme deviations in the global surface pressure
might occur earlier in a climate change as time goes on.

The results for the temperature (panel a) are different. Here,
the pre-1960 time period can also be characterized by a constant.
(One might see an increasing trend, but due to the rather large
errorbars, we do not think that any higher-than-zero order trends
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can be convincingly identified.) However, in this case climate change
seemingly does not induce any trend whatsoever, only a small jump
in the average can be observed. Alternatively, one can also easily
come to the conclusion that the EET is constant throughout the
whole investigated time interval, which is denoted by the dashed
line.

It might be surprising to see that the typical characteristic times
in panels (a) and (b) differ by about 1 day. However, there are no
restrictions set on the emergence time of the extremes in different
variables, here in temperature and pressure, needing be the same.
It is also worth noting that the naked eye does not recognize that
a strong spreading of the plume diagrams is starting at different
times, e.g., in Figure 2. Initially the values are so close that the eye
does not see other than a single curve. The orders of magnitude of
the initial differences can be extracted from the logarithmic fits of
Figure 4, where we see that they are much smaller for the pressure.
However, at the end of the initial deviation process (red line) the
orders of magnitude are about the same, meaning that the slope
for the pressure is larger, as the γ values in the caption of Figure 4
indicate.

6 Outlook

For illustrative purposes in Figure 6 we show the considerable
regional differences between two ensemble members exhibiting
maximum and minimum behavior in a global quantity on a given
day, and compare them in different years. We show the maximum
pressure difference within one chosen plume diagram on a day
where the differences are considerable (on February 11) in the years
1950 (panel a) and in 2010 (panel b) in PlaSim.

Although one sees remarkable maxima and minima in the
pressure difference field at different geographical locations, we do
not consider these to be worth discussing since the widely accepted
ensemble view followed in our approach implies that none of the
individual simulations are representative.Nevertheless, these images
might provide an impression of the local inhomogeneities of the
possible extremes of the surface pressure.

It is alsoworthmentioning here a similar issue, the growth rate of
perturbations in baroclinic instability. The growth rate σ of the most
unstable wavenumber is known to be (Gill, 1982; Pedlosky, 1987):

σ = c
f
N
du0

dz
(6)

where f and N represent the Coriolis parameter and the Brunt-
Väisälä frequency, respectively, while du0/dz is the vertical shear
of the thermal wind. Coefficient c depends on the model, but is
always of order unity. In the so-called Eady model, it takes the value
c = 0.31, and the reciprocal of σ, the e-folding time of perturbations is
about 2 days (Gill, 1982). In spite of the similar orders of magnitude
of 1/γ and 1/σ, the physics is dramatically different. In baroclinic
instability, the growth rate describes how the velocity deviation from
the unperturbed flow initially increases:

u (t) − u0 ∼ eσt, (7)

and it sets the time over which small amplitude waves develop from
a horizontally homogeneous flow. These waves are, however, not
yet broken and are thus not turbulent. The quantity σ is related
to the very first phase of the emergence of an instability in a
flow in which neighboring trajectories do not yet diverge, and
are not yet chaotic. In contrast, the plume diagrams characterize
the chaotic-like behavior of the atmospheric/climatic dynamics
governed by turbulence (which is indeed the ultimate state of
baroclinic instability). Another reason to call the two approaches
dramatically different is that the growth rate is instantaneous
and local (most dramatically due to the presence of f), while γ
is about a history (over weeks) and refers to globally averaged
quantities.

There is considerable literature on the Eady growth rate and its
temporal change since the latter is considered to indicate changes
in the baroclinicity, the mechanism by which cyclones, fronts, and
other weather systems are generated [see, e.g., (Lehmann et al.,
2014; Sheshadri et al., 2021; Simmonds and Li, 2021)]. The resuls
are season and location, even hemisphere, dependent. In (Lehmann
et al., 2014) a relation is found between changes in the storm tracks
and changes in themaximumEady growth rate atmid-latitudes.The

FIGURE 6
The map of the instantaneous pressure difference between daily maxima and minima (ΔPS) (A) on 11 February 1950 and (B) on 11 February 2010 in
Plasim.
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authors of (Sheshadri et al., 2021) find relation between what they
call the time to error saturation, the analog of the time needed to
reach an approximate plateau in our plume diagrams, and the Eady
growth rate. Their conclusion is that midlatitude weather may be
less predictable in warmer climates. The study of (Simmonds and
Li, 2021) includes also the polar regions, and finds that arctic sea
ice loss can be associated with an increase in Eady growth rate.
This paper also provides maps of the local Eady growth rate and its
trend in all seasons and for both hemispheres.Their Figure 6 exhibits
very strong variability in all panels indicating trends of the same
magnitude with both signs. A properly carried out annual averaging
of these trends over the Globe could provide a quantity that would
be similar in spirit to our extreme emergence time (EET). The Eady
growth rate related studies do provide useful insight into extremes,
providing characteristic values similar to ours concerning orders
of magnitudes, however our approach appears to be the only one
consistent with single initial condition large ensemble simulations
providing global values.

7 Conclusion

According to the traditional picture, extreme events are defined
on the basis of observations and single-run simulations, and
cannot be easily interpreted in the world of ensembles. Therefore,
we propose here a new ensemble approach to follow the global
dynamics of extremes under climate change. The idea is to create
an original, full ensemble and zoom into it with the initialization
of small sub-ensembles at discrete, chosen time instants, to detect
the typical behavior of the extremes. Small ensembles are “small”
in the sense that their members are very close to each other in the
beginning. Plume diagrams initiated on the same day of a year are
generated from these sub-ensembles.The trajectorieswithin a plume
diagram strongly deviate on the time scale of a few weeks. Extreme
deviations then are defined as the instantaneous difference between
themaximum andminimum values of a given quantity in the plume
diagram.We follow this instantaneous difference in time and call the
separation rate as the growth rate of extremes. By averaging over all
sub-ensembles, we get the typical growth rate and with its reciprocal
we are able to measure the characteristic time of the emergence of
extremes. Our growth rate of extremes might be seen as similar to
the Eady growth rate studied in the literature, but the former reflects
the chaotic behavior of the already converged climate attractor, while
the numerical value of the latter characterizes the initial, “laminar”
state before approaching the attractor.

To illustrate the above-presented approach we have used the
climate model PlaSim to run a 20-member ensemble simulation
with historical and observed CO2 forcing, providing a full climate
ensemble. To detect the possible behavior of extremes in the model,
we generated the small sub-ensembles around three members of
the full ensemble and calculated the characteristic time of the
emergence of extremes. This is found to be on the order of a few
days, however, it can be slightly different for different variables.
We showed that the characteristic time for the global mean surface
temperature remains practically constant during climate change.
At the same time, this does not hold for the global mean surface
pressure since a pronounced decreasing trend is found, with a slope
of 1 day/century.

We note that, aside from plume diagrams, other methods
originating in chaotic dynamics could also be utilized to characterize
global climate variables. For example, the recently developed
method of EAPD (ensemble-averaged pairwise distance) (Jánosi
and Tél, 2022), which monitors the phase space distance between
trajectories in an ensemble, seems particularly well suited for
problems requiring an ensemble approach. The application of such
methods could be the subject of future papers.

As a final conclusion, we say that our approach can be integrated
into any other climate model being credible in global quantities, and
it can be especially useful to test in state-of-the-art climate models
(e.g., SMILEs), to properly unfold the dynamics of global extremes.
With the improvement of these models, there is a potential benefit
in following the geographical evolution of extremes as well.
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