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We address the hypothetical question of whether an increasing total solar
irradiance (TSI) trend, without anthropogenic contributions, could be sufficient
to explain the ongoing global warming. To this end, the intermediate-complexity
climate model PlaSim is used. To consider the total internal variability, we
present a set of ensemble simulations, with different forcing histories in TSI
and CO2 concentration, that have converged sufficiently tightly to the relevant
probability distributions to provide a satisfactory bound on any spurious trend
possibly arising from a sampling bias; similar bounds on any other unforced
contributions to ensemble mean trends are also estimated. A key point is the
consideration, among the forcing histories, the steepest increasing trend in TSI
that is still consistent with observations according to a recent study; thereby, we
essentially revisit corresponding TSI reconstructions, more than 20 years after
their last modeling-based evaluation, by improving the analysis through taking
care of all possible sources of error or uncertainty and incorporating data that
have become available since then. Without any change in CO2 concentration,
our TSI trend (i.e., and upper bound on actual TSI trends) is found to be
insufficient to produce outcomes compatible with the observational record
in global mean surface temperature (GMST) with a nonnegligible probability.
We formalize our statement for quantifiers of GMST trends through evaluating
their distributions over the ensemble, and we speculate that the hypothesis
about the exclusive role of an increasing TSI remains implausible even beyond
our particular model setup. At the same time, if we consider a constant TSI,
and the observational record in CO2 concentration is applied as forcing, the
simulation results and the recorded GMST match well. While we currently need
to leave the question of a precise attribution open, we conclude by pointing out
that an attribution of the ongoing global warming to an increasing TSI alone
could be made plausible only if a bias in the set of land-based instrumental
temperature measurements were increasing more rapidly than commonly
estimated; an assessment of the latter possibility is out of the scope of
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our study, as well as addressing solar forcing mechanisms beyond the effect
of TSI.

KEYWORDS

climate change, total solar irradiance, ensemble simulations, snapshot attractors,
internal variability

1 Introduction

In a recent study, Connolly et al. (2021) revisited the idea that
the current warming trend in the Northern Hemisphere might be
driven by changes in solar irradiance. They even suggested that
the role of anthropogenic forcing could be negligible, aligning
with several previous publications (Soon et al., 1999; Alexander and
Bailey, 2007; Scafetta, 2012; Soon and Legates, 2013), although their
possible conclusions cover a fairly wide spectrum, encompassing
all possibilities from no influence of the Sun to no influence
of human activity (Connolly et al., 2021). It is worth noting that
the latter possibility has been demonstrated to be a result of
an erroneous use of statistics (Richardson and Benestad, 2022),
although a modified analysis performed in a subsequent publication
by Connolly et al. (2023) appears to confirm the same possibility.
Irrespective of the final conclusion in this respect, Connolly et al.
(2021) highlighted the unexpected inconsistency in estimates of the
total solar irradiance (TSI), previously known as the solar constant
(Kopp, 2014; Dudok de Wit et al., 2017; Gueymard, 2018; Roy, 2018;
Connolly et al., 2021; Montillet et al., 2022). While measurements
of the CO2 concentration worldwide exhibit a firm consistency
(Scripps Institute, 2023), the spread in the estimated changes of TSI
justifies a dedicated investigation into the corresponding possible
impacts on climate.

The decomposition of various forces driving the time evolution
of climate system variables (i.e., attribution of observed changes
to specific forcings) is usually attempted by two general classes
of methodologies. The first is time series analysis, where the
traditional approach involves multivariate auto-regressive fits and
their variants (see, e.g., Qian et al., 2021, and references therein).
The second class is based on extensive numerical simulations using
global climate models (e.g., Stott et al., 2000; Folland et al., 2018;
Hegerl et al., 2019). Both methods aim to reproduce measured
variables (primarily annual global mean surface temperature over
continents and oceans, GMST). The basic difference between the
two approaches is that while time series analysis is entirely based
on the target and input variables and relies on a proper weighting
of different forcing components via a parameter fit, numerical
simulations attempt to use the physical equations and relations,
along with a tuning of parameterizations to represent reality, for
the reproduction. In the former approach, it is possible to try to
precisely reproduce the observed signal by taking into account
internal processes (e.g., ENSO, AMO, AO) beyond external forcing
as drivers of changes, while in the latter one, only purely external
forcing factors can be used for the reproduction (e.g., TSI, CO2
concentration, aerosol concentration related to air pollution and
volcano eruptions) with some “room” left for internal variability,
which may mask the forced features of the signal and thus make
a direct comparison difficult. This kind of uncertainty is often
quantified through sampling internal variability in preindustrial

control runs (e.g., Hegerl and Zwiers, 2011), which may be a
good first approximation, but internal variability itself responds
to forcing, which means that it is changing during a forced
climate change (e.g., Herein et al., 2016). For this reason, a better
methodology is desirable, which is provided by an ensemble of
simulations differing in their initial conditions. This approach to
represent internal variability in comparisonwith the observed signal
at any time instant is used, mostly among other approaches, in
Stott et al. (2000); Tett et al. (2002); Meehl et al. (2003); Hegerl et al.
(2007); Jones et al. (2013); Bindoff et al. (2013); Gillett et al. (2021);
Eyring et al. (2021) [see, in particular, Figure 1 of FAQ 9.2 in
Hegerl et al. (2007), Figure 1 of FAQ 10.1, together with Figure 10.7,
in Bindoff et al. (2013) and Figure 1 of FAQ 3.1, together with
Figure 3.9, in Eyring et al. (2021)]. Our study applies the same kind
of methodology, and our aim is to revisit a hypothesized exclusive
role of an increasing TSI in the observed global warming such that
possible pitfalls, to be detailed below, are avoided and confidence in
the conclusion is improved.

Such an exclusive role could also be ruled out by a statistically
significant detection of a contribution from anthropogenic
greenhouse gases. This is widely believed to already have been
performed by (variants of) optimal fingerprinting (Allen and Tett,
1999; Allen and Stott, 2003; Huntingford et al., 2006; Ribes et al.,
2013), which have become the dominating tool for model-based
detection and attribution in the last decades (e.g., Tett et al., 1999;
Hegerl et al., 2019; Gillett et al., 2021; Eyring et al., 2021, and see
references therein). As an appealing feature, this approach to
detection permits an arbitrary rescaling of any ensemble mean
model response or any forcing signal. Under suitable processing
choices (such as temporal averaging in windows nearly covering
the 11-year solar cycle), it may be expected to be unaffected
by the reported uncertainties in the magnitude of some long-
term increasing trend in TSI; however, it has turned out to be
sensitive to the details of the TSI time series used (Stott et al., 2003).
Notwithstanding, this is not the main reason why we do not fully
trust thismethodology and seek independent confirmation. Instead,
we detail our concerns as follows.

First of all, optimal fingerprinting relies on a relatively accurate
model representation of the spatial pattern of the climate system’s
response to each significant forcing factor; a relaxation has been
proposed but associating rather idealized properties with the model
errors (Huntingford et al., 2006;Hannart et al., 2014). (The “pattern”
can also be extended or, in principle, even fully transferred to the
time domain, in which case, however, the forcing signals will also
be concerned.) A number of other assumptions are also made.
One is the additivity of responses of climatic means to different
forcing factors. Existing studies (Meehl et al., 2003; Shiogama et al.,
2013; Marvel et al., 2015) suggest that additivity is approximately
fulfilled for the long-term GMST response, but the statistical power
of the tests is not discussed; more importantly, additivity is found to
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break down on smaller spatial scales. Most of the assumptions are,
however, related to the spatial and possibly also temporal covariance
structure of internal variability.

Even after transforming severe criticism from McKitrick (2022)
into a tractable form by Chen et al. (2024) (but see McKitrick, 2024,
as well), some of these latter assumptions remain unconfirmed
and possibly necessarily invalid, and the effect of a deviation
from them remains unquantified. From a heuristic point of
view, we highlight that the covariance matrix corresponding to
the actual internal variability (arising under the influence of all
forcing factors) needs to be estimated. This estimation is based
on preindustrial control runs in most cases (Hegerl et al., 2019);
sometimes data are pooled from different models and even from
numerical experiments with different forcing as well as from
different ensemble members (Gillett et al., 2021). Stationarity of
internal variability is almost always assumed; an exception is
Tett et al. (2002), where “intraensemble variances” are computed in
forced numerical experiments, suitable for the representation of a
nonstationary covariance structure (Tél et al., 2020, Section 10.1).
We find even the latter approach unsatisfactory, since is unclear
how the covariance structure corresponding to the combination
of all forcing factors relates to those arising in single-forcing
numerical experiments (e.g., some scaling factors could have to
be introduced to form a linear combination even in a minimalist
description). Although a so-called residual consistency test has been
introduced as early as in Allen and Tett (1999) to check whether the
covariance estimation is appropriate, its statistical power is unknown
at present even with a sufficiently large sample size for the test to be
valid (Chen et al., 2024). In fact, the test might not be sufficiently
powerful under realistic circumstances, as Li et al. (2021) report
that the traditionally computed confidence intervals associated
with the final results can easily underestimate the true uncertainty
due to an imperfect estimation of the covariance structure of
internal variability. Attempts in Hannart et al. (2014); Hannart
(2016); Katzfuss et al. (2017); Cummins et al. (2022) to circumvent
potential problems either keep some original or introduce some
new assumptions that may not be fully justified. While bootstrap
methods may appear promising (DelSole et al., 2019), they may also
fail for accessible sample sizes (Li et al., 2021).

In view of these circumstances, we prefer not to rely on optimal
fingerprinting (whether from existing studies or in our own) but
turn to the direct comparison approach utilized in Stott et al. (2000);
Tett et al. (2002);Meehl et al. (2003); Hegerl et al. (2007); Jones et al.
(2013); Bindoff et al. (2013); Gillett et al. (2021); Eyring et al. (2021)
at the price of having to fix the amplitudes of the forcing and also
of the response. In the context of our aim, this has an important
implication for how to choose the TSI forcing history, as we will
discuss soon. It also suggests us to perform a primary analysis
assuming a perfect model response amplitude (but only in the
variable under consideration, which is GMST in our case, without
any assumption on spatial patterns; this analysis will be rather
rigorous except for an assessment of TSI forcing histories of a generic
shape) and to address model imperfection afterwards (necessarily
with less rigor as well).

Among the cited analyses, Hegerl et al. (2007); Jones et al.
(2013); Bindoff et al. (2013); Gillett et al. (2021); Eyring et al. (2021)
actually utilize multiple models [taking each simulation from the
CMIP collection (e.g., Eyring et al., 2016)]. While this should be

an advantage and one approach to address model imperfection,
the results are commonly processed in a suboptimal way: the
aggregation of data from different models makes it impossible
to decide whether the instrumental record is within the range
of internal variability (represented by the ensemble spread) for
any of the individual models, and precludes any probabilistic
interpretation. Ideally, each model should be evaluated separately,
as in Jones et al. (2013), from which it turns out that the statistics is
relatively poor (there are few ensemble members only) for CMIP3
and CMIP5 simulations subjected to natural forcing factors only.
Notwithstanding, it appears clear that the instrumental records are
out of the range of such simulations. There are, however, two issues
about this claim.

One is that the time evolution of the natural forcing factors is not
known precisely. In particular, as mentioned, estimates of changes
in TSI are surprisingly incoherent. While the simulations presented
in Jones et al. (2013); Bindoff et al. (2013); Gillett et al. (2021);
Eyring et al. (2021) were subjected, according to the relevant CMIP
protocols, to some of the most plausible TSI histories according
to available data (e.g., Matthes et al., 2017), these reconstructions
feature rather small temporal variations beyond the 11-year solar
cycle among all available reconstructions [as pointed out by
Connolly et al. (2021) and subsequent work (Soon et al., 2023)].
However, excluding the possibility that the observed global warming
could be attributed solely to an increasingTSI, whichwe shall refer to
as the “solar hypothesis”, must take into account the strongest possible
increase that is still consistent with measurements (and should not
depend on short-scale, e.g., decadal, details of the time evolution
of TSI). A few studies from more than 20 years ago (Tett et al.,
2002; Meehl et al., 2003) are suitable from this point of view for
investigating the question posed, attending to the fact that the TSI
reconstructions available at that time (Hoyt and Schatten, 2024;
Lean et al., 1995) are among the ones with the strongest increase (cf.
Figures 1–3 in Connolly et al., 2021); notwithstanding, we believe
that it is worth revisiting their conclusions in viewofwhatwe learned
about models and reality since then, utilizing larger ensembles and,
first and foremost, making sure that the statistics are reliable.

In particular, the other issue concerns whether the ensemble of
the trajectories simulated according to a given single model under
a given forcing history provides a faithful representation of the
time evolution of the relevant (possibly conditional; see Section 3.2)
probability distribution. While there is no CMIP protocol for
selecting initial conditions for the different ensemble members,
Jones et al. (2013) specifies that they were obtained in CMIP3 and
CMIP5 by sampling the preindustrial control run, and this was
done so for Tett et al. (2002); Meehl et al. (2003) as well. Even if
the preindustrial control run were not drifting, it would still be
unknown how much the ensemble members would be affected by
a sampling bias (even where the selection is performed according
to the ocean’s state). In the presence of a bias in the sampling of
the relevant distribution at initialization, spurious effects, such as
spurious trends (a kind of a drift), may appear in the evolution of the
ensemble until it forgets its initial conditions and thus converges to
the relevant probability distribution (Drótos et al., 2017). Moreover,
the preindustrial control runs are drifting in all relevant CMIP
phases (Gupta et al., 2012; Gupta et al., 2013; Irving et al., 2021).
While the drift in the GMST has been shown by Jones et al. (2013)
to be negligible during a few centuries in CMIP3 and CMIP5,
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the preindustrial control runs from which the different ensemble
members were branched off are typically much longer, so that it
may well happen that the initialization procedure does not sample
a single well-defined probability distribution, and convergence to
one will not take place within the duration of the attribution
experiments (or perhaps ever). In fact, whether these problems have
a significant effect on the results presented in Stott et al. (2000);
Tett et al. (2002);Meehl et al. (2003); Hegerl et al. (2007); Jones et al.
(2013); Bindoff et al. (2013); Gillett et al. (2021); Eyring et al. (2021)
could be decided by dividing the single-model ensembles into two
parts according to the initial GMST values and assessing their
convergence to each other. However, this appears to be possible only
in CMIP6 due to the very low number of ensemble members in
earlier CMIP phases; in any case, such an investigation has not yet
been carried out to the best of our knowledge.

In our study, which addresses the strongest observation-
consistent TSI increase by new ensemble simulations, we avoid
the drift-related initialization issue by generating our ensembles
by small perturbations applied to a single model state (which is
obtained after a long spin-up; any unforced contribution to the
ensemble mean trend carried over from the spin-up simulation
will be estimated to leave our conclusions unaffected). What
remains after such an initialization is to wait for a practically
complete convergence to the relevant probability distribution
(thereby forgetting the extreme form of sampling bias associated
with the concentrated initial conditions); we will dedicate an
individual subsection in our paper to determine the corresponding
convergence time.

Ensuring complete convergence is the essence of the so-called
snapshot/pullback framework (Romeiras et al., 1990; Ghil et al.,
2008; Chekroun et al., 2011; Drótos et al., 2015; Herein et al., 2016;
Tél et al., 2020; Drótos and Bódai, 2022). Being a more careful
variant of the large ensemble approach (see, e.g., Deser, 2020;
Maher et al., 2021; Rodgers et al., 2021), it relies on running
simulations with different initial conditions under given forcing
histories in a given model. It allows drawing the full ranges of
possible variable values permitted by internal variability under each
forcing history, and it supports a probabilistic interpretation which
we shall rely on in our analysis. The probabilistic interpretation
is due to the ensemble members being distributed according
to a unique but time-dependent probability distribution, that
corresponding to the so-called [possibly conditional (Drótos and
Bódai, 2022)] natural probability measure of the snapshot/pullback
attractor of the dynamics [the “climate attractor”; we argued
that the unique probability probability distribution supported
by this attractor is the relevant one for climate (Drótos et al.,
2015, 2017; Tél et al., 2020; Drótos and Bódai, 2022)]. Besides
producing statistically reliable climate projections, this framework
helps to understand statistical features of changing climates in
the past, including, e.g., teleconnections (see, e.g., Herein et al.,
2017; Haszpra et al., 2020; Bódai et al., 2021), and is unavoidable
in properly interpreting certain turbulence-related experiments
(Vincze et al., 2017). As explained in Drótos et al. (2015);
Herein et al. (2016); Tél et al. (2020); Drótos and Bódai (2022), this
framework enables one to construct true probability distributions
for model variables, which is one step beyond the approach
of Stott et al. (2000) and which we will take advantage of to

investigate the compatibility of the observed GMST increase
with modeled ones.

In particular, we will confirm that changes in TSI alone
cannot explain the observed global warming according to a
“reasonably credible” climate model. We note that we restrict our
investigation to the integrated direct radiative effect of the Sun’s
activity and disregard potentially relevantmechanisms that aremore
complicated [such as a higher variability in the UV spectral band
captured in the stratosphere or an increased flux of charged particles;
see Gray et al. (2010) for a review]. [Note that the consistency of
results from standard CMIP5 models with observations regarding
the 11-year solar cycle does not suggest such effects to have a high
relevance (Amdur et al., 2021). Furthermore, no indications have
been found so far for this either in CMIP6 climate models that
have become sufficiently complex to be able to capture them, even
under unrealistically strong variations in solar activity (Myhre et al.,
2022). Cf., however, Scafetta (2023).] In principle, arguments for
the same conclusion could be based on existing simulations in the
linear forcing-feedback framework (Gregory et al., 2004; Gregory
and Forster, 2008); we nonetheless believe that addressing the issue
by dedicated simulations has some added value in comparison with
such a simplified approach.

We carry out the numerical experiments, each corresponding
to a 40-member ensemble and a different forcing history, using
an intermediate-complexity climate model, the Planet Simulator
(PlaSim; Fraedrich et al., 2005). PlaSim has been developed based
on the most basic physical principles relevant to climate dynamics,
and in previous studies (e.g., Lucarini et al., 2010; Herein et al.,
2017; Kilic et al., 2018; Vincze et al., 2021; Mehling et al., 2023),
it proved to be an appropriate numerical tool for investigating
the climate system on global scales. Our main result is that
even the maximum realistic increase in TSI alone, with all other
forcing agents kept fixed, cannot result in a growing GMST
comparable to observations [which we represent by HadCRUT5
data (Morice et al., 2021)]. However, when we feed PlaSim with
the time series of the observed CO2 concentrations at a fixed
TSI value, the instrumentally recorded GMST signal is found
to be in surprisingly good harmony with the bundle of the
simulated time series.

We emphasize that our primary objective is to determine
whether we can exclude the attribution of the ongoing global
warming to an increasing TSI alone (i.e., the “solar hypothesis”).
This also means that we do not aim to attribute the time evolution
of GMST to specific forcing mechanisms, so that we do not need to
address the influence of all significant forcing agents. In particular,
aerosols are not represented in PlaSim. Considering this, our CO2-
driven forcing histories will only provide a “soft” indication of the
role of this greenhouse gas.

2 Instrumental records

We make use of the HadCRUT5 data set (Morice et al.,
2021), which extends coverage in data-sparse regions and presents
improvements in observed regions in comparison with HadCRUT4.
The data set combines near-surface air temperature measurements
from weather stations over land and sea surface temperature
measurements over the ocean from ships and buoys. These
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measurements are converted to a so-called analysis product of
surface temperature anomalies, relative to the 1961–1990 period,
of global coverage. We consider the annual global mean surface
temperature analysis between 1920 and 2021 from version 5.0.2.0.

One needs to take into account that the HadCRUT5 data are
subject to uncertainty, which is discussed by Morice et al. (2021) in
detail. In order to take spatiotemporal correlations of uncertainty
into account, uncertainty from all sources, with the exception of
one, is represented by a 200-member ensemble of time series; the
exception is uncertainty arising from a limited spatial coverage of
the observations, for which a time series of standard deviations
is provided in association with the global mean value of surface
temperature. Beyond these representations, a “best estimate” time
series, corresponding to the ensemble mean, and lower (2.5%) and
upper (97.5%) confidence limit time series (taking into account all
sources of uncertainty, including limited spatial coverage) are also
readily available.

For our purposes, which will be explained later, we also
construct ensembles representing the full uncertainty of the data,
including coverage uncertainty.On the one hand,we do so by adding
a random value to each ensemble member’s GMST in each year
according to a Gaussian distribution with zero mean and a standard
deviation corresponding to the coverage uncertainty associated with
the given year. Since coverage uncertainty is not considered to be
correlated with the rest of the uncertainty and Gaussianity is also
assumed by Morice et al. (2021), the resulting ensemble provides a
reasonable representation of the full uncertainty in each individual
year. Furthermore, if we take the increment (signed difference) of
GMST between two (sufficiently separated) years in each ensemble
member, the distribution of these increments over the ensemble
will still serve as a reasonable representation of the full uncertainty
of the increment. Then the “best estimate” increment will be the
ensemblemean increment (i.e., the ensemblemean of the increment
values obtained for the individual ensemble members), and the
lower and upper confidence limits can be obtained as the 2.5 and
97.5 percentiles in the ensemble, respectively (with a precision that
the ensemble size makes accessible). It is, however, important that
the two selected years must be separated by a sufficient time, e.g., by
several decades, such that any correlation in coverage uncertainty
decays between them.

On the other hand, if we are interested in the slope
corresponding to a least-squares linear fit to the GMST time
series, a rather conservative estimate on its full uncertainty can
be represented as follows. To begin with, we select the first year
of the time interval under consideration, and add a random value
to each ensemble member’s GMST in the same way as described
earlier. We then do the same for the last year of the given time
interval. However, we register the two particular random values for
each ensemble member, and proceed by adding a value to each
intermediate year’s GMST within the given ensemble member
such that it is obtained by linearly interpolating between the two
registered values corresponding to the endpoints. This procedure
assumes that the endpoints are sufficiently far away from each
other to be uncorrelated in terms of coverage uncertainty, but
within this, it tries to (although formally does not necessarily)
maximize the impact of coverage uncertainty on the slope of a line
fitted to the GMST time series of the given ensemble member. The
representation of the rest of the uncertainty remains intact, so that

the distribution of these slopes over the ensemblewill, as anticipated,
represent a rather conservative estimate on the full uncertainty
of the slope in question. The “best estimate” and the confidence
limits of the slope can then be derived similarly to those of
the increment.

Wemust emphasize at this point that the ensembles representing
uncertainty in the HadCRUT5 data set are conceptually very
different from those representing internal variability in the PlaSim
simulations. In the former case, a variable of interest has a true
value, it is just our knowledge about it that is limited, but it could
be improved in principle, thus reducing the width of the associated
probability distribution, which is expressed by the ensemble spread.
In contrast, internal variability is an inherent property of the
dynamics, and any given realization is just as realistic as any other.
The relevant probability distribution describing internal variability
has a well-defined width; the ensemble spread must faithfully reflect
this width and, consequently, cannot be reduced.

Since the HadCRUT5 data set concerns solely anomalies with
respect to the 1961–1990 temporal mean, we utilize the CRU
climatology (Jones et al., 1999), version v5, to determine the GMST
averaged for this period, and we add this value to the HadCRUT5
GMST analysis where it becomes relevant. However, our main
analyses are independent of such an offset. For this reason, we do
not take the uncertainty of the CRU climatology into account.

Finally, we make a note about an effect called urbanization bias,
which results from the evolution of urban heat islands [see Wang
and Yan (2016) for a review]. When constructing the HadCRUT5
analysis as described by Morice et al. (2021), it has been taken into
account attending to relevant literature (Brohan et al., 2006; Parker,
2010; Efthymiadis and Jones, 2010; Morice et al., 2012, and further
references therein). At the same time, Connolly et al. (2021), as well
as Soon et al. (2023), partially with reference to earlier literature,
argue that the urbanization bias may have been much stronger than
commonly estimated; for an apparently more robust assessment of
any land-related bias with a similar conclusion, see also Scafetta
(2021). We prefer not to address this issue, since its comprehensive
examination surpasses the purview of this article.

3 Modeling strategy

3.1 PlaSim setup

For our purposes, we choose the same atmospheric setup for
PlaSim as in Lucarini et al. (2010), i.e., the horizontal resolution of
the simulations is T21, corresponding to a grid of approximately
5.6° × 5.6°. The dynamics of the atmosphere is described by the
primitive equations. The model accounts for numerous unresolved
processes through parameterizations. As a non-standard aspect of
our model setup, the PlaSim atmosphere is coupled to a large-scale
geostrophic (LSG) ocean, to a sea icemodule, as well as to a dynamic
global vegetation model, called SimBA, and the radiation module
has been adapted to describe time dependence.

LSG ocean: We use the Hamburg Large Scale Geostrophic
Ocean General Circulation Model (Cycle 1) (Maier-Reimer and
Mikolajewicz, 1991). It is based on the fact that for ocean models
designed for climate studies, the relevant spatial scales are large
compared with the internal Rossby radius. The characteristic
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time scales are large compared with the periods of gravity
and barotropic Rossby wave modes. This LSG model was
originally proposed by Hasselmann (Hasselmann, 1982) and was
described more fully in Maier-Reimer et al. (1993). It was used
in a number of climate and paleoclimate studies (e.g., Maier-
Reimer et al., 1990; Mikolajewicz et al., 1990; Maier-Reimer et al.,
1993;Mikolajewicz et al., 1993; Drijfhout et al., 1996), more recently
as the ocean component of PlaSim (e.g., Dallmeyer et al., 2015;
Mehling et al., 2023).

Sea ice: The module is based on the zero layer model of
Semtner (1976). It computes the thickness of the sea ice from the
thermodynamic balance at the top and the bottom. The temperature
gradient in the ice is assumed to be linear, and the capacity of the
ice to store heat is neglected. For each marine cell of the grid, sea
ice is allowed to form when the surface temperature drops below
271.25 K (−1.90 C°). When a cell is covered by sea ice, snowfall can
accumulate on top. Snow is then converted into sea ice if its thickness
is sufficient to push the ice/snow interface below the sea level. The
typical sea ice thickness for a fully ice-covered sea is around 1 m.

SimBA (Simulator for Biospheric Aspects) is a simple terrestrial
dynamic global vegetation model. It provides the following land
surface variables for non-glaciated grid cells: surface albedo,
roughness length, a surface conductance factor for latent heat, and a
“bucket” depth for the soil. The SimBA variables ultimately depend
on macroscopic variables: primarily on the soil moisture content,
but also on snow depth and vegetative biomass (for details see
Fraedrich et al., 2005).

Modified radiation module: Since PlaSim is a modular and
flexible model, we developed it to handle continuously time-
dependent forcings (beyond the annual time scale; strictly speaking,
by “forcing,” we mean the time evolution of some parameter,
even if it happens to be constant, after a, possibly hypothetical,
initialization on a reference level). Concerning CO2 concentration,
we incorporated historical (Lamarque et al., 2010) and observed
(Keeling et al., 2001) data. The strength of TSI is changed to be an
arbitrary function of time instead of being a constant.

Thanks to these adaptations and the relatively simple and well-
understood but realistic physics, PlaSim becomes a reasonable
choice for modeling the impact of a changing CO2 concentration
or TSI on climate. Credibility of results obtained with our PlaSim
configuration is supported by its equilibrium climate sensitivities
with respect to CO2 and TSI forcing.

The equilibrium climate sensitivity in terms of the GMST
increase that would correspond to a doubled CO2 concentration
has been found to be around 4 K near the preindustrial level, which
is in the upper half of the relevant CMIP ranges (Andrews et al.,
2012; Zelinka et al., 2020). [Angeloni (2022) found very similar
values with SimBA switched off and with some modified oceanic
parameters; and her overall evaluation of PlaSim is rather favorable.]
We must note that the CMIP values of Andrews et al. (2012);
Zelinka et al. (2020) originate from a kind of extrapolation from
non-equilibrated runs (as opposed to our running of PlaSim
to equilibrium), which underestimates the true equilibrium
sensitivity of a model corresponding to the given forcing level
(Knutti et al., 2017; Rugenstein et al., 2020). At the same time,
they were obtained by quadrupling the CO2 concentration
and dividing the corresponding result by 2, which is prone to
overestimate the response to an actual doubling (Meraner et al.,

2013; Rugenstein et al., 2020), whereas our PlaSim estimation did
not involve a similarly large alteration of the CO2 concentration.
According to Table 1 of Rugenstein et al. (2020), the net effect of
these two biases is typically an underestimation but limited to
13% among the simulations where this can be evaluated, which
is clearly much smaller than, e.g., the inter-model spread and is not
considerable from the point of view of our analyses.

The equilibrium climate sensitivity to TSI forcing is more
important for the aim of our study than that to CO2 forcing. It has
been determined as 0.12 KW−1m2, or 0.67 and 0.69 KW−1m2 in
terms of a radiative forcing obtained by averaging over the sphere
and assuming a planetary albedo of 0.3, in two experiments with
TSI values increased by 10 Wm−2 and 100 Wm−2, respectively. Both
increments in TSI fall beyond the relevant domain and indicate
linearity in a wide range of TSI levels. These sensitivity values are
just in the middle of the range, 0.3–1 KW−1m2, specified by Lean
and Rind (1998) based on model studies. By combining data from
Table 2 of Schmidt et al. (2012) and Table 1 of Andrews et al. (2012),
the equilibrium climate sensitivity to TSI forcing, expressed in terms
of an alteration ofTSI (instead of a derived radiative forcing), for four
more recent and comprehensive CMIP5 models can be estimated
as 0.17 (IPSL-CM5A), 0.11 (MPI-ESM-LR), 0.10 (NorESM) and
0.17 (HadGEM2-ES) KW−1m2. What we obtained for our PlaSim
configuration is consistent with these values. We reiterate that the
data from Andrews et al. (2012) are somewhat biased; although
the combination of CO2 and TSI forcing in Schmidt et al. (2012)
might perhaps represent an even more complicated situation, the
(long-term, although transient) GMST responses associated with
increases in TSI and greenhouse gas concentration are suggested by
Shiogama et al. (2013); Marvel et al. (2015) to be additive.

It is crucial to emphasize that CMIP5 models presumably do
not fall far from reality in terms of capturing the impact of solar
forcing. We base this claim on a recent study by Amdur et al.
(2021) about the response to the 11-year solar cycle. The results
presented in this study suggest that “typical” CMIP5 models could
potentially underestimate the actual sensitivity of the Earth system
to this form of forcing by a maximum factor of two. [Note that
the amplitude of this solar cycle is rather consistent among the
TSI reconstructions compiled by Connolly et al. (2021).] Therefore,
regarding PlaSim’s equilibrium climate sensitivity to TSI forcing
as “typical” in comparison with CMIP5 models, it appears to be
appropriate to generate data by our PlaSim configuration as a
starting point if we are intending to see if the high-end estimates
of the warming attributable to TSI forcing can reach what has
been observed instrumentally; more elaborate considerations will be
presented in Section 5.2, after presenting our numerical results.

We have so far discussed the realism of our PlaSim configuration
in terms of the globally averaged annual mean surface temperature
only. To gain some basic insight on its performance regarding
spatial inhomogeneity, we also evaluated spatial standard
deviations over the globe. According to this quantifier, we have
found that PlaSim somewhat overestimates the global-scale
spatial inhomogeneity of the observed absolute temperature
field (HadCRUT5 analysis added to the CRU climatology,
having a 14.5 K spatial standard deviation; the PlaSim value is
roughly 1 K higher); see Supplementary Figure S1. Overestimation
occurs also with respect to the observed temperature anomaly
field (HadCRUT5 analysis, 0.7 K) but to a lesser extent (by
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0.1 K), as Supplementary Figure S2 illustrates. A reason for this
overestimationmay be related to a cold bias specific to high latitudes,
which possibly results from limitations of the low-level cloud
parameterization of PlaSim (Haberkorn, 2013).This reminds us that
PlaSim, as mentioned before, is merely an intermediate-complexity
model, and suggests a certain level of caution when drawing general
conclusions from our simulation results.

Notwithstanding, these discrepancies in spatial standard
deviations are not major. It is important to point out that the
magnitude of internal variability (represented by the ensemble
spread in PlaSim and estimated from decadal-scale fluctuations in
the observed time series; cf. Section 5.2) appears to be modeled
surprisingly well at the same time (about 0.5 K and between 0.2
and 0.3 K, possibly increasing with time, for the spatial standard
deviation of the absolute temperature and that of the temperature
anomaly, respectively). Furthermore, even if the absolutemagnitudes
of the PlaSim spatial standard deviations do not coincide with
observations, trends in their time evolution [possibly indicative of
polar amplification (Holland and Bitz, 2003; Serreze et al., 2009)]
appear to follow those observable in the instrumental records, but
only when PlaSim is subjected to an increasing CO2 concentration;
with TSI forcing only, the recorded trends do not seem to be
reproduced. The suspected increase in the internal variability of the
spatialstandarddeviationoftheobservedtemperatureanomaliesalso
appears to be discernible under the former but to be absent under the
latter type of forcing histories. See oncemore Supplementary Figures
S1, S2 in these regards.

3.2 Design of the numerical experiments

• Choosing the TSI history. Observation data sets for TSI appear
to have uncertainties concerning possible temporal trends
extending beyond the 11-year solar cycle (so-called secular
trends). Although the most common view might be that any
such trend has been rather minor over the last centuries
(Gulev et al., 2021, see Chapter 2.2.1 and literature therein),
a few publications suggest alternative possibilities. An extreme
example is given in Willson and Mordvinov (2003) where the
slope of an increasing trend is estimated to be 0.05 percent,
approximately 0.7 Wm−2 per decade, for two and a half decades
of satellite observations. Connolly et al. (2021) have compiled
a collection of TSI reconstructions for the last two centuries in
their Figures 1–3. Our intention is to assess the possible effect of
the strongest TSI increase that is consistent with any of these
reconstructions. Instead of considering each reconstruction
separately, we concentrate on century-scale variations in TSI.
Over 100 years, the strongest increase in TSI approximately
amounts to 3 Wm−2 among the collected reconstructions; a
similarupperboundonseculartrendsappliestoothercollections
(Solanki et al., 2013; Chatzistergos et al., 2023; Connolly et al.,
2023). According to this property of the reconstructions, we
take a linear ramp in TSI with this very slope, 3 Wm−2(100yr)−1,
between 1850 and 2021. This upper bound on the TSI trend is
in fact very unlikely to be reached by actual trends according
to recent analyses (e.g., Lockwood and Ball, 2020; Yeo et al.,
2020; Kopp, 2021; Chatzistergos et al., 2023). We also highlight
that each of the existing reconstructions suggests a slightly

decreasing trend since 1996 (Chatzistergos et al., 2023), which
we do not take into account in our study.

• Careful spinup of the ocean. It was shown in Maier-Reimer
et al. (1993) that the simulated mean ocean circulation,
for appropriately chosen surface forcing fields, adequately
reproduces the principal water mass properties. We use the
default resolution of 3.5° × 3.5° in 22 non-equidistant vertical
layers along with realistic present-day bathymetry. The typical
maximum basin depth is 5,500 m. The spinup of the LSG ocean
starts from a resting ocean, and reaching a steady state lasts
around10,000 years.Tocomplete thespinupof theoceanandthe
vegetation to the initial climate state of preindustrial conditions,
we use a single run, which is approximately 2000 years long
and leads to a steady state; we illustrate in Section 4.1 that
any unforced contribution to the ensemble mean GMST trend
carried over from the spin-up simulation is negligible for our
analyses. Bypreindustrial conditions, assigned to 1850,wemean
aCO2levelof286 ppm(Lamarqueetal., 2010;Tayloretal., 2012).

• Initialization by theKICK routine.TheKICK routine allows one
to use white noise at the very beginning of the simulation as a
slight perturbation in the surface pressure (10−4 Pa). It is used to
generate different initial conditions for the ensemble members
(Fraedrich et al., 2005). We apply the KICK routine to initialize
themain ensembles, consisting of 40members, at the end of the
single steady-state run, corresponding to 1850 in their calendar,
and also to initialize a 20-member auxiliary ensemble in 1920 to
assess convergence (see the next point).

• Convergence to the relevant probability distribution in the
atmosphere and the upper ocean.The convergence time in these
system components in realistic climate models is considered to
be on the order of a few decades [see Drótos and Bódai (2022)
for a discussion of the issue with references]. In the particular
case of PlaSim without a dynamical ocean or a vegetation
component, the convergence time to the unique distribution of
the climate attractor was estimated to be 40 years (Drótos et al.,
2017). We emphasize that the full convergence time with a deep
ocean and vegetation is expected to be much longer. However,
we concentrate here on the atmosphere and the upper ocean;
therefore, in the spirit of Drótos and Bódai (2022), we stick to
smallperturbationsat initialization(see thepreviouspoint), and,
asanewresult,demonstrate inSection4.2 thataconvergence toa
uniqueprobabilitydistribution(which ispossiblyconditionalon
the state of the slower system components) becomes sufficiently
tight in the course of 40 years, such that the effect of the
initial, extreme formof samplingbiasbecomes sufficiently small.
Ensuring convergence in the atmosphere and the upper ocean
thus means that we do not use data from the first 40 years after
initialization by the KICK routine, i.e., between 1850 and 1890
in the main ensembles. In fact, we will restrict our analysis
to the 1920–2021 interval, so that it will also become rather
independent of the conditions preceding the initialization of the
ensembles in 1850.
• Forcing histories:
• History C. Only CO2 increase: After the single steady-state

run, which has relaxed to the preindustrial climate state of
1850, we follow the historical forcing (Lamarque et al., 2010;
Taylor et al., 2012) up to 1957.Weuse the availablemeasured
data (Keeling et al., 2001) from 1958 up to 2021.
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• Histories T. Only TSI increase. After the single steady-state
run, we simulate the influence of the TSI increase in the
following ways:
• History Ta: A constant CO2 forcing of 315.8 ppm is

prescribed, which is relevant for 1958 (Keeling et al.,
2001). At the same time, TSI increases along a linear ramp
between years 1850 and 2021, starting from the value of
1,369 Wm−2 with a slope of 3 Wm−2 (100yr)−1.
• History Tb: Similar to Ta but the preindustrial CO2 level

(286 ppm) is applied (Lamarque et al., 2010; Taylor et al.,
2012).

• History B.Both: It is a combination of forcing histories C and
T, both TSI (with the aforementioned linear ramp) and the
CO2level are time dependent.
• History N. Neither: Neither the CO2 concentration nor

TSI are time dependent. We take a constant CO2 level of
315.8 ppm (valid for the year 1958), and a constant TSI
(1,369 Wm−2).

Note that the choice of a constant 315.8 ppm represents a jump
in the CO2 forcing in 1850 in forcing histories Ta and N. Since we
are intending to interpret these forcing histories as representing a
constant CO2 level (a new reference level, defining the absence of
CO2 forcing), any relaxation to the elevated value will be regarded
as a drift; the total unforced contribution to ensemble mean trends
under these forcing histories will be assessed in Section 4.3.

3.3 Initial TSI value

TSI has been directly measured since 1978, but different
instruments, as mentioned above, produce non-negligible
uncertainties in its value (Dudok de Wit et al., 2017; Kopp,
2021; Chatzistergos et al., 2023). Thus, making a statistically
consistent TSI composite (Lockwood and Ball, 2020; Yeo et al.,
2020; Marchenko et al., 2022; Chatzistergos et al., 2023) is
challenging. The latest available composites, based on satellite
data, have been reported, e.g., by Dudok de Wit et al. (2017);
Kopp (2021), and Chatzistergos et al. (2023). According to
these composites, the mean TSI value is around 1,361 Wm−2

(Kopp and Lean, 2011; Solanki et al., 2013; Dudok de Wit et al.,
2017; Gulev et al., 2021; Kopp, 2021; Chatzistergos et al., 2023).
Until the mid-2000s, the accepted mean TSI value was
around 1,366 Wm−2 based on the data of pioneering satellite
missions (Kopp, 2021).

We experimentedwith PlaSim using constant forcing (measured
CO2 concentration for 1958) to determine the best TSI value to
reproduce theobservedtemperature in1958(whentemporalchanges
are still rather flat). We found that PlaSim works best with the value
of 1,369 Wm−2.Though this value is 0.5% higher than the composite
mean, it is equally within the range of the satellitemeasurements, see
Figure 1 in Solanki et al. (2013), or Figures 7 and 8 in Kopp (2021).
Werepeat thatPlaSimdoesnotcontainsecondarygreenhouseagents,
such as aerosol, volcano soot, methane, etc., which is one reasonwhy
the offset of TSI base value was necessary. It is worth noting already
at this point that the full performance of our tailored PlaSim version
(see Section 3.1)with themeasuredCO2 data and this single constant
TSI value is astonishingly good, see later. Therefore, we shall use this

value as the constant value in forcing histories C andNand the initial
value in forcing histories T and B.

4 Estimating bounds on unforced
contributions to ensemble mean
trends

For a quantitative analysis of model results obtained in an
ensemble view, one needs to estimate a bound on any systematic
deviation from the relevant probability distribution. Such a deviation
may arise froman incomplete convergence (whether in the sense that
the attractor has not been reached or that the sampling is biased)
or a numerical inaccuracy; it is spurious by definition and may be
perceived as a drift (Gupta et al., 2013) in a single time series in
certain cases.

Since we are interested in the increase of GMST, we will
concentrate on distributions of quantifiers of GMST trends. As a
first approximation, we mostly assume that any systematic deviation
from the relevant probability distribution can be described as a
uniform shift (i.e., the shape of the distribution is not affected);
we check the accuracy of this approximation where it appears to
be necessary. A uniform shift represents a drift in a more general
sense and can be characterized by the shift of the expected value.
This shift will be reflected in the ensemble mean value of the given
trend quantifier evaluated in the individual ensemble members of a
numerical experiment (this is thus a spurious unforced contribution
to the ensemble mean trend). Furthermore, if the quantifier in
question is a linear functionof the valuesof the correspondingGMST
time series, its ensemble mean will be equal to the same quantifier
evaluated for the time series of the ensemble mean GMST; we shall
utilize this property for our estimation of a bound on the shift.

As a separate issue, the assessment of some response to a forcing,
such as an increasing GMST, requires considering any unforced
deviation from stationarity appearing in the relevant probability
distribution itself. The existence of such a deviation may be possible
if some slow modes of unforced variability are excluded from the
relevant probability distribution (Drótos and Bódai, 2022). Unlike a
drift as introduced above, a corresponding shift in the expected value
oftherelevantprobabilitydistributionofagiventrendquantifierisnot
spurious, and the instrumentally recorded trend may also be subject
to suchaneffect.Thedifficulty is that therealizationof the slowmodes
in question are generically different in the numerical experiment and
the real world. However, it is reasonable to believe that such a shift in
the real-world trend cannot be much larger than those in models of
sufficient realism.

In fact, drifts may be indistinguishable from manifestations
of slow modes of unforced variability. Instead of considering
them separately, we will estimate a bound on the total expected
trend at the end of the (unforced) spin-up simulation. We
believe that it approximates a bound on the corresponding
unforced contribution to the mean trend in the forced numerical
experiments. The generation of the ensembles at the beginning of
the latter introduces the need for an additional step to estimate
a bound on the total unforced contribution in them. The case
of forcing history Ta needs an alternative consideration, which
will be provided by forcing history N (meant to represent the
absence of forcing).
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FIGURE 1
GMST as a function of time in the spin-up simulation.

4.1 The spin-up simulation

The spin-up simulation follows a single trajectory evolving in
the absence of any forcing, as depicted in Figure 1 in terms of GMST.
Therefore, trendsofanensemblemeancannotbeevaluated.However,
the unforced nature of the simulation implies that any trend (well)
beyond the time scale of internal variability, which is on the order
of a decade according to Figure 1, will represent a deviation of the
expected trend of the simulation from zero.

Since the ensembles of the numerical experiments are branched
off from the spin-up simulation at its end, any such deviation present
at that time will carry over to those ensembles as an unforced
contribution to the ensemble mean trend. We suppose that this
contribution does not change considerably in the course of the
numerical experiments. From the last 500 years of the spin-up
simulation, we can safely estimate that the magnitude of any such
contribution is well below 0.1 K(100yr)−1.

It is worth mentioning that the value of 0.1 K(100yr)−1 also
serves as an approximate bound for the CMIP5 preindustrial control
simulations (Gupta et al., 2013; Jones et al., 2013). As far as CMIP5
models are realistic, this confirms that there are no relevant slow
modes missing from PlaSim.

4.2 Convergence of the ensembles to the
relevant probability distribution

The small magnitude of any trend remaining in the spin-up
simulation indicates that the trajectory must be very close to the
preindustrial (stationary) attractor of the model. This attractor will
continue as a (time-dependent) snapshot attractor after the forcing is
switchedon,andweare interestedtocreateanensembleof trajectories
distributed according to the (time-dependent) distribution (the
“relevant” one) corresponding to the [possibly conditional (Drótos
and Bódai, 2022)] natural probability measure of this attractor.
However, concentrating initial conditions near a single point on the
preindustrial attractor represents an extreme form of sampling bias,
which will lead to a drift (a spurious contribution to the ensemble

FIGURE 2
GMST as a function of time in the main history C ensemble (grey) and
in the auxiliary ensemble which is subject to the same forcing history
but is initialized in 1920 (blue). The simulation results are presented as
follows. We draw a square centered on each simulated GMST value
with a height of 0.025 K, a width of 1 year, and a hue given in the
legend. Overlapping squares then increase the saturation of the color.
The “best estimate” from the HadCRUT5 analysis (offset by the CRU
climatology) is also included as a solid line.

mean trend) right after initialization (note that this is not observable
in any single ensemble member).

This sampling bias will nonetheless fade out as the trajectories
converge to the probability distribution in question. The process
of convergence can be investigated by comparing two ensembles,
initialized, e.g., at different times, with each other. The convergence
becomes completewhen they reach a unique probability distribution
(which then turns out to be the relevant one, representing climate,
see below). More precisely, any remaining drift will be revealed as
a suitably quantified trend in the difference of the ensemble means,
provided that the ensemble serving as a reference was initialized
sufficiently much time earlier in terms of an approximate e-folding
time of the convergence of this difference to zero.

For the purpose of determining the convergence time in our
PlaSim configuration associated with reaching a sufficiently small
drift, we consider a 20-member auxiliary ensemble initialized by
applying the KICK routine to a given member of the main history C
ensemble in 1920 and study how it converges, still under history
C, to the main ensemble in GMST. We borrow this auxiliary
ensemble from the analysis of Supplementary Section S2 of the
Supplementary Material of Herein et al. (2023).

The two ensembles are visually compared in Figure 2. By 1960,
40 years after initializing the auxiliary ensemble (displayed in blue),
no difference is discernible by the human eye.This is so even though
the system possesses a deep ocean and a vegetation component. Our
observation suggests that the distribution traced out by an ensemble
becomes practically unique 40 years after initialization in the sense
that it onlydependson themodel, on the forcinghistory, andpossibly
on the state of the slower system components but not on the details
(suchas the time)of initializationandthus represents climate (Drótos
and Bódai, 2022).
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FIGURE 3
The difference of the ensemble mean GMST of the auxiliary ensemble
(blue in Figure 2) from that of the main history C ensemble (grey in
Figure 2) as a function of time.

Note that this is not so before convergence becomes complete.
By comparing the “best estimate” time series for GMST from the
HadCRUT5analysisandtheauxiliaryensembleinFigure 2,onecould
erroneously conclude that the model’s climate is rapidly warming in
thefirst twodecadesafter initialization such that itwouldnot reallybe
in a good agreement with the instrumental observations. However,
what can be seen like this warming is, in fact, an initial transient
of the auxiliary ensemble, a drift that originates from the sampling
bias. At those times, the auxiliary ensemble does not represent the
model’s climate, as the deviation from the main ensemble (displayed
in grey) indicates.

One quantifier of this deviation is the difference between the
ensemble means. We utilize this difference to estimate a bound on
any GMST drift introduced by the sampling bias. Figure 3 shows
a spurious warming in the first 30 years of the auxiliary ensemble,
in harmony with what was visually recognized in the first 20 years
in Figure 2. However, no definite trend can be seen from 1960 on.
Taking into account where the fluctuations are centered and that
this must reach zero asymptotically, one concludes that maximally
0.03 K of trend, with a positive sign, can remain in the difference of
the ensemble means in the last three decades displayed in Figure 3,
corresponding to a slope of 0.1 K(100yr)−1. Since themain history C
ensemble was initialized 50 years before the auxiliary ensemble and
an approximate e-folding time can be read off from Figure 3 to be
a few decades, this slope represents an estimate of a bound on the
unforced contribution to the ensemble mean trend arising from the
samplingbias after 40 years of convergence. In anadditional 30 years,
by 1920 in the main numerical experiments, this value must further
decrease by a factor of e or so.

Since the ensembles of our numerical experiments were
initialized by small perturbations, we also need to take into account
that the widths of the corresponding distributions are much smaller
at the beginning than those of the relevant distributions. However,
according to Figure 2, the ensemble spread approaches the relevant
extension in GMST to a good accuracy (much better than 0.1 K)

FIGURE 4
The ensemble mean GMST obtained under forcing history N as a
function of time.

within 40 years; therefore, our assumption about the shape of the
distribution appears to be accurate at a similar level.

4.3 The case of forcing histories Ta and N

The jump in the CO2 level at the beginning of forcing histories
Ta and N introduces a relaxation to the new level, the effect of which
we are intending to exclude from our analyses.

In fact, since we regard the history N simulations as unforced,
the unforced contribution to the ensemble mean trend (including
that induced by a sampling bias) will just be equal to its deviation
from zero. As opposed to the spin-up simulation, this can be directly
evaluated as we actually have an ensemble available in this case.

The ensemble mean GMST time series is displayed in Figure 4
between 1920 and 2021, the interval that will be the subject of our
analysis. Any trend remaining in this interval is estimated to be
smaller than 0.1 K(100yr)−1 but positive.

As a first approximation, we can assume that this estimate
applies to the history Ta experiment as well, in the spirit of the
recommendation of Drótos and Bódai (2022) for determining the
effect of forcing. Since the unforced contribution has turned out to
be positive, the native results corresponding to forcing historyTawill
overestimate the effect of the prescribed increase in TSI.

Further related considerationswill be presented at the analysis of
the numerical results.

5 An increasing TSI and global
warming in PlaSim and beyond

5.1 Numerical results from PlaSim

To address the question of whether an increasing TSI can play
an exclusive role in global warming, we first visually compare the
time evolution of GMST in the HadCRUT5 analysis and in the
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FIGURE 5
GMST as a function of time in the HadCRUT5 analysis (offset by the CRU climatology) and under different forcing histories. The HadCRUT5 “best
estimate” is represented by a thick black line, while the lower (2.5%) and upper (97.5%) confidence limits are marked by thin black lines; the
corresponding confidence interval is shaded. The way of presenting the simulation results is the same as in Figure 2. In panel (A), we display history C
(grey), in (B) also Ta (claret coloring) and N (orange), (C) Tb (cyan), and (D) B (red). The time span is 1920–2021 in all panels.

bundles of individual ensemble members in the different numerical
experiments.

According to Figure 5A, the HadCRUT5 analysis fits well to the
experiment with forcing history C consisting of the measured CO2
dataupto2021withoutanytrendinTSI(grey): theblacklinegenerally
stays within the bounds traced out by the ensemble members and
wanders across their range.Theonly exception is around1940,which
isaperiodstill subject todebate fromforcingagents’andinstrumental
records’ point of view (Egorova et al., 2018; Folland et al., 2018); note
that the95%confidencebandof theHadCRUT5analysis still overlaps
with the simulation bundle in this period. It is worthmentioning that
the rapid increase in GMST from 1980 on appears in both data sets
in complete harmony.

In Figure 5B, we can see that the HadCRUT5 confidence band
leaves the range traced out by the members of the experiment
with forcing history Ta (trend in TSI with the constant 1958 CO2
level, claret coloring) around 2010, even at the relatively high
CO2 level of this experiment, causing an opposite bias before
1980. The HadCRUT5 confidence band leaving the ensemble range
upwards occurs even though the model obviously reacts to the

TSI increase: the corresponding increase in GMST causes all
ensemble members to leave the range traced out by the members
of the experiment with forcing history N (no time dependence,
orange) by 1990.

Not surprisingly, the HadCRUT5 confidence band leaves the
ensemble range of the experiment with forcing history Tb (trend
in TSI with a preindustrial constant CO2 level, cyan) much earlier
than that of the experiment with forcing history Ta, around 1990 in
particular, as can be observed in Figure 5C.

As for the experiment with forcing history B (trend in both CO2
and TSI, red; Figure 5D), the HadCRUT5 confidence band exits the
range of the ensemble members downwards around 1960.

In total, the only experiment which the HadCRUT5 analysis
appears to be compatible with by 2021 is the one with forcing history
C. Nevertheless, since this result partially relies on the choice of
when and how initial parameter values are prescribed, it appears
to be a more careful approach to evaluate and compare trends in
the GMST data. Since the linear TSI ramp of forcing histories T
and B is a century-scale representation of the evolution featured
by certain TSI reconstructions, we need to evaluate GMST trends
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nearly corresponding to the whole century. The subsequent analysis
of such trends, of course, should be based on the statistics of
the ensemble.

We first adopt the most common trend quantifier, the slope
resulting from a least-squares linear fit. We determine this slope
between 1920 and 2021 for each ensemble member of each
experiment, make a histogram of these slopes for each experiment
separately, and compare the confidence interval (and the “best
estimate”)of theHadCRUT5analysis slope (constructedasdescribed
in Section 2) with these histograms.

According to Figure 6, even the lower confidence limit of
the HadCRUT5 slope is relatively far from the slopes arising
in the numerical experiments with forcing histories T: in terms
of probabilities (Drótos et al., 2015; Herein et al., 2016; Tél et al.,
2020; Drótos and Bódai, 2022), one can practically exclude that
the HadCRUT5 slope originates from one of the corresponding
probability distributions. This is an (almost) formal confirmation of
the incompatibility of the HadCRUT5 analysis with forcing histories
T according to a high confidence. [Our nominal estimate of the
confidence level is 97.5%, since the 2.5% confidence limit of the
HadCRUT5 slope is out of the support of the histograms in question.
This estimate, however, does not take into account that the sample
sizes are finite. Notwithstanding, the probability density functions
of the true probabilities underlying the histograms, similarly to the
histograms themselves, do have a finite support. We believe that
applying some generic methodology such as in Vermeesch (2005),
withpossibly invalidassumptions inourspecificsituation, toestimate
confidence limits on our histogram counts would not be able to
meaningfully capture the uncertainty in their tails and especially
in the true bounds of their supports. Instead, as we also suggest
through theplotting style,weguess that thefirst binswith zero counts
might actually fail to capture some small but relevant probabilities,
but the farther empty bins describe truly negligible probabilities. In
principle, by increasing the ensemble size, the issue of confidence
may be possible to be traced back exclusively to the uncertainty of
the HadCRUT5 data.] At the same time, the HadCRUT5 slope is
compatible with forcing history C according to the corresponding
histogram, and is just on the boundary of compatibility with
forcing history B.

However, these results cannot be interpreted as a falsification
of the “solar hypothesis” on their own: we have to emphasize
that the incompatibility concerns the particular linear TSI ramp
defining forcing histories T. To test whether the conclusion is more
universal, we have to adapt to the century-scale nature of our linear
representation of the relevant TSI reconstructions, and utilize some
quantifier that is more independent, in comparison with a linear
fit, of the details of how TSI and the corresponding GMST evolved
between the endpoints of the time interval under consideration (i.e.,
1920 and 2021).

For this purpose, we turn to an extremely simple quantifier: the
GMSTincrement(signeddifference)betweentheendpointsofagiven
interval; this may be regarded as a quantifier of the trend associated
with that interval. We believe that this quantifier forms a reasonable
(although not rigorous) basis for testing the hypothesis that the
instrumentally recorded GMST increment between a “generic” year
in the early 20th century and one in the early 21st century could
be attributed to a TSI time series with a prescribed increment over
the same period (as defined by our forcing histories) but having a

FIGURE 6
Histograms of the slopes of lines fitted to the GMST time series of the
individual ensemble members between 1920 and 2021 in each
numerical experiment (see legend). The bin size is 0.0125 K(10yr)−1.
The “best estimate” of the HadCRUT5 analysis slope is marked by a
thick black vertical line, while the lower (2.5%) and upper (97.5%)
confidence limits are marked by thin black vertical lines; the
corresponding confidence interval is shaded.

ratherunconstrained shape.Obviously, sinceeachgivenyear is rather
“special” than“generic”, the robustnessof sucha testhas tobe checked
by selecting slightly different interval endpoints; we will use the
intervals 1920–2021, 1921–2020, 1925–2016, and 1930–2011. At the
same time, the relatively strong manifestation of internal variability
in the yearly GMST data is not a problem, since it is fully captured by
the simulation ensembles.

We proceed similarly to the case of the slopes: we compute the
GMST increment between the endpoints of the selected interval
in each ensemble member of each experiment, make a histogram
of the increments for each experiment separately, and finally
determine the confidence interval (and the “best estimate”) of
the HadCRUT5 increment for comparison (again as described
in Section 2).

The organization of the data in the different panels of Figure 7,
presenting results for the different time intervals specified above, is
very similar to each other and also to that in Figure 6. This is an
indication for the robustness of the results.

On a quantitative level, the histograms corresponding to forcing
histories C and B are considerably shifting to the left from panel
(A) to (D) in Figure 7, i.e., with a shrinking interval length;
this is a consequence of the rapid increase in GMST in the last
years of the corresponding simulations. Irrespective of this fact,
the entire HadCRUT5 confidence interval always falls within the
support of the history C histogram, so that the HadCRUT5 analysis
appears compatible with a forcing history in which only the CO2
concentration is increasing. Qualitative differences between the
panels can mainly be observed in relation to forcing history B:
the HadCRUT5 confidence interval happens to lie in the bulk of
the corresponding histogram in panel (C), while it is rather in the
left tail of this histogram in panel (B), and it is located around the
position where this tail reaches zero in panels (A) and (D), although
with a considerable overlap with the support of the histogram.
While two out of these four cases are not likely to occur, we
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FIGURE 7
Histograms of the increments in GMST in the individual ensemble members between the endpoints of the indicated time intervals in each numerical
experiment (see legend). The bin size is 0.125 K. The “best estimates” of the corresponding HadCRUT5 analysis increments are marked by thick black
vertical lines, while the lower (2.5%) and upper (97.5%) confidence limits are marked by thin black vertical lines; the corresponding confidence intervals
are shaded.

cannot claim that the HadCRUT5 analysis would be incompatible
with a forcing history incorporating both the observed increase in
CO2 concentration and a representation of the maximum possible
increase in TSI, especially that the different cases might not be
fully statistically independent, and some of them might not be
representative of a maximum TSI increase of a “generic” shape. The
incompatibility observed in Figure 5D may be a consequence of the
alreadyexistingabsolute temperaturebias in1920,whichresults from
the (presumably unrealistic) TSI increase prescribed between 1850
and 1920.

Unlike for forcing history B, Figure 7 clearly shows that the
relevant probabilities are very low for forcing histories T: it is only
in panel (D) that the HadCRUT5 confidence interval overlaps with
the right tail of the histogram corresponding to forcing history Ta;
otherwise, the probabilities that the HadCRUT5 increment could
arise from forcing histories T are completely negligible according to
the considerable distance of the lower HadCRUT5 confidence limit
from the support of the corresponding histograms. Based on the
above-presented considerations, we can thus rather safely conclude
that the instrumental records are practically incompatible, in terms
of the GMST increase, with a forcing history in which only TSI
is changing and thus with the “solar hypothesis” in our PlaSim
configuration.

This safety, and the confidence in the presented conclusions in
general, relies on the analyses of Section 4. Note that both the slope
of a linear fit and an increment (our trend quantifiers) are linear in
the values of the corresponding time series, so that these analyses are
applicable. According to the combination of these analyses, the total
unforced contribution to the ensemble mean trend remains below
0.1 K(100yr)−1 or so, whichmeans that the histograms of Figures 6, 7
are shifted atmost by one bin’s widthwith respect to ideal histograms
which are free fromanyundesirable effect; the same is true in relation
to some slowmodeof variability potentially affecting theHadCRUT5
analysis. Deviations from the ideal histogramwidths are supposed to
be even smaller. Effects of thesemagnitudesdonothave an important
impact on our analyses concerning the forcing histories T presented
in the current subsection.

Moreover, according to Section 4.3, the histograms
corresponding to forcing history Ta are shifted to the right; the
ideal histograms would then be farther away from the HadCRUT5
confidence intervals, which would imply that we could, in fact,
only overestimate the true chances that an increasing TSI could
result in the observed warming in the absence of other forcing
factors (unless the HadCRUT5 confidence intervals are shifted
even more by some slow mode of variability, which appears to be
unlikely).
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This is confirmed by a more careful evaluation of the shift under
consideration: the histograms corresponding to forcing history N,
representing the unforced reference for forcing history Ta, appear
roughly symmetric but are always centered to the right of zero.
This shift to the right, of a magnitude of approximately 0.1 K (over
100 years) at most, might also explain the relative positions of the Ta
andTbhistogramswith respect to eachother. If this couldbe verified,
it would imply that this shift wouldmainly describe the relaxation to
the elevated CO2 level, so that the total unforced contribution to the
ensemble mean trends would remainmuch smaller than 0.1 K (over
100 years) for the histograms unaffected by such a relaxation.

5.2 Generalization attending to an
imperfect model credibility

We now present some considerations regarding a generalization
of our conclusions obtained for our particular PlaSim configuration.
For this purpose, we return to the issue of PlaSim’s sensitivity
to TSI forcing, and consider what the histograms of Figures 6,
7 could look like if our PlaSim configuration had a sensitivity
at the very high end of the plausible range; then we check
where the lower HadCRUT5 confidence limits could lie with
respect to such histograms associated with the relevant forcing
histories (Ta and Tb).

One difficulty is that a model’s response to TSI forcing may not
be characterized by a single sensitivity value, but the shape of the
dynamical (i.e., transient) response may vary from model to model,
and linearitywithrespect toTSI forcing isnotguaranteedeither (even
if the equilibriumresponse is linear).WhatweknowfromSection 3.1
is only that PlaSim has a “typical” equilibrium sensitivity (describing
a nearly linear response to TSI forcing) among CMIP5 models, and
that the maximum plausible sensitivity of the real Earth system to
the 11-year solar cycle is roughly twice as high as that of “typical”
CMIP5 models. However, we can add now our observation that the
HadCRUT5 analysis and the history C bundle match surprisingly
well in Figure 5A, following a shape that is common with numerical
experiments forced by the historical increase of greenhouse-gas
concentrations in Jones et al. (2013). This softly suggests that the
characteristic response time scales of our PlaSim configuration and
thus the shape of its dynamical responses in general are realistic
and are in harmony with those of CMIP5 models. Taking this
into account, it appears reasonable to adopt the maximum factor
of two from Amdur et al. (2021) to represent PlaSim’s maximum
underestimationof theamplitudeof therealEarthsystem’sdynamical
response to TSI forcing. Although a factor of two is a very high
estimate in Amdur et al. (2021), wemust keep inmind that it is not a
formal upperbound, andour argumentation for its adoption is rather
speculative.

Accordingtothisestimate, thecentersoftheTaandTbhistograms
could at most be twice as far from zero as in Figures 6, 7. At the same
time, we also have to address the realism of the widths of these
histograms.

In the absence of an ensemble of real-world realizations, one
needs to rely on the timeevolutionof a given instrumentally recorded
(possibly aggregated)variable (suchasGMST) toassess the realismof
the internal variability (underlying the histogramwidths) arising in a
given model subjected to a given forcing history (represented by the

ensemble spread). Note that assessment is thus inaccessible for the
internal variability associated with a single time instant (remember
that internal variability itself is changing in time in response to a
forcing), unless some assumptions are made about the real-world
internal variability. What can be assessed without such assumptions
is whether the full time evolution of the modeled internal variability
may be realistic or credible in view of the recorded signal.

As formulated in Herein et al. (2023) with reference to
earlier literature (e.g., Suarez-Gutierrez et al., 2021), “a necessary
consistency condition for a given climatemodel to be credible is that
the observed, measured time series lies within the range spanned by
its large ensemble realizations over all times, [such] that it reaches the
maxima or minima of the model simulations occasionally,” adding
that “the consistency conditionholds only for a converged ensemble.”
We first note that this is in fact a necessary condition for the joint
credibility of the model and the forcing history it is subjected to; the
model itself may be credible even if the condition is not fulfilled
due to an unrealistic forcing history. Second, as implied by this
formulation, credibility of a model as a whole (obviously) includes a
credibleforcedresponseintermsoftheclimatic(i.e.,ensemble)mean.
Internal variability in the model, including its own forced response,
can be credible even if the forced response (or simply the absolute
value) of the climatic mean is not. This requires the amplitude of the
fluctuations in the recorded signal tomatch the range spanned by the
ensemblemembers in the whole time interval under consideration if
the forcing history is also realistic.

Thisnaturally leadstotheproblemofseparatingfluctuationsfrom
forced changes of the climatic mean within the recorded time series;
while this task is theoretically infeasible (without relying on a model
already known to be credible), relevant fluctuations are conjectured
to have a decadal time scale at most (e.g., Drótos and Bódai, 2022,
and references therein). Therefore, identifying all changes occurring
within a decade or so as fluctuations perhaps overestimates the
magnitude of internal variability, but underestimation is supposed to
beexcluded. Ifwemakea furtherassumptionofadecadal smoothness
in the (temporally changing) magnitude of the real-world internal
variability,wecanfinallyformulateasufficient conditionforexcluding
an underestimation of the magnitude of the real-world internal
variability under the actually occurred forcing history at any time
instant: the ensemble range in the ensemble of our interest must
not be smaller at the given time instant than what we identify as
fluctuations in the real-world signal around that time instant.

The condition of Herein et al. (2023) is fulfilled in Figure 5A to a
surprisingly high accuracy; furthermore, the widths of the bundles
of the ensemblemembers are similar under all of the forcing histories
in Figure 5 and approximately remain constant. This means that our
sufficient condition is fulfilled in practically the entire time span
under any forcing history, including histories Ta and Tb. Taking
into account that the corresponding assumptions about the real-
world internal variability can be regarded as plausible, and also
that the internal variability of even the spatial inhomogeneity in
surface temperature appears to be captured rather accurately as well
(perhaps including an increase in its magnitude under plausible
forcing histories; see Section 3.1 and Supplementary Figures S1,
S2), we speculate that we may indeed exclude that the magnitude
of the simulated internal variability in GMST underestimates that
of the real-world internal variability under the forcing history that
actually occurred. (Note that we are not able to assess whether the
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simulatedinternalvariabilitywouldmatchthatoftherealworldunder
hypothetical forcing histories that did not occur in the real world;
however, this is not a relevant question ifwe are tomake comparisons
with the instrumentally recorded signal.)Therefore, we suppose that
the widths of the Ta and Tb histograms in Figures 6, 7 could not be
substantially larger in associationwith a faithful representationof the
real-world internal variability.

In total, ourmostpessimistic estimateabout the realEarth system
predicts Ta and Tb histograms centered twice as far from zero as in
Figures 6,7withanessentiallyunchangedwidth.This transformation
translates toa shift to the rightby0.03 K(10yr)−1 inFigure 6 and0.3 K
inFigure 7.After sucha shift, the lowerHadCRUT5confidence limits
would lie, with the single exception of Figure 7D, in the right tails
of the Ta histograms, around the positions where the right tails
of the Tb histograms reach zero. This makes compatibility with
the corresponding forcing histories and, more broadly, the “solar
hypothesis,” rather implausible.

Note that we have not quantified our estimate on the possible
realisticwidths, relative to thenumericalmodel results,of therelevant
histograms. The reason why our analysis is not as overly sensitive
to the accuracy of the estimate of internal variability as optimal
fingerprinting is its reliance on the amplitude of the forced response
of climatic (i.e., ensemble) mean values (which can be rescaled
without any constraint in optimal fingerprinting). Notwithstanding,
it has been crucial to correctly represent PlaSim’s internal variability,
allowing us to numerically evaluate the absolutewidths of the PlaSim
histograms in question and also to speculate about their credibility.

However, we reiterate that the assessment of credibility or
realism and, consequently, the generalization of our negative PlaSim
conclusion about a hypothetical exclusive role of a TSI increase is not
really substantiated but remains speculative. We should remember
at this point that PlaSim is merely an intermediate-complexity
climate model and does not reproduce, e.g., the instrumentally
observed spatial inhomogeneity of surface temperature accurately.
This underscores the need for further investigations to validate these
findings with more rigor.

6 Conclusion

• In ensemble simulations performed by our tailored PlaSim
model, we have found with a high confidence that the
instrumental record, represented by the HadCRUT5 analysis,
is incompatible with our forcing histories in which only TSI is
increasing.
• Even in case PlaSim happens to considerably underestimate the

Earth system’s real sensitivity to TSI forcing, we speculate that
the instrumentally recorded warming remains rather unlikely
to arise under these forcing histories. However, this conclusion
should ideally be validated by further studies.

Within PlaSim, the real-world increase in CO2 concentration
appears to be compatible with the instrumentally recorded global
warming both alone and in conjunction with an increase in TSI,
although the relevant probability is smaller with the maximum
observation-consistent increasing TSI trend. Note that further
greenhouse gases and aerosols, along with their considerable and
comparable respective warming and cooling effects (see, e.g.,

Myhre et al., 2013, Figure 8.15 for associated radiative forcing),
are missing from PlaSim, so that such a compatibility may be
consistent with existing literature. We emphasize that we cannot
narrow down constraints on the possible time evolution of TSI based
on our results.

Formally, our conclusions concern the very specific forcing
histories considered in our numerical experiments. However, we
presented an analysis that arguably confirms the validity of these
conclusions in relation to forcing historieswith rather unconstrained
shapes between the early 20th and 21st centuries.

Notably, these conclusions are drawn such that any spurious
trends in the simulation results possibly arising from a sampling
bias at initialization have been sufficiently bounded by ensuring
a sufficient level of convergence of the ensemble members to the
relevant probability distribution. Moreover, any other drift or any
deviation from stationarity associated with some slow mode of
unforcedvariabilityhasbeenestimatedto leaveourconclusionsvalid.

In principle, the climate of the system and how it responds to a
forcing can depend on the state of some slow system components
(Drótos and Bódai, 2022). However, such system components are
also prone to model drifts, which are not reflected in GMST
in a pronounced way (Irving et al., 2021), suggesting that GMST,
including its time evolution, is insensitive to the state of such
system components.

We could thus conclude that it would be implausible that the
ongoing global warming could be attributed to an increasing TSI
alone, even in theunlikelycase if the strongestobservation-consistent
TSI trend proved to be correct for the last centuries. It appears to us
that the “solar hypothesis” with reference to a TSI increase could
hold only if the set of instrumental temperature measurements were
subject to a more rapidly increasing bias than commonly estimated,
e.g., due to more pronounced urbanization effects (Connolly et al.,
2021; Scafetta, 2021; Soon et al., 2023). It is not our aim to discuss
this issue in the present study, nor potentially relevant solar
forcing mechanisms beyond the effect of TSI (Gray et al., 2010;
Scafetta, 2023).

After establishing that human activity has been necessary for
the ongoing global warming (which should take all possible natural
factors into account), another relevant task will be to provide a
lower estimate on the magnitude of the anthropogenic contribution
such that the uncertainty in TSI forcing (and, preferably, in any
solar forcing in general) is taken into account. Our results suggest
this to be considerably large, but a quantitative analysis in a
careful ensemble framework is outstanding to the best of our
knowledge.

Author’s Note

We have learned after acceptance that the original Hoyt
and Schatten (1993) TSI reconstruction has been made basically
void by Chatzistergos (2024, Sol. Phys. 299, 21. https://doi.
org/10.1007/s11207-024-02262-6) most recently. Its extensions by
Scafetta et al. (2019, Remote Sens. 11, 2569. https://doi.org/10.
3390/rs11212569) and Scafetta (2023) are also concerned. In fact,
a basic assumption behind most of the reconstructions featuring
a similar increase in the 20th century had already been falsified
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long before, and the single family avoiding this problem is
implausible for several reasons; see Chatzistergos et al. (2023) and
references therein. TSI composites from satellite measurements
do not allow for comparable secular increments throughout their
time span, even in view of the considerable uncertainty associated
with them (Chatzistergos et al., 2023). While such composites
might feed speculations about relatively strong long-term secular
trends (e.g., Scafetta, 2023), Yeo et al. (2020) have determined
a fundamental bound on TSI variation that is exceeded by all
available reconstructions underlying our choice of the TSI slope.
Notwithstanding, deviation from a crucial assumption for the
derivation of this bound "cannot be excluded" according to the
authors, even if unlikely. Our approach is to take a conservative
viewpoint and address any speculations about “high variability
estimates" (Connolly et al., 2021) of TSI evolution.
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