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ABSTRACT

We present a systematic study of multifragmentation and associated phenomena such

as finite size effects, role of momentum dependent potentials in heavy-ion (HI) collisions,

thermalization and entropy production at intermediate energies. These aspects are studied

within the framework of quantum molecular dynamics (QMD) model as primary transport

theory.

In the first part of thesis, we study the beam energy and system size dependence of

fragment production in central symmetric reactions. The fragment production at central

geometries is still an unclear phenomenon which is significantly affected by the radial

flow and squeeze out of nuclear matter. The collective transverse expansion tends to

enhance the process of clusterization. Recently, the production of intermediate mass

fragments (IMFs) was studied as a function of beam energy in the center-of-mass frame

(Ec.m.) on MSU 4π-Array set-up. The peak Ec.m. (at which maximal IMF emission occurs)

reveals a clear system mass dependence. We shall show that our model calculations for

the unfiltered events reproduce the linear dependence of peak Ec.m. on system mass as

is observed experimentally. We shall further show that multiplicities of various fragment

species also reflect similar mass scaling behavior at peak Ec.m. indicating the role of surface

to volume ratio in clusterization process.

In the next part, we shall address the problem of spectator fragmentation at relativistic

bombarding energies using advanced clusterization algorithm namely simulated annealing

clusterization algorithm (SACA). For the first time, our calculations based on the SACA

method explain successfully the universality behavior in the production of intermediate

mass fragments over entire energy range between 400-1000 AMeV, as observed on AL-

ADiN set-up. We shall also propose an improved version of SACA method where constant

binding energy check of -4 MeV/nucleon will be replaced by realistic binding energy check

leading to most bound fragment structure.

The application of SACA method will be made in describing the spectator fragmenta-

tion in ultra low-energy HI reactions. We shall simulate the peripheral collisions of Au+Au

at 35 AMeV using SACA and conventional minimum spanning tree (MST) clusterization

subroutines. The SACA method allows early recognition of fragment pattern. We shall

demonstrate that our model calculations for charge yields and charge of the heaviest frag-
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ment using SACA approach are in closer agreement with experimental data reported by

Multics-Miniball Collaboration. Conventional MST procedure, however, completely fails

to predict the dynamics of spectator fragmentation at such low incident energies.

The phenomenon of multi-fragment emission in low-density regime is least exploited

to probe the nature of nuclear matter equation of state. The heavy-ion reactions at

low incident energies are particularly suitable to extract the information on the nuclear

EoS, as the role of different nucleon-nucleon scattering cross sections is minimal at these

energies. To achieve this goal, we shall simulate the reaction of 197Au +197 Au at an

incident energy of 35 AMeV and at different peripheral geometries. We shall show that

fragment charge distributions obtained from spectator matter decay are highly sensitive

towards the stiffness of nuclear EoS. The comparison of fragment charge multiplicities

calculated at different peripheral geometries indicates preference for soft compressibility

modulus of the nuclear matter.

We shall further extend our analysis by studying the consequences of implement-

ing momentum dependent interactions on the stability of nuclei, stopping and fragment

emission characteristics. The evolution of cold QMD nuclei using momentum dependent

interactions depict no artificial emission of heavier clusters and nuclei remain stable for

the characteristic reaction times. The IMF multiplicity calculated using soft momentum

dependent EoS for the Au+Au reactions as a function of impact parameter will be shown

to reproduce the experimental trends very nicely.

As the last piece of research work discussed here, we aim to understand the thermal

properties of hot & dense nuclear matter formed in HI reactions. For central symmetric

reactions at relativistic energies, the fireball formed at midrapidity is expected to be

equilibrated. This aspect is implemented to extract the baryonic entropy from the yield

ratio of deuteron-like to proton-like clusters using Siemens and Kapusta’s formalism. For

this analysis, we shall simulate central symmetric reactions of 40Ca+40Ca, 93Nb+93Nb and

197Au +197 Au at different incident energies. Our model calculations predict ‘universality

characteristics’ for baryonic entropy produced i.e. it depends upon the participant proton

multiplicity irrespective of the system mass chosen. Nearly no effect of beam energy is

visible on the magnitude of baryonic entropy.
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Chapter 1

Heavy-Ion Physics: Introduction and
Present Status

Atomic nucleus is a fascinating bit of matter unlike any other familiar thing in daily life.

Although nuclei have been studied for over a century for different aspects of nuclear matter

such as properties of nuclides away from the valley of stability, formation and decay of

super heavy elements (SHE) etc [1–3]. Of particular interest is the response of nuclear

matter towards changes in temperature, density and pressure. Quest for bulk dynamics

of nuclear matter i.e. nuclear matter equation of state (EoS) and possible co-existence of

liquid-gas phases of nuclear matter, is of relevance not only for nuclear physics community

but also in astrophysicists [4, 5] where origin of early universe, formation and structure

of compact heavenly bodies such as neutron stars [4–6], and supernova explosions [7] are

still open questions.

In last few decades, due to advances in accelerator technologies [8–10], it has become

possible to bombard projectile nucleus onto the target at higher incident energies. This

has led to emergence of a new branch in nuclear physics namely intermediate energy heavy-

ion physics. Heavy-ion (HI) collisions at intermediate energies result into the formation

of highly dense and hot piece of nuclear matter in laboratory. The nuclear matter den-

sity reaches several times the normal nuclear matter density ρ◦(= 0.17 fm−3) and heats

the nucleus to typical temperatures in excess of 1012K. The nuclear matter under such

extreme conditions of density and temperature is similar to that existed in the interior

of neutron star or sun. It becomes, therefore, an important goal of HI experiments to

explore the equation of state of nuclear matter.

In low-energy regime, the reaction mechanism is marked by the events of fusion-

fission, deep-inelastic scattering and incomplete fusion [11–17]. Nucleons being in the
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Fermi energy domain, there exists a significant Pauli Blocking of n-n collisions. The

non-equilibrium effects, however, are negligible. On the other hand, in intermediate and

high energy collisions, it becomes possible to excite the nucleons above Fermi-energy. As

a result, mean field picture becomes less pronounced and non-equilibrium effects emerge.

The clusterization (i.e. the breaking of nucleus into many pieces) and related phenomena

such as collective flow, composite particles formation and entropy production, become

important decay channels.

At intermediate energies, several observables have been found sensitive towards the

stiffness of nuclear matter. In one of the earlier attempts, Scheid et al [18] and Amsden

et al [19] tried to link nuclear shock waves with phenomenon of collective expansion of

nuclear matter. One of the very first attempts on the emission of clusters viz. deuterons,

3He, 4He, as a signal of collective behavior was made by the Plastic Ball group [20, 21].

Further, sideward flow in HI reactions at intermediate energies, is closely linked with

phenomena of stopping and thermal equilibrium in nuclear matter. The collective flow,

as an outcome to the pressure and field gradient has nowadays become an important tool

to infer the nature of medium dependent nucleon-nucleon (n-n) interactions and nature of

EoS [22–24]. For incident energies ≥ 400 AMeV, the participant-spectator picture emerges

[2, 7, 25], where spectators move at projectile and target rapidities in the center-of-mass

frame. The participant matter i.e. fireball is, however, equilibrated in midrapidity region.

This fireball formed is of immense interest since its formation is governed by the density

achieved in the violent phase, colliding geometry as well as incident energy.

As far as spectator matter physics is concerned, the ALADiN Collaboration have

explored many aspects related with the decay of heavy Au projectiles after collisions

with different targets of C, Al, Cu, Pb and Au-nuclei [26–28]. Prominent features in

these experiments were the ‘rise and fall ’ trend in the production of intermediate mass

fragments (IMFs) with colliding geometry and universal behavior with respect to target

mass and bombarding energy chosen. Apart from this, a calorific curve was also extracted

that has been linked with the phenomenon of liquid-gas phase co-existence [29–31]. Many

studies have reported the signals for phase co-existence [29, 32, 33] in nuclear matter.

Recent experiments have also generated evidences in support of phase transition occurring

in HI reactions and critical exponents determined [26, 29, 34]. This kind of phase co-

existence is commonly observed in matter around us in everyday experience. In case of

nuclei, however, the concept is quite new and challenging. Firstly, nuclides being finite
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entities can not provide information on the bulk properties of nuclear matter directly.

Secondly, there are non-equilibrium aspects associated with the heavy-ion collisions and

strong nature of n-n interactions. Even calorific curve has been extracted for the heavy-

ion collisions using isotope temperature THe−Li. The occurrence of plateau region in the

calorific curve as a signal of liquid-gas phase transition is still under intense debate [35–

37]. A recent experiment by EOS Collaboration, however, showed that temperature T

increases continuously with excitation energy E∗ over the entire plateau region [38].

The symmetry energy in nuclear matter is another important observable that has

gained much attention in present day heavy-ion research [5, 39]. The disassembly of hot

fragmenting system can be looked as an important tool to characterize the symmetry

energy of nuclear matter [40, 41]. Its role is equally important in astrophysical processes

such as neutron star (NS) cooling, density and radii. The uncertainty in the equation

of state of NS can lead to 50 % variation in the predictions of neutron star radii. With

new laboratories coming up world wide such as proposed Facility for Rare Isotope Beams

(FRIB) in USA [42, 43], Radioactive Ion Beam Factory (RIBF) at RIKEN in Japan [44],

and the more versatile and multi-million Euros project ‘FAIR’ at GSI, Germany [45], it

would become possible to compress the matter to several times its saturation density.

Various exotic nuclei, and radio-isotopes along the drip line can be generated to study

their peculiar nuclear structure and improve our knowledge on nuclear EoS of asymmetric

nuclear matter. These terrestrial experiments would be helpful for theoretical models

to put important constraints on nuclear equation of state at high densities [46–48] and

predict structure of neutron stars. The radius of NS is mainly sensitive to neutron skin

and symmetry energy. At present, heaviest neutron star has mass of 1.671 ± 0.008 M¯

[49], but possibility of neutron stars with mass ≥ 2M¯ is still there [50].

At present, the Facility for Antiproton and Ion Research (FAIR) is upcoming heavy-ion

laboratory at GSI, Germany. This will be deciding the future research in nuclear structure,

nuclear reactions with radioactive beams, and astrophysics. The proposed facility consists

of super-conducting synchrotron SIS 100/300 with a complex system of storage rings that

will generate high intensity ion beams at 35 AGeV with mass of heavy-ions upto uranium-

238. The FAIR project is quite diversified one that would be capable of providing high

quality beams of all ion species from hydrogen to uranium along with antiprotons and

kaons. It has strength for mass measurement of wider range of nuclei to predict the mass

models with uncertainty less than 100 KeV/c2. Apart from radio-isotope facility, FAIR
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Figure 1.1: The schematic layout of existing GSI facility (in blue color) and upcoming
FAIR facility (in red color).

will serve for future research in the field of atomic and molecular physics, radiobiological

applications, and high-density plasma physics. The FAIR project is remarkable in view of

its versatile design keeping in mind the future needs of scientific community and society.

The FAIR project has huge budget estimate around 1,187 million Euros (M€). The full

operation of all experimental programs is expected to start in 2015. The FAIR would be

serving a user community of about 2500 researchers with 25 % working in rare-isotope

beam capability.

Figure 1.1 gives a schematic layout of present and future of FAIR facility at GSI. The

existing facility (in blue) at Gesellschaft für Schwerionenforschung (GSI) consists of lin-

ear accelerator UNILAC, heavy-ion synchrotron SIS 18, the fragment separator FRS and

experimental storage ring ESR. The present UNILAC/SIS 18 complex (indicated in blue

color) would serve as an injector for the upcoming double-ring SIS 100/300 synchrotron
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facility. The projectile fragment separator FRS is the powerful in-flight facility for in-

vestigating relativistic exotic nuclei. The selected fragment beam is separated spatially

during the flight that gives access to very short lived nuclei. The experiments at FRS has

indicated the isomeric decays in the waiting point nucleus 130Cd [51]. The FAIR facility

(in red) gives site-map of accelerators such as high-energy storage ring (HESR), collector

ring (CR), new experimental storage ring (NESR), super-conducting fragment separator

(Super-FRS), and double ring synchrotron SIS 100/300. Masses of more than 1110 dif-

ferent nuclei have been measured in several FRS-ESR experiments [45, 52]. FRS would

open-up new eras for the nuclear structure, astrophysics, and production of fragments at

relativistic energies 400-1500 AMeV.

The Rare-Isotope Beam (RIB) factory is another high power heavy-ion beam facility

at RIKEN, Japan. The RIB factory would provide (a) heavy-ions upto uranium-238,

(b) a fragment separator, and (c) multifunction beam line spectrometer. Expected en-

ergies are 440 AMeV for light ions and 350 AMeV for 238U. The in-beam spectroscopy

of radio-isotopes would search for halo nuclei and magic number nuclei. The main focus

of RIB factory would be the investigation of nuclear structure and astrophysical phe-

nomena with user number of 500 researchers. A similar project known as Facility for

Rare-Isotopes Beams (FRIB) is also proposed at Michigan State University, USA. This

facility, formerly known as Rare Isotope Accelerator (RIA), would aim at low cost, next

generation competitive radioactive beam facility. FRIB would strive for excellence in the

studies of nuclear structure with extreme N/Z ratios and under the extreme conditions

of density and temperature that have existed only in nature’s spectacular explosions, the

supernovae. FRIB would also provide rare-isotopes for application in human health, en-

vironmental issues, food technology and biotechnology. FRIB facility is expected to start

experiments in 2017. For productive and competitive atmosphere, existing detectors at

Argonne National Laboratory (ANL) and National Superconducting Cyclotron Labora-

tory (NSCL) would also be clubbed with FRIB. The FRIB project would also test the

limiting values of N and Z in different nuclei, and properties of different neutron skins

several times thicker than is possible to do currently.

For the proper understanding of properties of hot and dense nuclear matter which is

accessible now due to advanced HI accelerators, one needs to employ theoretical tools for

simulation. In the ultra-relativistic energy regime, reaction dynamics is quite different

where elementary particles emerge with properties quite different from those in entrance
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channel. Physicists have been mainly trying to understand multiple-particle production

similar to that in cosmic ray cascades via simulation of ultra-relativistic collisions of

hadrons and nuclei. In these Monte-Carlo simulations, one is always interested to extract

information on the nuclear EoS and other observables such as temperature, entropy or

chemical potential. Dynamical evolution of central collisions of Au+Au and Pb+Pb sys-

tems within the ultra-relativistic quantum molecular dynamics (UrQMD) model [53, 54]

has shown that global equilibrium is unlikely even at SPS and AGS energies. The energy

spectra of pions obtained in Au+Au collisions at 10.7 AGeV and Pb+Pb collisions at 40

and 160 AGeV within UrQMD calculations significantly deviated from the assumption

of statistical equilibrium [53]. The question of nuclear EoS is also of principal interest

for compressed baryon matter (CBM) experiments at GSI-FAIR [55]. Microscopic calcu-

lations based upon UrQMD [54] and quark-gluon string model (QGSM) [56] have show

that equation of state has simple linear dependence: P = cs
2ε, where cs

2 is the squared

sound velocity. It varies from 0.12 ± 0.01 at 11.6 AGeV to 0.1145 ± 0.005 at 160 AGeV

[55, 57]. This has been conjectured as transition at bombarding energies around ∼ 40

GeV from the baryon -dominant matter to meson dominated one.

For the present thesis, we shall be investigating multi-fragment disintegration and

related aspects in HI reactions at intermediate energies. For this study we shall employ

the dynamical N-body theory namely quantum molecular dynamics (QMD) model [58,

59]. The brief overview of transport models used to probe nucleus-nucleus collisions at

intermediate energies has been given in the next chapter. Details of the QMD model will

be given in chapter 3.

As discussed above, the disintegration of of Au-projectiles as studied on ALADiN

set-up is characterized by rise and fall behavior in the IMF multiplicity with impact

parameter. This feature is remarkable in the sense that it remains unchanged for the

relativistic bombarding energies E ≥ 400 AMeV and independent of the target mass.

This phenomenon has also been linked with the bi-modality character i.e. coexistence

of multifragmentation events and residue formation [60]. One is always curious to see

whether theoretical models having different reaction scenarios can explain this universal-

ity characteristic or not. Statistical reaction models assume that fragment production is

determined in phase space when nuclear matter is in low-density phase and equilibrium

is established [32, 61]. On the contrary, dynamical models rely on the initial-final states

correlations which are not destroyed completely during the HI reactions. Probing dynam-
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ical evolution of reaction at every time step would be of interest as it can also tell when

and in which region of phase space fragments are formed.

Statistical approaches such as GEMINI [62], however, under-estimated the fragment

yield for decay of excited Xe and Au nuclei. For larger charged particle multiplicity (i.e.

central geometry) the calculated IMF multiplicity is much smaller than observed exper-

imentally. Even a statistical code was also implemented, but none of these calculations

could predict higher multiplicities of IMFs in central collisions [63]. Even the results ob-

tained from statistical approaches like GEMINI a sequential decay, and COPENHAGEN

a simultaneous break-up differ from each other [64]. In this direction, two-lattice per-

colation (TLP) model has been satisfactory in reproducing various features of nuclear

multifragmentation as observed by MSU [63] and GSI [26, 27] groups. In the TLP model,

target (projectile) nucleus is assumed to occupy sites in a simple cubic (SC) lattice. This

picture is valid only for fragmentation process at relativistic bombarding energies when

participant and spectator regions are clearly demarcated. Further this percolation theory

assumes no critical behavior. The IMF correlations and elemental charge distribution

are satisfactorily explained if percolation probability are associated with geometry of the

collision [65]. The application of TLP model is, however, limited to nucleus-nucleus colli-

sions at high incident energies only so that participant-spectator picture remains a good

approximation.

These limitations of different statistical models suggest that multi-fragment emission

is quite sensitive to how the phase-space is populated [64]. We have studied the spectator

matter fragmentation in 197Au +197 Au collisions using microscopic cluster recognition

method namely ‘simulated annealing clusterization algorithm’ (SACA) [66–68]. Apart

from coordinate space correlations [58], this novel algorithm also uses momentum space in-

formation of nucleons to construct the fragments. Here one obtains most bound fragment

structure i.e. having maximum binding energy using simulated annealing technique [68].

This algorithm has been adapted from the early cluster recognition algorithm (ECRA)

proposed by Dorso & Radrup [69]. We have shown that this novel algorithm remarkably

explains the IMF yield particularly at large impact parameters and also the universality

behavior in 197Au+197 Au reactions at 400, 600 and 1000 AMeV. A comparison with MST

calculations showed the ability of SACA method to reproduce fragment multiplicities and

mean charge of the heaviest fragment 〈Zmax〉 as early as 60 fm/c when the spectator

matter is still interacting with hot participant zone. We have also proposed an improve-
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ment over present SACA version where fragments are identified based upon their true

binding energies. In this improvisation labeled as SACA (2.1), we calculate fragments’

total binding energy using the modified Bethe-Weizsäcker (BWM) mass formula [70–72].

For low energy HI collisions jus above the Coulomb barrier, fragment production for

the projectile-like and target-like spectator components becomes dominant. It is worth-

while to explore the applicability of SACA method in describing the spectator matter

fragmentation at these energies. We have studied spectator matter decay in peripheral

197Au +197 Au collisions at 35 AMeV i.e. SACA (2.1) and standard MST procedures.

The comparison with experimental data taken with Multics-Miniball combined array [73]

demonstrated the capability of SACA (2.1) method to reproduce the experimental b-

dependence of mean charge of heaviest fragment at 35 AMeV accurately. This study val-

idates the applicability of sophisticated algorithm such as SACA to study early dynamics

of HI reactions at low energies. As mentioned above, evolution of spectator matter is

governed by response to participant blast, and hence is highly sensitive towards nuclear

EoS [74]. At higher incident energies, many theoretical and experimental studies exist

that shed light on the nature of nuclear equation of state. Collective behavior being

closely related to nuclear incompressibility is also widely discussed in literature to obtain

information on energy-density relations in nuclear matter (that is , the EoS) [75–77]. For

instance, systematic study of sideward flow from experiments and theoretical models could

pin down the stiffness of nuclear matter to a very precise level [77, 78], but uncertainties

are still very large [36, 78–80]. However as already discussed, simulation of nuclear reac-

tions at supranormal densities reaching at higher incident energies is strongly influenced

by momentum dependence of mean field and reduced in-medium scattering cross sections

[76, 77]. Recently, it has been shown that non-equilibrium effects result in softening of

nuclear EoS, that too complicates the process of extracting information on nuclear EoS

[82]. This however, isn’t much of the problem at low incident energies, when most of n-n

collisions are Pauli blocked and choice of different nucleon-nucleon cross sections has only

marginal effect on fragment emission.

The field of multifragmentation in low-energy regime is, however, least exploited to

probe nuclear EoS. For the fission path of heavy nucleus, at low energy regime, the

fission barrier is also found to depend sensitively on the choice of nuclear EoS [83]. For a

stiff EoS, a lower fission barrier was obtained at T = 0 and 2 MeV. The information on

incompressibility of nuclear matter and thus, nuclear EoS is also crucial for understanding
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the structural properties of celestial objects like neutron stars [6]. From this review of

literature, it is clear that future work on nuclear equation of state via simulation of HI

reactions should be attributed to more refined comparison of theoretical predictions with

the experimental data. The quest for nuclear incompressibility and thus nuclear EoS is,

therefore, still pending problem of heavy-ion physics. We aim to probe nature of nuclear

EoS via spectator fragmentation in Au+Au reactions at 35 AMeV. Fragment emission

from the decay of quasi-projectile depends upon compression achieved by participant

zone, and therefore, on nuclear incompressibility. We measured the fragment charge

distribution obtained from the decay of spectator matter in peripheral Au (35 AMeV)+Au

collisions using a ‘soft’ and a ‘hard’ EoS. The comparison of model calculations for charged

particle multiplicity with experimental data taken with Multics-Miniball combined array

[84] predicted a soft equation of state.

For proper understanding of equation of state in intermediate energy HI collisions, one

also needs to take into account the momentum dependence of nuclear mean field [85, 86].

Extraction of nuclear compressibility from the experimental data, therefore, requires a

knowledge of energy of deformation of nuclear matter in momentum space. Momentum

dependence of mean field is one of the important factor behind the effective mass m∗ of

nucleon. We define m∗ of a nucleon as:

m∗(e)
m

= 1− dV (e)

de
, (1.1)

where V(e) denotes the mean potential energy of a nucleon with energy ‘e’. In an effective

n-n potential, there is a fall in m∗ since with deformation, potential energy is expected

to decrease. Detailed calculations within microscopic DBHF approach and comparison

with experimental data have shown that collective flow especially elliptical flow is quite

sensitive to medium dependence of n-n cross section and nuclear equation of state [87].

This fact is also supported by relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) model

calculations for elliptical flow [88, 89] which shows that soft EoS along with momentum

dependence of nuclear force is essential to account for non-equilibrium effects observed in

heavy-ion reactions. At intermediate energies, momentum dependence of nucleon-nucleon

potential plays major role in describing the fragmentation and associated phenomena such

as collective flow, pion production etc [4, 85, 86, 90]. The BUU calculations for elliptical

flow in Bi+Bi collisions have shown that momentum dependence of nuclear mean field

characterized by m∗/m ∼ 0.7 can describe the measured data very well [77]. In the present
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work, we made systematic study on the importance of including momentum dependent

interactions in cluster production and finite size effects. Main interest in the simulation

of HI collisions at intermediate energies is whether nuclear system can acquire thermal

equilibrium before break up or not. The question of equilibrium is closely related with

nuclear matter stopping [24, 85, 91, 92]. The dynamical scenario of multifragmentation

allows fast break-up of nuclear system leaving no scope for establishment of equilibrium.

The FOPI experiments have also shown using rapidity spectra of protons and deuterons

that complete stopping isn’t possible in heavy-ion reactions [92]. We have emphasized

on the question of nuclear matter stopping in the presence of momentum dependent in-

teractions (MDI) and compare with static soft EoS. A systematic study over wide range

of system masses suggested that maximum stopping occurs in heavier systems such as

Au+Au system. With inclusion of MDI, peak obtained at midrapidity get broadened

indicating transparency effect. This phenomenon is closely linked with expansion of nu-

clear matter in transverse direction that favors clusterization also. This behavior points

towards importance of MDI in fragment production. Further, we have shown that there

is a clear need of momentum dependent forces to explain spectator matter fragmentation

at relativistic bombarding energies.

The formation of composite particles in the fireball also bears relevance as it can give

clues on degree of stopping, equilibrium, temperature reached and entropy production

[21, 93–95]. Entropy is one of the thermodynamical variables that is believed to remain

unchanged through final stage of interaction [96]. Siemens and Kapusta made one of

earliest attempts to estimate baryonic entropy SN from deuteron-to-proton ratios Rdp for

Ne+NaF and Ar+KCl reaction at 100 and 200 AMeV c.m. kinetic energies [93]. We

have addressed these issues in detail in the last part of thesis. Our model predictions

showed that nuclear matter may not achieve full equilibrium even for central geometry.

Our calculations for baryonic entropy using the formula: SN = 3.945 − `nR̃dp compare

well with entropy derived from the measured yield ratios in Plastic Ball experiments [21].
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Chapter 2

Brief Survey of Various Transport
Models used for Heavy-Ion Collisions

2.1 Introduction

The nuclear collisions in medium energy regime are associated with various phenom-

ena like collective flow [1–3], multi-fragment emission [4, 5], and subthreshold particle

production [6]. One needs proper transport theories to simulate the HI reactions and

understand the reaction dynamics. In the current scenario, theoretical interest lies in

the investigation of nuclear equation of state [7, 8], dynamics of fragmentation [9, 10],

and bimodal-distribution of fragments [11, 12] etc. Theoretical description of heavy-ion

collisions is also important to explain phenomena beyond nuclear physics. For instance,

the stability and radius of neutron stars, as well as formation of stars and supernovae

explosions strongly depend upon the character of nuclear equation of state.

The main purpose of this chapter is to highlight various important features of com-

monly used transport models in different incident energy regimes. No single transport

model is capable of describing the reaction dynamics for the whole incident energy range.

One has to employ a specific theory depending upon the incident energy regime. To in-

terpret the experimental observables, different theoretical efforts have been made in past,

which describe the evolution of such non-equilibrium processes. One of the primary micro-

scopic theory to describe the heavy-ion collisions was inter nuclear cascade (INC) model.

This type of model has been extensively employed in relativistic HI collisions [13–15],

where one assumes that nucleons interact via binary collisions only. With coalescence,

it could create fragments upto alpha particles (4He) only. This limits the scope of INC

model to study the fragment formation and related observables at intermediate energies.
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Molitoris et al [16] showed that INC approach lacks dynamical flow due to very little

intrinsic pressure built up in the cascade model. It reflects the absence of compression

energy in the nuclear system.

In the present day scenario, two different semi-classical theoretical approaches, namely

Boltzmann-Uehling-Uhlenbeck (BUU) model [17, 18] and molecular dynamics approach,

the so-called ‘quantum’ molecular dynamics (QMD) model [19–21] are in use. These

models include important quantum features viz. Fermi motion of nucleons, stochastic

nucleon-nucleon (n-n) scattering and Pauli blocking. At low energies (below 50 AMeV),

Pauli principle dominates the physics suppressing the 2-body collisions. In the latter case,

mean field approaches like TDHF [22] or its semi classical version (Vlasov equation) [23–

25] are suitable candidates. Some attempts have also been made to incorporate residual

n-n collisions in extended approach (ETDHF) [26]. In the following sections, we shall be

having an overview of these transport models.

2.2 On the derivation of time dependent Hartree-

Fock (TDHF) theory

The TDHF theory belongs to the class of microscopic models to describe heavy-ion

collisions. In Schrödinger picture, time development of the system is given as:

|ψ(t)〉 = e−iHt/~|ψ(0)〉, (2.1)

where H is the many-body Hamiltonian. The one-body density matrix is then given by

ρji(t) = 〈ψ|c+
j ci|ψ〉. (2.2)

Differentialting w.r.t time t, we get

i~ρ̇ji = 〈ψ| [c+
j ci, H

] |ψ〉. (2.3)

The Hamiltonian H is defined as:

H = T + V =
∑

αβ

Tαβc+
α cβ +

1

4

∑

αβγδ

Vαβγδc
+
α c+

β cδcγ, (2.4)

with T as the single particle kinetic energy operator and V as the two-body interactions.

c+
α and cβ represent the creation and destruction operators, respectively.
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Defining Hartree-Fock (HF) potential as:

〈j|U |γ〉 =
∑

αδ

[〈jα|V |γδ〉 − 〈αj|V |γδ〉] ραδ (2.5)

and using in Eq. (2.3), we obtain Liouville’s equation for the density matrix in the

interaction representations:

ρ̇ji =
1

i~
[T + U, ρ]ji . (2.6)

This is familiar TDHF equation with time dependent potential.

The TDHF equations has also been used with Skyrme energy density functional [27,

28]. The main feature of this theory is to ensure antisymmetrized independent particle

states so as to simulate the Pauli principle. It has been extensively employed to heavy-

ion fusion reactions for last three decades [27–30]. Recently TDHF method predicted

that nucleus-nucleus potential becomes energy dependent when center-of-mass energy

approaches corresponding Coulomb barrier [30]. Such energy dependence is expected to

affect the sub-barrier fusion process.

2.3 The intranuclear cascade (INC) model

In contrast to the TDHF theory, the intranuclear cascade model treats the n-n colli-

sions in an explicit way. In this model, no Fermi momenta are assigned to nuclei. Each

nucleon is treated as a collection of point nucleons distributed within a sphere. Initial co-

ordinates of nucleons within a sphere are assigned by Monte Carlo procedure. When two

nucleons collide, a Monte Carlo sampling decides whether scattering is elastic or inelastic.

Cascade is a rapid process that takes place in about 10−22s. The intranuclear cascade

models rely on the assumption that incoming particles interact with individual nucleons

of the target and not the nucleus as a whole. This assumption is easily justified at higher

incident energies since the de Broglie wavelength is much smaller than the average dis-

tance between the nucleons in a nucleus. It has been proposed that a sufficient condition

for this justification is [31]:

λB ¿ ro ¿ vtcoll ¿ d,

where λB is the de Broglie wavelength, ro is the range of the interaction, v is the relative

speed, tcoll is the collision time and d is the average distance between nucleons in a

nucleus. For beam energy of 150 AMeV or more, only inelastic channel of importance
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is the pion channel. This is commonly included as the 4−formation: nn → n4, and

4−absorption: n4→ nn. For these inelastic and elastic channels (nn → nn, n4→ n4
and44→ 44), the Cugnon parametrization of scattering cross section is employed [32].

At the end of multiple collision process, 4 particles are allowed to decay isotropically into

a pion and a nucleon. In fact, intra-nuclear cascade codes treat the interaction of incident

nucleons with a piece of matter providing them with a random mean free path. An

excited remnant, the residue, is formed in initial stage which decays through sequential

evaporation of nucleons and heavier fragments. It may be worth noticing that INC model

neglects the interaction between cascading particles.

Cascade model left a great deal of things to be dealt with. For instance, Fermi mo-

mentum should be assigned to nucleons in the initial state. Fermi motion also demands

inclusion of potential wells to model the reaction correctly. Some versions of this model

have also tried inclusion of Fermi momenta for both target and projectiles [33]. However,

potential well is not included in these Monte-Carlo calculations. The absence of potential

well rules out its applicability in describing the production of composite particles as well

as projectile fragmentation. Further possibility of using INC model to study heavy-ion

collisions is limited to high-energy regimes, particularly. This is due to the absence of

interactions among cascading particles.

The INC calculations can explain the high energy tail of the emitted protons and

neutrons energy spectra, but failed to explain the low energy tail and energy spectra of

composite particles i.e. deuterons, tritons and heavier particles. The cascade model is,

therefore, well suited for studying the equation of state (EoS) of an ideal gas only. Now, we

shall discuss various transport theories that employ mean field along with n-n collisions.

These theories include one-body approach namely Boltzmann-Uehling-Uhlenbeck (BUU)

model [17, 18] and many-body approaches such as quantum molecular dynamics (QMD)

model [20], antisymmetrized molecular dynamics (AMD) [34–36], and fermionic molecular

dynamics (FMD) [37]. Also these models include various quantum effects such as Pauli-

blocking, Fermi momentum etc.
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2.4 The Boltzmann-Uehling-Uhlenbeck (BUU) equa-

tion

The BUU model can be regarded as an improvisation of the cascade model with inclu-

sion of mean field. Under TDHF scheme, two-body correlations are retained at various

levels. BUU equation describes the time evolution of one-body distribution function in

six-dimensional phase space. Consider the coordinate space density matrix

ρrŕ =
∑

i

ψi(r)ψ
∗
i (ŕ), (2.7)

Instead of considering ρrŕ, we find the equation of motion of its Fourier transform f(r,p):

f(r,p) =
1

(2π~)3

∫
e−

ip·s
~ ρr+ s

2
,r− s

2
d3s. (2.8)

An equivalent definition in momentum representation will be

f(r,p) =
1

(2π~)3

∫
e−

iq·r
~ gp+q

2
,p−q

2
d3q. (2.9)

The quantity f(r,p) is the closest analogue to classical phase space density that satisfies

following relations:
∫

f(r,p)d3p = ρ(r), (2.10)
∫

f(r,p)d3r = g(p), (2.11)

∫
g(p)

p2

2m
d3p = 〈ψ|T |ψ〉. (2.12)

From TDHF equation, we have

ρ̇ji =
1

i~
∑

γ

[〈j|T + U |γ〉ργi − ρjγ〈γ|T + U |i〉] . (2.13)

Using Eq. (2.13),(2.9) and (2.8), we calculate df
dt

as

df(r,p)

dt
= A + B, (2.14)

where

A =
1

(2π~)3

1

i~

∫
e−iq·r/~[〈p + q/2|T |ṕ〉gṕ,p−q/2

−gp+q/2,ṕ〈ṕ|T |p− q/2〉]d3ṕd3q, (2.15)

B =
1

(2π~)3

1

i~

∫
e−ip·s/~ [〈r + s/2|U |ŕ〉ρŕ,r−s/2

−ρr+s/2,ŕ〈ŕ|U |r− s/2〉] d3ŕd3s. (2.16)
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Here ‘q’ is the relative pair momentum (= q1 − q2) between two particles. Similarly ‘s’

denotes relative distance in coordinate space. Equation (2.14) then reduces to

∂f(r,p, t)

∂t
+ v · ∇rf(r,p, t)−∇rU(r,p, t) · ∇pf(r,p, t) =

∂f

∂t

∣∣∣∣
coll

. (2.17)

Here U(r,p, t) is a self-consistent mean field associated with one-body distribution func-

tion f(r,p, t). The term on r.h.s. of Eq. (2.17) is a collision term which shows that

f(r,p, t) will change when there is an interaction among particles. Assuming that only

binary collisions dominate and ignoring the possibility that three or more particles collide

simultaneously, we have from Eq. (2.17):

(
∂

∂t
+ v1 · ∇r1 −∇r1U · ∇v1

)
f1 =

∫
dΩ d3v2 σ(ω)|v1 − v2|

(
f́1f́2 − f1f2

)
. (2.18)

σ(ω) is the differential cross-section for the collision (v1,v2) → (v́1, v́2). Here, following

abbreviations have been used [38]:

f1 ≡ f(r,v1, t),

f2 ≡ f(r,v2, t),

f́1 ≡ f(r, v́1, t),

f́2 ≡ f(r, v́2, t).

This is integro-differential equation for f(r,p, t). Bertsch and Das Gupta have solved this

equation for A-particles [17], where for the general case Eq. (2.18) is replaced by a set of

A-coupled equations.

In the BUU model, particles are point like entities in configuration and momentum

space. BUU equation (2.17) describes the time evolution of one body distribution function

in six-dimensional phase space using Hamiltonian formulation:

ṙi = {pi, H} = {pi, T + U} ,

ṗi = −{ri, H} = −{ri, T + U} , (2.19)

where T and U represent the total kinetic and potential energies of all nucleons and ‘i’ is

index of the nucleons. For the mean field, one takes a Skyrme type potential U(ρ) as has

been used in TDHF calculations:

U(ρ) = α(
ρ

ρo

) + β(
ρ

ρo

)γ. (2.20)

25



The density in BUU approach is determined by means of a cubic grid of size ‘a’ in

the coordinate space. At each time step, one-particle distribution function f (1) has to be

generated from the pseudo A-particles. Then, one can choose again randomly the test

particles according to distribution function f (1). Therefore, this treatment retains some

correlations but destroys all n-n correlations at each time step. For realistic calculations,

one prefers to retain these correlations which would be suitable in many dynamical scenar-

ios like instabilities, fission, multifragmentation and chaos etc. As far as single particles

are concerned, BUU theory has been established as one-body approach to HI reactions.

The recent advances in the BUU simulation incorporate momentum dependent [39] and

isospin dependent potentials as well as isospin dependent n-n scattering cross section [40].

A good agreement has been found for longitudinal and transfer momenta, particle mul-

tiplicities and double differential cross section from the predictions of BUU model. The

BUU equation is found suitable for describing the flow angle, which has a relevance to

the nuclear EoS. Recently, BUU transport model was applied to calculate the anisotropy

ratio 〈E⊥/E ||〉 for 197Au +197 Au collisions as a function of impact parameter at inci-

dent energies of 100, 250 and 400 AMeV [41]. A better agreement with FOPI data was

reached employing a stiff EoS. These predictions on stopping of nuclear matter indicate

preferential expansion of nuclear matter into transverse direction rather than longitudinal

direction for the head-on 197Au+197 Au collisions. However, predictive power for the ‘best

fit’ equation of state is limited one, since FOPI data can not be used to directly decide on

incompressibility due to acceptance cuts. Detector inefficiency naturally, tends to reduce

the sensitivity of this ratio towards incompressibility. Therefore, one needs systematic

study and reliable information from various transport models rather than immediately

running into best choice for EoS.

A covariant description of BUU equation has also been advanced to study the hadron-

nucleus and heavy-ion collisions [42]. This relativistic kinetic equation also termed as

relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) equation is defined as:

[k∗µ∂x
µ + (k∗νF

µν + M∗(∂µ
xM∗))∂k∗

µ ]f(x.k∗) =

1
2(2π)9

∫
d3k2

E∗k2

d3k3

E∗k3

d3k4

E∗k4

W (kk2|k3k4)[f3f4f̃ f̃2 − ff2f̃3f̃4]. (2.21)

This approach is reported to explain the cross section for kaon momentum distribution

at SIS energies quite well as measured by the KaoS Collaboration at GSI [43]. Equation

(2.21) gives the evolution of single particle distribution fi ≡ f(x, k∗i ) under the influence
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of a mean field that enters via effective mass M∗ and the field tensor F µν . The r.h.s. term

is the collision integral in which fi ≡ f(x, k∗i ) for the particle and f̃i ≡ (1 − f(x, k∗i )) for

the hole distributions with four-momentum k∗µ = (E∗
k ,k). In fact, the collision integral

includes all inelastic channels such as resonances production and absorption along with

meson production. This theory recently explained the K+ mesons energy spectrum in

C+C @ 2 AGeV collisions which was measured by HypHI Collaboration at GSI [44, 45].

This theory is well suited for energetic collisions between light nuclei. Choice of heavier

nuclei hinders identification of hyper nuclei via weak decay of hyperons into pions.

2.5 Molecular dynamics approaches

Inherent problems of these models is to extract more complicated 2-body observables.

It has always remained a problem of how to deal with composite particles formation.

At present, dynamical models based upon molecular dynamics picture are well suited

to handle phenomena such as multi-fragment emission. Molecular dynamics approaches

ensure retention of multi-particle correlations and are able to address the phenomena like

cluster formation. This has led to preference for molecular dynamics model to remove the

grey area of mean field models which treat the single particle phase space density f(r,p)

and are most suitable for the calculation of quantities which are expressed as expectation

values of one-body observables. Basic character of QMD is similar to classical molecular

dynamics model [10] i.e. it solves classical equations of motion for the position and

momenta of A-particles:

ṙi = ∇pi〈H〉; ṗi = −∇ri〈H〉, i = 1, ..., A. (2.22)

The QMD model differs from its classical versions in two aspects. One is the inclusion of

Fermi character in ground state of nuclei and second is appearance of both a collision and

a potential term generated by same bare interaction. Our findings in present work have

been compiled in the framework of quantum molecular dynamics (QMD) model which

will be discussed in detail in chapter 3.

For the study of heavy-ion collisions at relativistic energies, ultra-relativistic quantum

molecular dynamics (UrQMD) model has also been designed [47, 48]. This theory is well

suited to describe nucleus-nucleus collisions at AGS and SPS energies where quark and

gluon degrees of freedom become relevant. This relativistic version contains 55 baryons
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and 32 meson states together with their antiparticles and isospin projected states. For

masses greater than 2.0 GeV/c2, a string picture is used by incorporating color string

formation and resonance decay. Nucleons interact via two- and three-body Skyrme po-

tential supplemented with Yukawa and Coulomb potentials as in non-relativistic version

of the QMD model. The total nucleon-nucleon cross section σnn depends upon isospin

of the colliding nucleons, their flavor and center-of-mass energy. A collision between two

hadrons would occur if relative distance d <
√

σnn(
√

s)
π

, where ‘d’ and ‘σnn’ are the impact

parameter and total scattering cross section of two hadrons. The neutron-neutron cross

section is assumed to be equal to proton-proton cross section [49]. The total and elastic

proton-antiproton cross section at higher incident energies are calculated according to

CERN-HERA parameterization:

σel
pp = A + Bpn + C`n2(p) + D`n(p), (2.23)

with laboratory momentum ‘p’ in GeV/c and cross section σ in mb. Parameters of this

fit are listed in Ref. [48]. Recently nuclear matter stopping was studied over wide range

of beam energy from SIS, and AGS upto SPS within UrQMD model. There, medium

modification of n-n cross section and stiffness of equation of state are found to strongly

affect the nuclear stopping at SIS energies [50]. With increase in energy from AGS to SPS,

the so-called gaussian shape rapidity distribution gets changed to two-bump structure.

This reflected dominance of transparency behavior in the high SPS energy region.

2.6 Molecular dynamics for fermions (FMD/AMD)

Recently, molecular dynamics approach has been advanced to describe the fermionic

nature of nuclear matter using antisymmetrized wave packets. The fermionic molecular

dynamics (FMD) model was proposed by Feldmeier et al [37, 51, 52]. In this approach,

the total wave function of the system is represented by a Slater determinant of gaussian

wave packets. The width of gaussian wave packet is treated as a variable in time which is

an important non-classical degree of freedom [52, 53]. This helps to allow for evaporation

of nucleons. This model is well suited for the study of low-energy fusion fission events

and nuclear structure [54, 55]. The FMD approach has been recently employed to study

the ground state band in 12C nucleus [56]. The FMD calculations are found to give

good description of negative parity states [55], whereas α-cluster model predicted too
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small excitation energy for the 2+ state. On the similar lines, antisymmetrized molecular

dynamics (AMD) model has been extended in which A-nucleon system is represented by

a Slater determinant of single particle gaussian wave packets [34, 35, 57, 58]. The AMD

model assumes width of gaussian wave packet as a constant parameter unlike FMD model.

This simplification nevertheless reduces computational time and ensures that there is no

spurious coupling of internal motion and c.m. motion of a cluster or a nucleus. The set

of single particle wave function is given as:

φi(t) = {Zi(t), χi, ξi}, (2.24)

where the centroid of wave function Zi(t) is a complex variable defined as:

Zi =
√

L ri +
ι̇

2~
√

L
pi, (2.25)

with L as width parameter taken to be equal to 0.16 fm−2 and is time independent. The

variables (χi, ξi) represent the spin-isospin states of a nucleon in p↑, p↓, n↑, and n↓
states. (ri,pi) corresponds to position and momentum coordinates of each nucleon. The

time evolution of centroids Zi in Eq.(2.25) is treated in a classical manner. The important

point on which these approaches differ from the QMD model is that physical momentum in

AMD model is taken to be centroid of the gaussian wave packet in momentum distribution.

In QMD model, usually, it represents the definite momentum of a nucleon. The AMD

simulations of Ca+Ca reactions have recently shown that rms radii, fragment kinetic

energies, and yield of light charged particles (Z=1, and 2) were larger than those of

equilibrium ensemble prepared by confining the many body system in a container at all

reaction times [59]. These calculations depict the significance of flow effects and transverse

kinetic energy of fragments.

2.7 Summary

In this chapter, we have recaptured the basic details of transport models used in low

and intermediate energy heavy-ion reactions. The mean field approaches like TDHF are

suitable candidates for low energy heavy-ion reactions. At intermediate energies, phenom-

ena such as multi-fragment emission, particle production and collective flow require more

advanced transport models that can handle mean field and nucleon-nucleon collisions at

the same level. We address the importance of one-body approach namely Boltzmann-

Uehling-Uehlenbeck (BUU) equation and many-body approaches such as QMD, FMD
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and AMD models. The quantum molecular dynamics (QMD) approach is an important

tool to describe the multi-fragment emission and related phenomena such as transverse

expansion, entropy production, system size effects etc. For the present thesis work we

shall use the QMD model that is described in detail in the next chapter. The QMD

calculations are suitably compared with experimental observables, wherever it is needed.

An attempt shall also be made to probe nuclear incompressibility via spectator matter

fragmentation at ultra-low excitation energies.
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Chapter 3

Our Principal Theoretical Approach

3.1 Introduction

The inherent limitations of one-body theories led to the development of molecular

dynamics models. This class of models parameterize the many-body fermionic state of

the nucleus in terms of gaussian wave packets for single particles. The quantum molecular

dynamics (QMD) model is one of the widely used dynamical approaches in heavy-ion

physics to study many-body phenomena such as fragment formation [2–9]. The primary

QMD model was suggested by Aichelin and Stöcker [8]. The initial states of nuclei in

terms of mean coordinates and momenta are assigned randomly so as to produce the

experimental ground state density profile and binding energy of a nucleus. This version

was designed to be isospin independent where all nucleons carry an effective charge.

We have chosen the original QMD code (version 1.02) developed and rewritten by

Bohnet et al [6]. This version was dubbed as BQMD since it was designed to describe the

proper binding energy of a nucleus. We have employed this version in the present work to

explore still unrevealed aspects of multifragmentation such as universality behavior of the

spectator fragmentation, system size effects in fragment production, and determination

of the appropriate nuclear equation of state. This study naturally requires an efficient

transport model like quantum molecular dynamics (QMD) model which takes into account

the quantum aspects of heavy-ion collisions as well. The QMD model goes beyond the

conventional molecular dynamics approach by incorporating the Pauli blocked collision

term so as to mimic the manner in which Fermi motion takes place in the nuclear system.

Further, a gaussian smearing is performed to obtain the spatial density of the nucleons at

any point in time to emulate the effect of individual wave packets. For typical time scale
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of heavy-ion collisions around 200 fm/c, one expects non-interacting nuclei to be stable,

otherwise one can not extract reliable physics out of the model calculations. The stability

of nuclei in the ground state is, thus, an important requirement before one studies the

evolution of AT +AP system in time. The fine details of this transport code are discussed

under the following sub-sections.

3.1.1 General assumptions

We start with nuclear wave function as a product of A-gaussian wave packets i.e.

Φ =
A∏

i=1

ψi(r, ri,pi, t),

=
A∏

i=1

1

(2πL)3/4
e−(r−ri(t))

2/4L · e ι
~pi(t)·r. (3.1)

Smearing in momentum space is ignored as in classical version (CMD) [10]. Nucleons

possess kinetic energy taken to be p2
i (t)/2m with ‘m’ as nucleon mass. Note that we

don’t use a Slater determinant and thus antisymmetrization is neglected here. The A-

body Wigner distribution function f (n) is the direct product of A-coherent states [3, 8]:

f (n)(r1, ..., rA,p1, ..., rA, t) =
A∏

i=1

1

(π~)3
e−(r−ri(t))

2/2L · e−(p−pi(t))
22L/~2 , (3.2)

where, the squared width ‘L’ of gaussian is assumed to be independent of time. We don’t

allow spread of wave function in space which is also physically undesirable. Choice of

gaussian width ‘L’ has to be made carefully, since too large value of L shall not produce

effective surfaces and distort the outcome of reaction later on. A very small value of ‘L’

is also not desirable, due to the uncertainty principle. Standard value of ‘L’ is chosen

to be 1.08fm2, which corresponds to rms radius of the nucleon of 1.08 fm. Next, we

have to assign the co-ordinates (ri,pi) to the centers of gaussian wave packets. In co-

ordinate space (R3), centers are randomly distributed in a sphere of radius R = RoA
1/3.

Similarly, in momentum space (P3), momenta are assigned between zero value and local

Fermi momentum PF (ri)(=
√
−2mU(ri)). Finally, the randomly distributed ensemble of

AT + AP nucleons should satisfy the relation: (ri − rj)
2(pi − pj)

2 ≥ dmin in phase space;

AT and AP being the number of nucleons in target and projectile nuclei, respectively.
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3.1.2 The nucleonic potential

Since we wish to solve an A-body problem, so we need to employ n-n potential instead

of the average mean field. There are numerous effective n-n potentials that yield a given

equation of state (EoS). The potential part used in the QMD model is taken from the

original Skyrme interaction that can be written as [11]:

V Sk =
1

2!

∑

j;i 6=j

V
(2)
ij +

1

3!

∑

j,k;i6=j 6=k

V
(3)
ijk . (3.3)

This potential consists of 2-body part Vij and 3-body part Vijk with

V
(2)
ij (ri − rj) = t◦(1 + χ◦Pσ)δ +

t1
2

(ḱ2δ + δk2) + t2ḱ · δk + ιW◦ḱ δσ̂ · k. (3.4)

Here, δ = δ(ri − rj) and k = 1
2ι̇

(∇i − ∇j) is the relative momentum operator acting on

the wave function. ḱ is the disjoint of k. Pσ is the spin exchange operator. The three

body term in Eq.(3.3) for spin-isospin saturated even-even nuclei can be expressed as:

V
(3)
ijk (ri, rj, rk) = t3δ(ri − rj)δ(rj − rk) (3.5)

The total ground state energy can be expressed as:

E = 〈ψ|T + V|ψ〉 =

∫
H(r)dr. (3.6)

For infinite nuclear matter, ∇ρ=0, then expression for energy density H(r) becomes

H(r) =
3

5
TF ρ +

3

8
t◦ρ2 +

1

16
t3ρ

3 +
3

80
(3t1 + 5t2)ρ

2k2
F , (3.7)

where TF =
~2k2

F

2m
is the kinetic energy of a particle at Fermi surface. The density-

dependent Skyrme potential USk(ρ)(= ∂H
∂ρ

) then reduces to:

USk(ρ) = αρ + βργ. (3.8)

Here we have generalized the quadratic three-body term (= 3
16

t3ρ
2) so as to allow variation

of nuclear compressibility. Now, the expectation value of total Hamiltonian H for the

system of A-particles is given as:

〈H〉 =
A∑

i=1

p2
i

2mi

+ V Sk

=
A∑

i=1

p2
i

2mi

+
1

2!

A∑

j;i6=j

V
(2)
ij +

1

3!

A∑

j,k;i 6=j 6=k

V
(3)
ijk . (3.9)
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Now 2-body interaction part is:
∑

j;i6=j

V
(2)
ij =

∑

j;i6=j

∫
fi(ri,pi, t)fj(rj,pj, t)V (ri, rj)

×d3rid
3rjd

3pid
3pj,

=
∑

j;i6=j

∫
fi(ri,pi, t)fj(rj,pj, t)t1

×δ(ri − rj)d
3rid

3rjd
3pid

3pj,

=
∑

j;i6=j

t1

∫
fi(ri,pi, t)fj(rj,pj, t)

×d3rid
3pid

3pj,

=
∑

j;i6=j

t1

∫
1

(π~)3
e−(r−ri(t))

2/2Le−(p−pi(t))
22L/~2

× 1

(π~)3
e−(r−rj(t))

2/2Le−(p−pj(t))
22L/~2d3rid

3pid
3pj,

=
∑

j

t1
1

(4πL)3/2
e−(ri−rj)

2/4L,

= t1
∑

j;i6=j

ρij, (3.10)

Similarly 3-body part is calculated as:
∑

j,k;i6=j 6=k

V
(3)
ijk =

∑

j,k;i 6=j 6=k

∫
fi(ri,pi, t)fj(rj,pj, t)fk(rk,pk, t)V (ri, rj, rk)

×d3rid
3rjd

3rkd
3pid

3pjd
3pk,

=
∑

j,k;i 6=j 6=k

∫
fi(ri,pi, t)fj(rj,pj, t)fk(rk,pk, t)t2

×δ(ri − rj)δ(ri − rk)d
3rid

3rjd
3rkd

3pid
3pjd

3pk,

=
t2

(2πL)3 · 33/2

∑

j,k;i6=j 6=k

e−[(ri−rj)
2+(ri−rk)2+(rk−rj)

2]/6L,

=
t2

(2πL)333/2

∑

j,k;i6=j 6=k

e−[(ri−rj)
2+(ri−rk)2]/6L× 3

2 ,

=
t2(4πL)3/2×2

(2πL)3 · 33/2

(∑

j 6=i

1

(4πL)3/2
e−(ri−rj)

2/4L

)2

,

=
t22

3

33/2

(∑

j 6=i

ρij

)2

. (3.11)

where interaction density ρij is given as:

ρij =

∫
d3rρi(r)ρj(r) =

1

(4πL)3/2
e−(ri−rj)

2/4L. (3.12)
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Clearly 2-body contribution to the potential part is directly proportional to ρ/ρo while

3-body interaction term is proportional to (ρ/ρo)
2, where ρo is the normal nuclear matter

density. In the nuclear matter limit, we can generalize the Skyrme-like potential as

V Sk =
α

2ρo

∑
i,j

e−(ri−rj)
2/4L

(4πL)3/2

+
∑

i

β

γ + 1
· 1

ρo
γ

(∑

j,j 6=i

1

(4πL)3/2
e−(ri−rj)

2/4L

)γ

, (3.13)

where parameters α, β and γ are adjusted to reproduce the correct ground state properties

of infinite nuclear matter i.e. binding energy per nucleon and pressure as:

E

A

∣∣∣∣
ρ=ρo

= −15.75 MeV, (3.14)

P = ρ2∂(E/A)

∂ρ

∣∣∣∣
ρ=ρo

= 0 MeV fm3. (3.15)

Parameter γ controls the incompressibility K(= 9ρ2 ∂2

∂ρ2 (
E
A
)) of the nuclear matter. Now

this local Skyrme-type interaction in co-ordinate space is supplemented by Yukawa and

Coulomb interactions, Hence total Hamiltonian reads:

〈H〉 =
A∑

i=1

p2
i

2mi

+
α

2ρ◦

A∑

i,j 6=i

e−(ri−rj)
2/4L

(4πL)3/2

+
A∑

i=1

β

γ + 1
· 1

ργ
◦

[
A∑

j,j 6=i

1

(4πL)3/2
e−(ri−rj)

2/4L

]γ

+
1

2
(Z/A)2

∑

i,j 6=i

e2

|ri − rj|erf
( |ri − rj|√

4L

)

+
1

2

∑

i,j 6=i

V o
Y uk

2|ri − rj|e
L/µ2{e−|ri−rj |/µ[1− erf(

2L/µ− |ri − rj|√
4L

)]−

e−|ri−rj |/µ[1− erf(
2L/µ + |ri − rj|√

4L
)]} (3.16)

The first term in Eq. (3.16) denotes the kinetic energy of centroids of nucleons, second

term describes the Skyrme interaction, characterized by parameters α, β, and γ. The

third term signifies the Coulomb interaction while the last term denotes the Yukawa

interaction. Parameters corresponding to soft (S) and hard (H) equations of state are given

in table 3.1. The two Yukawa parameters V o
Y uk and µ are adjusted to obtain reasonable

simulation of finite nuclei. Yukawa parameters are also responsible for the nature of
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Table 3.1: Parameters employed in QMD model for the Skyrme parametrization of EoS
and the incompressibility values.

EoS K(MeV) α (MeV) β (MeV) γ V o
Y uk (MeV) µ (fm)

S 200 -356 303 7/6 -10 1.5

H 380 -124 70.5 2 -10 1.5

equation of state which must be taken into account when adjusting the parameters. The

short range interaction is taken into account in the same way as in INC and VUU models

via stochastic term.

3.1.3 The nucleon-nucleon scattering

Initially, the cold QMD nuclei are assumed to move along the classical Coulomb trajec-

tories until the distance between their surfaces is 3 fm i.e. r = RP + RT + 3 fm. This

positions is treated as starting point for the nucleus-nucleus collision. The time evolution

of the centroids of gaussian wave packets is described by two processes: the propagation

according to classical equations of motion and stochastic n-n scattering. We solve the

Hamilton’s equations of motion for the centroids of individual gaussian wave packets as:

ṙi = ∇pi〈H〉, i = 1, ..., A;

ṗi = −∇ri〈H〉, i = 1, ..., A. (3.17)

Here H is the total Hamiltonian of A-nucleons in the reaction system and ‘i’ denotes

index of the nucleon. These differential equations of motion are solved using an Eulerian

integration routine with a fixed time step ∆t:

pi(n + 1) = pi(n)−∇ri
Ui(n +

1

2
)∆t,

ri(n +
1

2
) = ri(n− 1

2
) +

pi(n)√
p2

i (n) + m2
i

+∇pi
Ui(n− 1

2
)∆t. (3.18)

To mimic the fermionic motion, we introduce the Pauli blocking of n-n scattering in the

final states. The influence of Pauli blocking of intermediate states in a highly non-thermal

environment at the beginning of a heavy-ion collision has never been investigated in detail.
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Effective n-n cross section becomes smaller due to the Pauli blocking of final state. Unlike

INC model, in QMD approach, the dynamical motion of nucleons breaks the nucleus into

smaller pieces i.e. pre-fragments already in the initial stage. These pre-fragments can

decay by emitting nucleons and light charged particles (LCPs).

We assume that two nucleons coming closer become candidate for scattering if their

inter-nucleon distance rij <
√

σnn(
√

s)
π

in their center-of-mass frame. Here σnn(
√

s) repre-

sents the total nucleon-nucleon cross section and ‘
√

s ’ is the center-of-mass energy. This

condition was extensively checked by Hartnack [13], who found that other possible pre-

scriptions don’t influence the final observables. The scattering angles of colliding nucleons

are chosen in such a way that scattering angle distribution of all nucleon-nucleon collisions

agree with calculated angular distribution for elastic and in-elastic channels. Inelastic col-

lisions lead to formation of ∆123 resonance particles which can be reabsorbed by inverse

reaction.

In the past, several refinements has been made in the original QMD code with spe-

cialized features. The isospin of protons and neutrons is explicitly treated in the so called

‘isospin-dependent quantum molecular dynamics’ (IQMD) model [5]. The IQMD version

includes explicit Coulomb forces between ZP and ZT protons apart from isospin depen-

dent mean field. In this flavor of QMD model, an additional potential component namely

the symmetry potential is included:

V sym
ij =

t6
ρ

T3iT3jδ(ri − rj); t6 = 100 MeV. (3.19)

Here T3i and T3j being the T3-components of respective nucleons. The pion production

is treated via ∆ resonances. The IQMD model has been extensively used to study FOPI

data on pion production in heavy-ion reactions at SIS/GSI energies [13, 14]. The covariant

description of the QMD model has also been attempted so as to extend its application

to relativistic collisions [7, 8]. This extension of QMD model is commonly known as

relativistic quantum molecular dynamics (RQMD) model. This code includes relativistic

covariant propagation scheme [7, 8]. Here Lehmann and Puri have used potential part as

a function of Lorentz squared transverse distance [8].

q2
T ij = q2

ij −
(qµ

ijpijµ)2

p 2
ij

, (3.20)

with qµ
ij = qµ

i − qµ
j being the simple four dimensional distance and pµ

ij = pµ
i + pµ

j the

sum of the momenta of the two interacting particles i and j. This version along with
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ultra-relativistic version (UrQMD) are well suited to study reaction dynamics with RHIC

energies upto ∼ 100 AGeV. Recently, these models have been employed to gain under-

standing of momentum-space correlations for nucleons and particle-type dependence of

elliptical flow v2 [15]. In another study on elliptical flow in Au+Au collisions at
√

sNN=200

GeV, the two hadronic models RQMD and UrQMD suggested particle-type dependence

[16]. Particles with large v2 decouple earlier than those with smaller v2. This kind of mass

dependence is also observed in STAR measurements [17].

There are other versions of QMD such as PQMD [4] and Japanese QMD (JQMD) [18]

that explicitly include the Pauli potential so as to mimic the fermionic nature of nuclear

matter. This version is mainly useful in low-energy reactions where Pauli blocking of final

states become effective. Another version labeled as EQMD model treats width of gaussian

wave packet as dynamical variable in time [19]. Recently, an improved version of QMD

model labeled as ImQMD model has also been reported [20]. It considers an extra surface

energy term in the effective interaction potential. This version has been quite successful to

describe low energy fusion reactions. It not only reproduces the ground state properties of

nuclei, but also provides reasonable Coulomb barrier for fusion process. Even the hybrid

model has also been used [21] in a recent study, where the ImQMD model clubbed with

extended Thomas-Fermi approximation [22] successfully explained the experimental data

on fusion barriers for the reactions of 40Ca + 40Ca, 48Ca + 208Pb, 126Sn + 130Te.

3.2 Summary

In summary, we have discussed the fine details of quantum molecular dynamics (QMD)

model and its various flavors in this chapter. The many-body nature of distribution

function allows us to maintain the n-n correlations during the propagation of heavy-ion

system. The QMD theory is, therefore, suitable candidate to investigate the many-body

phenomena such as multifragmentation. In the subsequent chapters, we shall give de-

tailed applications of the QMD model in describing the spectator matter fragmentation,

system size effects, fragment-emission in central collisions, stopping phenomenon, entropy

production and determination of nuclear incompressibility etc.
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Chapter 4

Onset of Multifragmentation in Low
Energy Heavy-Ion Collisions:
System Size Effects and Comparison
with MSU-NSCL Data

4.1 Introduction

The dynamical calculations have shown that fragment-emission is the result of com-

pressional energy stored in early phase of the reaction in central collisions [1–3]. The

fragment emission from hot and compressed nuclear system is believed to occur due to

fluctuations in the mean field and instability generated by the Coulomb forces. Longer

the system stays in the instability region, more probable it is bound to break into smaller

pieces. If system is light, break-up is expected to occur at incident energies as low as

∼ 40-60 AMeV. For heavier systems naturally, the demand for compression energy and

hence beam energy is more to cause the effective break-up. QMD calculations by Puri

et al [4] have shown that maximal fragment production in central 40Ca +40 Ca collisions

takes place around 60 AMeV. An earlier attempt by Bauer et al [5] showed that for the

collisions of two heavy-ions, maximum multiplicity of intermediate mass fragments is ob-

served around 100 AMeV in central collisions . This existence of peak IMF emission was

in accord with similar study by Peilert et al [6] using Au-nuclei. The multi-fragment

emission in central collisions at low incident energies, therefore, reveals a complex picture

with energy deposition and system mass as the controlling factors.

However, very few attempts have been reported in literature that are concerned with

beam energy dependence and system size effects [7–11]. In the past, percolation ap-
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proaches have been successfully applied to study fragment emission pattern, kinetic en-

ergy of emitted fragments, IMF yields from the decay of heavy projectiles and beam

energy dependence [8–10, 12]. Li et al [8] based upon percolation model calculated the fit

parameter λ in the power law: σ(Z) ∝ Z−λ for different lattice sizes. Interestingly the

critical parameter λ was observed to scale with size of the fragmenting system. Similarly,

the ‘LATINO’ model simulations were performed for central collisions of 58Ni + 58Ni at

different incident energies to extract the entropy produced [13]. The maximum entropy

generated is observed to decrease with size of the asymptotic source. This analysis showed

that lighter sources tend to produce more entropy.

Another important phenomenon such as flow effects also witness similar system size

effects. The elliptical flow is found to shift from the positive value (in-plane emission) to

negative value (out-of-plane emission) at certain beam energy called as transition energy.

Recently transition energies in the reaction systems with masses between 58Ni+ 58Ni and

197Au+ 197Au were calculated within improved quantum molecular dynamics (ImQMD)

model [14]. The transition energy was observed to follow the power law: Etrans ∝ (Atot)
−τ

with exponent τ ≈ 0.22. Similar mass dependence is reported for transition energy of light

charged particles studied within isospin dependent quantum molecular dynamics (IQMD)

model [15].

As far as fragment production is concerned, the recent experiments performed on

MSU 4π-Array set up indicated a rise and fall pattern in the multiplicity of intermediate

mass fragments (IMFs) as a function of beam energy in the center-of-mass frame [9].

The calculations based on percolation theory, however, could not accurately predict the

system size dependence of peak Ec.m. (at which maximal IMF production occurs). Even

maximal multiplicity of IMFs was also overestimated. This led Sisan et al [9] to the

conclusion that perhaps phase space model could correctly interpret this dependence. We

plan to address this situation by employing the QMD model, in which reaction dynamics

can be followed from the start to the end where matter is cold and fragmented. We

have used a soft EoS along with Cugnon parametrization of n-n cross section [16]. The

choice of soft EoS has been advocated in many theoretical studies. Recently, Magestro

et al [17] tried to pin down the nuclear incompressibility using balance energy. Their

detailed study pointed towards a softer equation of state. Another study concerning

the linear momentum transfer occurring in central HI collisions also showed that a soft

compressibility modulus is needed to explain the experimental data [18]. The cluster yield
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is obtained through standard minimum spanning tree (MST) procedure with additional

binding energy check. In the following section, we shall give details of MST clusterization

algorithm along with its extensions.

4.2 Minimum Spanning Tree (MST) method

The variational approach employed in QMD model reduced the complication of fol-

lowing time evolution of an A-body wave function by resolving to 6A coupled differential

equations for the centroids of the coherent wave functions in configuration and momen-

tum space. This approach allows us to define clusters in a very convenient manner. At

the end of the reaction, phase space occupancy is quite low, so nucleons forming a cluster

will be one closer in coordinate space. This simplest approach of identifying clusters is

well known as minimum spanning tree (MST) method [6, 19–26]. In this method, two

nucleons share the same cluster if their centroids in coordinate space are closer than a

given clusterization radius Rclus, that is

|ri − rj| ≤ Rclus, (4.1)

where ri, rj are the spatial coordinates of the two nucleons. The clusterization radius

Rclus is used as a free parameter which may lie between 2-4 fm. The variation in the

clusterization radius is found to have negligible influence on the final state fragment

pattern at the end of reaction (∼ 300 fm/c), since nucleons belonging to different clusters

are well separated in spatial coordinates [6, 27].

An improvisation over MST approach has also been tried which look for bound two-

nucleon structure in the same cluster. This algorithm labeled as MSTE [28, 29] recognizes

two nucleons i and j bound in a cluster if

eij ≤ 0, (4.2)

with eij = Vij +
(pi−pj)

2

4µ
; µ being the reduced mass.
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4.2.1 Minimum Spanning Tree with Momentum cut (MSTM)
method

In addition to spatial cut of Eq. (4.1), we introduce a cut on relative momentum of two

nucleons. That is, we demand [25, 30]:

|ri − rj| ≤ Rclus,

|pi − pj| ≤ PF . (4.3)

Here, PF is the average Fermi momentum of nucleons bound in a nucleus (≈150 MeV/c)

in its ground state. This improvisation checks the formation of artificial and unbound

fragments by excluding those nucleons having relative momenta larger than PF . Even-

tually, MST and MSTM methods give different results at the start of a reaction. The

MST method gives one largest cluster of size (=AP + AT ), while MSTM method gives

two distinct clusters of masses AP and AT having very large relative momenta. This

algorithm identifies the largest fragment Amax as early as 50-60 fm/c [23]. As a result,

fragment emission starts earlier with MSTM, when MST method just detects a single

biggest cluster.

4.2.2 Minimum Spanning Tree with Binding energy check
(MSTB) method

In this modified version, pre-clusters obtained with conventional MST approach are sub-

jected to the binding energy check:

ζ =
1

Nf

Nf∑
i=1




(
pi −Pc.m.

Nf

)2

2mi

+
1

2

Nf∑

j 6=i

Vij (ri, rj)


 < −Ebind. (4.4)

We take Ebind = 4.0 MeV, if Nf ≥ 3 else, Ebind = 0. Nf is the number of nucleons in a

fragment and Pcm
Nf

is the center-of-mass momentum of a fragment. This criterion forbids

the formation of loosely bound clusters. The role of MSTB method is quite important

in central symmetric reactions [23, 26]. The MSTB method doesn’t recognize the largest

fragment Amax during early violent phase. Therefore, it shows the nucleus as unbound

group of nucleons. A properly bound Amax is identified only around 120 fm/c [24, 31].

In addition, binding energy check helps to obtain the stable fragment configuration quite

early and reduces the computation time for multifragmentation.
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4.3 The time evolution of fragments using MST and

MSTB approaches

Our calculations within QMD model are done employing minimum spanning tree pro-

cedure with additional binding energy check. Additional condition of minimum fragment

binding energy rules out formation of improper and unbound clusters and speeds up the

fragment recognition procedure [23, 24, 31]. One has to also keep in the mind that semi-

classical models like QMD can not keep nuclei stable for long time. A typical stability of

nuclei can be seen till 200 fm/c. If one analyzes the fragment formation with MST alone,

then one may not achieve true fragment structure at 200 fm/c. To support this fact, we

display in Fig. 4.1, the multiplicities of various fragment species, size of heaviest frag-

ment Amax as well as binding energy of light charged particles (LCPs) and intermediate

mass fragments (IMFs) as a function of time. In the beginning, MST could detect only

a bigger Amax and small yield of free nucleons. On other hand, MSTB approach detects

all nucleons to be free entities in the violent phase of reaction. Free nucleons begin to

clusterize into lighter fragments and heavier residues as the time goes on and saturate

around t ∼ 150 fm/c. It is only after 150 fm/c that MSTB is capable of identifying the

properly bound Amax. The evolution of fragments’ binding energy suggests that fragment

structure with MSTB approach is earlier decided. A time scale of 200 fm/c is enough to

pin down the IMF yield since all fragments would be having binding energy ≤ -4.0 AMeV.

It may mentioned that for asymptotic times, both MST and MSTB approaches yield

same fragment multiplicities [23, 24]. The binding energy check i.e. Eq.(4.4) helps to a

greater extent in identifying the fragments quite earlier. The normal MST method would,

however, takes a long time to identify stable fragmentation pattern.

4.4 Beam energy dependence of fragmentation in

central collisions

Here, we simulate the central heavy-ion collisions of 20Ne+20 Ne (Elab=10-55 AMeV),

40Ar+45Sc (Elab=35-115 AMeV), 58Ni+58Ni (Elab=35-95 AMeV), 86Kr+93Nb (Elab=35-

95 AMeV), 129Xe+124 Sn (Elab=45-130 AMeV) and 197Au+197 Au (Elab=70-130 AMeV).

The systematic study over a wide range of beam energies and system masses allows

one to confront the theoretical predictions with experimental findings and search for the
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Figure 4.1: Central Au+Au collision at incident energy of 100 AMeV. Results shown
here are for (a) size of heaviest fragment Amax, (b)-(c) binding energy per nucleon (in
MeV) for light charged particles and intermediate mass fragments, (d)-(f) multiplicity
of free nucleons, light charged particles [2 ≤ A ≤ 4] and intermediate mass fragments
[5 ≤ A ≤ 44] as a function of time. Calculations done for MST and MSTB approaches
are shown as dashed and solid curves, respectively.

mass dependence. Note that only symmetric reactions are taken for present analysis.

The choice of symmetric systems allows us to neglect asymmetry affects in the fragment

production. Our calculations were performed at fixed impact parameter of b= 0 fm and

employing a soft equation of state. We simulated the reactions at fixed incident energies

and then calculated corresponding center-of-mass energies. For each such set, 500 events

were simulated that minimizes the fluctuations to greater extent. The choice of central
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Figure 4.2: The mean IMF multiplicity 〈MIMF 〉 versus beam energy Ec.m. for the reactions
of 20Ne +20 Ne, 40Ar +45 Sc, and 58Ni +58 Ni. Open circles depict the calculations
employing QMD + MSTB approach for unfiltered events. The quadratic fits (solid curves)
to the model calculations are drawn to estimate the peak energy at which the maximal
IMF emission occurs.

collisions for the present study guarantees the formation of highly excited systems that

may break into a large number of pieces. Further, the emission from such events is almost

isotropic, which may represent a ‘single source’ emission. In Fig. 4.2, we display the

average multiplicity of intermediate mass fragments 〈MIMF 〉 calculated as a function of

beam energy Ec.m. available in the center-of-mass frame for 20Ne +20 Ne, 40Ar +45 Sc,

and 58Ni +58 Ni reactions. Similarly, calculated IMF multiplicities for 86Kr +93 Nb,

51



10 15 20 25 30 35
5

6

7

8

9 197A
u+

197A
u

Max E
c. m.

=23.53 AMeV
Max <M

I MF
> =14.32

〈〈 〈〈 M
IM

F 〉〉 〉〉
  

5

6

7

8

9

10

129X
e +

124Sn

Max E
c. m.

=22.28 AMeV
Max <M

IMF
> =9.08

  

 3

4

5

6

7

 E
c.m.

 (AMeV)

 QMD+MSTB
           (unfiltered)
   Quad. Fit

 

 

 

86K
r +

93N
b

Max E
c.m.

=18.23 AMeV
Max <M

I MF
> =6.70

Figure 4.3: Same as in Fig. 4.2, but for the reactions of 86Kr +93 Nb, 129Xe +124 Sn and
197Au +197 Au.

129Xe +124 Sn and 197Au +197 Au reactions are displayed in Fig. 4.3. The mean IMF

multiplicity first increases with beam energy, reaches a peak value and then decreases.

This trend is visible in all the entrance channels as shown in Figs. 4.2 and 4.3. This

trend is less clearly visible for lighter 40Ar+45 Sc system, whereas it is more clearly visible

for the heavier systems. It is quite interesting to see that similar dependence of 〈MIMF 〉
on center-of-mass energy is also observed in experimental data taken with the MSU 4π-

Array [9]. This behavior can be understood in terms of compression energy of the system.

With the rise in beam energy, compression energy breaks the IMFs into smaller fragments
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leading to smaller number of IMFs. The maximal Ec.m. and corresponding peak 〈MIMF 〉
was obtained through a quadratic fit to the model calculations. One should also note

that the shape of the beam energy dependence of IMF production is quite close to one

reported in the experimental data [9]. As reported by Sisan et al [9], the peak Ec.m.

extracted for different entrance channels scales with the size of the system. Such scaling

is also visible in our present calculations (see Figs. 4.2 & 4.3). In the next section, we

report the fragmentation characteristics observed at peak Ec.m..

4.5 Fragmentation dynamics at the peak IMF emis-

sion and system size effects

We now study the fragment emission pattern at peak Ec.m. i.e. energy of maximal

IMF emission. Figure 4.4 displays the time evolution of average nucleon density ρavg,

multiplicity of free nucleons emitted, light charged particles LCPs [2 ≤ A ≤ 4], and

intermediate mass fragments IMFs [5 ≤ A ≤ 44] at the peak Ec.m.. As expected, the

average nucleonic density ρavg has a mass dependence, being maximal for the 197Au+197Au

system and minimal for the 20Ne +20 Ne system. This also indicates a linear density

dependence on the system size. As discussed earlier, we observed an artificial emission

of free nucleons in the beginning with MSTB approach which diminishes and saturates

beyond 150 fm/c. One can see that final state multiplicities (at 200 fm/c) of different

fragment species depict linear increase with size of the system. One can also notice that

fragment emission almost saturates around 200 fm/c.

The maximal fragment production is for 197Au +197 Au system whereas 20Ne +20 Ne

system results in minimum value. It may be mentioned that IMF multiplicities obtained

in 20Ne+20 Ne and 40Ar +45 Sc collisions exclude the largest and second largest fragment

respectively to infer the system size dependence accurately.

In Fig. 4.5, we further extend the above study for various fragments consisting of free

nucleons, fragments with mass A=2, light charged particles LCPs [2 ≤ A ≤ 4], medium

mass fragments MMFs [5 ≤ A ≤ 9] as well as heavy mass fragments HMFs [10 ≤ A ≤ 44].

Interestingly, in all the above cases, a clear system size dependence can be seen in a manner

similar to that for 〈MIMF 〉. We observe a power law of the form cAτ
tot; where Atot is the

mass of composite system. In all the cases, exponent τ is very close to unity. As noted

in Ref. [9], the percolation model failed badly to reproduce the power law dependence.
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Figure 4.4: The time evolution of average nucleon density ρavg, multiplicity of free nu-
cleons, light charged particles LCPs [2 ≤ A ≤ 4], intermediate mass fragments IMFs
[5 ≤ A ≤ 44] for the systems indicated. Calculations shown here are done at the energy
for peak IMF production.
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Figure 4.5: The final state multiplicities of (a) free nucleons, (b) fragments with mass
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A linear mass dependence observed with value of τ ∼ 1 depicts the picture of vanishing

surface-Coulomb effects. Experiments are called for to verify this new prediction.

4.6 Confrontation with MSU 4π-Array data

Finally we confront our model calculations for the mass dependence of peak Ec.m. as

well as peak 〈MIMF 〉 with experimental data [9]. The measurements of mean IMF multi-

plicity in different symmetric reactions were carried out at the National Superconducting

Cyclotron Laboratory (NSCL) at Michigan State University. Central events were selected

to be 10 % of all events with largest transverse energy. MSU 4π-Array detector is com-

prised of the main ball and the High Rate Array (HRA) with geometrical coverage of

nearly 4π solid angle. We have, therefore, compared our unfiltered calculations with the

data. From Fig. 4.6, one can see that our model calculations employing MSTB approach

(open circles) are in good agreement with the experimental data (solid squares) of MSU

4π-Array for peak Ec.m.. For peak 〈MIMF 〉, some deviation can be seen for heavier masses.

This could also be due to fact that our calculations are not filtered for experimental ac-

ceptance. One can also see that the predictions of percolation model fail to explain the

sharp dependence of peak Ec.m. on system mass. Our present analysis shows a linear mass

dependence of the form mAtot + c for the peak Ec.m.. These observations suggest that

peak Ec.m., thus, acts as a measure of finite size effect. It is worth mentioning that the

critical excitation energy was estimated from the cluster size distribution fitted to power

law: σ(A) ∝ A−λ at different beam energies for which the exponent λ reaches a mini-

mum. Based on the percolation calculations, the critical excitation energy is also found

to increase with initial lattice size [8]. Interestingly, the mass scaling of peak 〈MIMF 〉 can

be reproduced using a power law: cAτ
tot with exponent τ close to unity.

4.7 Summary

We present in this chapter, the quantum molecular dynamics description of beam

energy dependence of fragment production. Reactions were simulated selecting a wide

range of symmetric systems at zero impact parameter. To obtain the final state fragment

multiplicity, we employ minimum spanning tree method with additional binding energy

check to recognize the final fragment pattern. This approach ensures that fragments ob-

tained at the end of reaction are properly bound and stable. Our calculations remarkably
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Figure 4.6: The system size dependence of the peak Ec.m. and peak 〈MIMF 〉. Our model
calculations (open circles) for unfiltered events are compared with experimental data (solid
squares). Also shown in figure are the percolation calculations (open squares) [9].

reproduce the trend of rise and fall in IMF multiplicity with beam energy Ec.m. in the

center-of-mass frame as observed experimentally. Peak energy Ec.m. is found to scale lin-

early with system size. Average nucleon density as expected also showed systematic mass

dependence. Mean multiplicities of IMFs as well as other fragment species are found

to follow the power law cAτ
tot ; Atot being the total mass of the system. Interestingly,

exponent τ is close to unity in all cases, indicating vanishing of surface-Coulomb effects.

Experiments are called to verify this new prediction.
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Chapter 5

Spectator Matter Fragmentation at
Relativistic Energies

5.1 Introduction

A highly excited system formed in energetic heavy-ion (HI) collisions is expected to

break into several pieces consisting of free nucleons, light charged particles LCPs, inter-

mediate mass fragments IMFs as well as heavier residues. This phenomenon as discussed

in previous chapters, is known as multifragmentation. Excitation energy deposited in the

system plays important role in the fragmentation of spectator matter in peripheral HI

collisions. It is well established that in peripheral collisions at relativistic energies, the

main contribution towards IMFs comes from the spectator decay [1–6]. At intermediate

energies, IMFs emission becomes the dominant exit channel. The most complete exper-

iments of ALADiN Collaboration have shown that mean IMF multiplicity 〈NIMF 〉 and

charge of heaviest fragment 〈Zmax〉, are independent of target and incident energies [5].

On the theoretical front however, not much success has been reported to explain the

spectator matter fragmentation at intermediate energies [3, 4, 7]. The molecular dynamics

approaches like the QMD model [8] and quasi-particle dynamics (QPD) [9] models though

were able to explain some of the features of experimental data [4], the fragment yields at

higher impact parameters were largely underpredicted with these models. This questions

the validity of dynamical scenario of multifragmentation. The statistical model calcula-

tions [10–12], on the other side, showed quite good reproduction of ALADiN data on IMF

yields, charge correlations and fragments’ kinetic energy. There are also some attempts to

employ hybrid models to explain spectator fragmentation, where statistical calculations

are clubbed with dynamical or percolation approaches [12–14]. The incomplete-fusion-
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fragmentation model [15], has its model parameters adjusted for excitation energy so as

to produce the correlations of mean IMF multiplicity, charge of heaviest fragment Zmax,

and asymmetry of largest-to-second largest fragment 〈a12〉 as a function of Zbound (i.e.

sum of charges bound in fragments with Z≥2). These model predictions led to the com-

mon standpoint of thermal origin of fragments, in which reaction system has attained

statistical equilibrium and final fragment formation is obtained when nuclear density is

well below saturation nuclear density.

The problem with dynamical approaches seems to be their inability to transfer exci-

tation energy to the spectator zones. This fallacy was largely attributed to the lack of

advanced secondary clustering models [6, 16–18]. Theoretical approaches which follow the

evolution of target and projectile to complete disassembly needs secondary algorithm to

clusterize the phase space. Puri et al have devised a sophisticated clusterization algorithm

based on the energy minimization criterion namely Simulated Annealing Clusterization Al-

gorithm (SACA) [19]. As a first attempt, results with this algorithm were quite promising

one for 197Au +197 Au reactions at 600 AMeV [6]. Earlier SACA method was reported to

successfully explain charge yields in mass asymmetric reactions of O+Ag/Br at incident

energies between 25 and 200 AMeV [20]. In another study, SACA method was tested

against INDRA experimental data at 50 AMeV [21]. In this study, Xe+Sn reaction was

subjected to multifragmentation and various variables such as charge yields, proton-like

fragments and IMFs yields, angular distribution, average kinetic energies etc were ana-

lyzed. SACA method explained all these observables quite nicely, whereas conventional

method based on spatial correlations failed badly [21]. It may be mentioned that in the

same spirit, some other sophisticated algorithms are also reported in literature that can

address the fragment formation on the reaction time scale [22–24].

Based on the ALADiN results, it remains to be seen whether QMD model can repro-

duce the universality behavior observed in the fragmentation of Au-projectiles or not. In

the present chapter, we plan to analyze systematically the fragmentation process in pe-

ripheral 197Au +197 Au collisions at relativistic bombarding energies of 400, 600 and 1000

AMeV. We shall label model calculations using original SACA version as SACA (1.1).

Our results obtained using MST and SACA (1.1) approaches are finally confronted with

ALADiN multifragmentation data [5] for the mean multiplicity of IMFs. In the following

section, we shall give details of ALADiN experimental set-up.
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5.2 Overview of ALADiN experimental set-up

The ALADiN experimental facility at GSI, Darmstadt has been primarily focussing

on the spectator decays of heavy projectiles at relativistic energies [3–5, 25]. A series

of experiments performed on ALADiN set-up have indicated that isotopic effects, even

though small can be observed on the projectile fragmentation [26, 27]. The fluctuation of

the largest fragment charge Zmax, and the asymmetry between largest and second largest

fragments a12 = (Zmax−Zmax−1)/(Zmax+Zmax−1) are found to show bimodal distribution

[26]. At lower energy tail, the fission of 238U after Coulomb and nuclear excitations has

also been investigated on ALADiN set-up [28]. The ALADiN spectrometer was designed

for the forward focussing of product emission in laboratory frame. At relativistic energies

and with inverse kinematics, the product emission in forward hemisphere is even better

realized. This reduces the number of detectors required and associated electronics also.

A cross sectional layout of ALADiN set-up is displayed in Fig. 5.1.

The beam entering from left is recorded for its positions and arrival time with two thin

plastic scintillation counters. The beam spot had a size of about 2 mm in horizontal and

3 mm in vertical directions. The charge and multiplicity of fragments were detected by

multiple-sampling-ionization-chamber (TP-MUSIC III) along with extended time-of-flight

(TOF) wall located at the end of the ALADiN spectrometer. The TOF wall consisted of

two vertically mounted layers of scintillations of 2.5 cm width and 1.0 cm thickness. A

Si-CsI (Tl) hodoscope was positioned 60 cm beyond the target position with total solid

angle covered is about 85 % of 4π. A lower limit for rapidity: y > 0.75ybeam was chosen so

as to select the spectator source emission from the disassembly of projectile nucleus. This

condition was applied on fragments detected in the TOF wall. For light charged particles

with Z = 3, the probability of acceptance in TOF wall is around 95 % [1].

The detection efficiency for ALADiN setup is quite good and close to 100 %. For

instance, all projectile fragments with charge Z ≥ 2 at E=1000 AMeV are detected. We

have, therefore, compared our unfiltered calculations for the multiplicity of IMFs in the

forward hemisphere with ALADiN data at incident energies of 400, 600 and 1000 AMeV,

respectively.
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Figure 5.1: The cross sectional view of ALADiN set-up at GSI Darmstadt.

5.3 Simulated Annealing Clusterization Algorithm

(SACA (1.1))

This algorithm was devised by Puri et al [19–21] based upon the idea that fragment

configuration can be realized in nature at an earlier time, when nucleons are still compact

in hot and dense environment. Need of this algorithm also arose due to the failure of QMD

model to explain higher IMF multiplicity obtained in spectator matter fragmentation at

relativistic bombarding energies [3–5]. The IMF emission at incident energies greater

than 100 AMeV is characterized by well-known rise and fall behavior with a variation

in impact parameter. In this energy regime, the onset of multifragmentation and then

vaporization sets in leading to very few intermediate mass fragments (IMFs) in central

collisions. It shall be worthwhile to see whether limitation of the QMD model can be

resolved if one shifts from conventional MST algorithm based upon spatial correlation

principle to more sophisticated algorithm using simulated annealing technique.

The first attempt in this direction was made by Dorso et al [18], where a Metropolis

algorithm [29] was invoked to obtain optimal fragment configuration which maximizes the
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binding energy of the system. The limitation of that procedure was the prohibitively too

slow algorithm and poses a serious problem for studying the heavier systems where num-

ber of possible configurations tremendously increases. These difficulties were overcome in

this novel algorithm namely simulated annealing clusterization algorithm (SACA). In ad-

dition to this, SACA method avoids getting stuck into any local minima and gives global

minimum at the end of the procedure.

In this approach, following assumption are made:

1. The nucleons from target and projectile are grouped into fragments (of any size)

and into free nucleons.

2. Though the nucleons inside a fragment can interact with each other, they do not

interact with the nucleons from other fragments or free nucleons.

3. That pattern of nucleons and fragments is realized in nature which gives the highest

binding energy.

We employ a binding energy check to avoid unnecessary formation of too many fragments:

ζa =
1

Nf

Nf∑
i=1




√(
pi −Pcm

Nf

)2

+ m2
i −mi +

1

2

Nf∑

j 6=i

Vij (ri, rj)


 < −Ebind, (5.1)

with Ebind = 4.0 MeV if Nf ≥ 3, else Ebind = 0. In this equation Ebind is the fragment’s

binding energy per nucleon, Nf is the number of nucleons in a fragment, and P cm
Nf

is

the center-of-mass momentum of the fragment. Such binding energy check is very use-

ful to identify the most bound fragment configuration out of huge number of possible

configurations.

An iterative procedure is followed, where a transition to the fragment configuration

with higher binding energy is always accepted. The transitions leading to lower binding

energies are also accepted, but with a certain probability. Since this procedure is called as

simulated annealing [30], hence this clusterization method is dubbed as Simulated Anneal-

ing Clusterization Algorithm (SACA). This name has been derived from the ‘annealing’

process used in solidification of liquid metals. It is a sequence of Metropolis algorithm

with gradually decreasing control parameter ‘ϑ’ which can be interpreted as a tempera-
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ture. For each metropolicity at a given temperature, one has to perform a sequence of

steps until the binding energy does not change anymore. Each step is executed as follows:

1. Given some initial fragment configuration ‘a’ with energy ζa, a new configuration

‘b’ with energy ζb is generated in the neighborhood of ‘a’ using a Monte-Carlo procedure.

2. Let the energy difference between a and b is ∆ζ = ζb -ζa.

3. If ∆ζ is negative, the new configuration is always accepted. If ∆ζ is positive, it is

accepted with a probability e−∆ζ/ϑ.

At the start, the temperature ‘ϑ′ is taken to be large enough so that almost all attempted

transitions are accepted. This is to overcome any kind of the local minima. After the

binding energy remains constant, a gradual decrease in the control temperature ‘ϑ′ is

made and the Metropolis algorithm is repeated. The clustering algorithm is executed in

two-steps. First steps involves exchange of nucleons only among the fragments. Second

step involves exchange of sub-clusters i.e. group of nucleons among the fragments.

I. Nucleon exchange procedure

To start with, a random configuration a (which consists of fragments and free nucleons)

is chosen. The total energy associated with configuration a is given by:

ζa =
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Here Nµ
f is the number of nucleons in a fragment µ, Pcm

Nµ
f

is the center-of-mass momentum

of the fragment µ and Vij(ri, rj) is the interaction energy between nucleons i and j in a

given fragment µ. Note that the total energy is the sum of the energies of individual frag-

ments in their respective center-of-mass system. Therefore, ζa differs from the (conserved)

total energy of the system because (i) the kinetic energies of fragments calculated in their

center-of-masses and (ii) the interactions between fragments/free nucleons are neglected.

A new configuration is generated using Monte-Carlo procedure by either (a) transfer-

ring a nucleon from some randomly chosen fragment to another fragment or by (b) setting

a nucleon of a fragment free or (c) absorbing a free nucleon into a fragment. Let the new

configuration b be generated by transferring a nucleon from fragment ν to fragment µ.

Then the energy of new configuration b is given by:

ζb =
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Note that in this procedure, the individual energies of all fragments except for the donor

fragment (ν) and the receptor fragment (µ) remain the same. The change in the energy

when going from configuration a to new configuration b is:

∆ζ = ζb − ζa. (5.2)

Between the Metropolis algorithms, the system is cooled by decreasing the control

parameter ϑ. A decrease in the temperature means that we narrow the energy difference

which is accepted in a metropolis step. After many Metropolis steps, one would arrive at

a minimum i.e. the most bound configuration.
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II. Fragment exchange procedure

The problem with the above nucleon-exchange procedure is that one usually arrives at

a local minimum only. Between the two local minima, we find a huge maxima. Let us give

an example: assume we have two fragments, but the most bound configuration would be

one single fragment which combines both. Now each exchange of a single nucleon raises

the binding energy and only the exchange of all nucleons at the same time lowers the total

binding energy. This effect is well-known in chemistry, where it is called activation energy.

In order to avoid this, one adds, therefore, a second simulated annealing algorithm in which

the nucleons aren’t anymore considered as the entities to be exchanged in each Metropolis

step (like in the first simulated annealing), but also fragments or nucleons obtained after

the first step. This second stage of minimization is called fragment exchange procedure.

Note that even in this stage, the free nucleons can be exchanged as before. The total

energy associated with any configuration c during the second stage of iterations is given

by:

ζc =
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Here NSµ is the number of nucleons in a super-fragment Sµ =
∑Nf

Sµ

k=1 Nk
Sµ

, where Nk
Sµ

is the

number of nucleons in the kth fragment contained in the super-fragment, Sµ and N f
Sµ

is the

number of pre-fragments contained in the super-fragment Sµ. The Pcm
NSµ

is the center-of-

mass momentum of the super fragment Sµ and Vij(ri, rj) is the interaction energy between

nucleons i and j in a given super-fragment. Note that now the particle i interacts with

its fellow nucleons in the same pre-fragment and also with the nucleons of other pre-

fragments which are contained in a given super fragment Sµ. The new configuration is

generated using Monte-Carlo procedure by either (a) transferring a pre-fragment from
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some randomly chosen super-fragment to another super-fragment or by (b) setting a pre-

fragment free or (c) absorbing a single isolated pre-fragment into a super-fragment. Let

us suppose that a new configuration d is generated by transferring a pre-fragment ‘k’

(with mass Nk
Sν

) from super-fragment ν to super-fragment µ. The associated energy of

new configuration d reads as:

ζd =




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The only difference between the nucleon and the fragment exchange procedures occurs

for the bound nucleons. Now the bound nucleons cannot change their identity neither by

being absorbed by other pre-fragments nor by becoming free. They will remain bound in a

pre-fragment. The pre-fragment itself can change its identity by either getting transferred

to a new super-fragment, or be set free. As in the first stage, one calculates the energy

difference between the new and the old configurations ∆ζ and the metropolis procedure

is continued till the most bound configuration is obtained.

To apply simulated annealing (SA) algorithms to a specific problem, one needs to

generate neighborhood solutions, and reduce the control temperature ‘ϑ’ etc. One has

to also design a cooling schedule to properly execute the SA algorithm. In other words,

performance of simulated annealing process depends on following cooling parameters [30]:

a. The initial temperature ϑi.

b. Cooling function to decrease the temperature ϑ gradually.

c. The length of Markov chain Mch. The SA algorithm will repeat the process Mch

times at a given temperature.

68



d. Final temperature ϑf to terminate the SA algorithm.

In fact, simulated annealing algorithm has basic capability to converge to best solution, no

matter, it may require large computation time. Many of its components can be adjusted

to optimize the algorithm for better performance and future research.

5.4 Cluster distribution in phase space

First of all, we analyze the phase space distribution of nucleons obtained in a single

event of 197Au +197 Au collision at 1000 AMeV and at an impact parameter of 10 fm.

Figure 5.2 displays the cluster distribution (in color) obtained using MST (at 200 fm/c)

and SACA (1.1) (at 60 fm/c) methods for heaviest fragment Amax, IMFs and LCPs in

coordinate (R3) and momentum (P3) spaces, respectively. One can see that SACA method

could recognize the largest fragment quite earlier when nuclear matter is still compact in

R3 space.

The MST method, on other hand, overestimated the size of largest fragment. Further,

there is not even a single IMF produced with MST approach. With SACA method,

however, significant yield of IMFs is obtained. This reflects the importance of considering

momentum space information of nucleons to identify the fragment structure in SACA

formalism.

5.5 Time evolution of fragments using MST and

SACA (1.1) formalisms

We first calculate the evolution of mean nucleon density ρavg/ρo, size of largest fragment

Amax and mean multiplicity of intermediate mass fragments 〈NIMF 〉 at incident energies

of 400, 600 and 1000 AMeV and impact parameter of 8 fm. The average nucleon density

reaches its maximal around 25 fm/c (See Fig. 5.3). This time domain also witnesses the

maximum collision rate and nuclear interactions which are going on between target and

projectile nucleons. This maximal density shifts towards later times as we go down the

incident energies. The fine point is that there is an insignificant change in the density

profile while enhancing the incident energy by the factor of 2.5 times i.e. going from 400

to 1000 AMeV. At the final stage of the reaction, we don’t see any significant change
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Figure 5.2: The 2-D snapshots for the distribution of nucleons in various fragments in a
single event of Au(1 AGeV) +Au collision at b=10 fm in Z-X (left) and pz − px (right)
planes. Results are shown for the distribution of clusters recognized with SACA (1.1) and
MST approaches.

with the incident energy. The middle panel of Fig. 5.3 shows the time evolution of the

heaviest fragment Amax using MST and SACA techniques. The MST method gives one big

cluster at the time of maximum density, whereas one sees striking ability of SACA method

in identifying the heaviest fragment quite early when violent phase of the reaction still

continues. This suggests that evolution of multifragmentation is an intricate process. In

other words, fragmentation starts at quite early stage when nucleons are still interacting

among themselves vigorously. The early recognition of heaviest fragment 〈Amax〉 rules

out its formation out of the neck region i.e. geometrical overlap between projectile and

target. This suggests the emission of 〈Amax〉 from the spectator region. Similar trends

of transition from the participant to spectator fragmentation has also been observed and
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Figure 5.3: The time evolution of mean nucleon density (top), size of heaviest fragment
(middle), and multiplicity of IMFs (bottom) obtained in 197Au +197 Au collisions at inci-
dent energies of 400, 600 and 1000 MeV and at b=8 fm.

reported by ALADiN Collaboration [5, 31, 32]. The ability of SACA (1.1) method is also

clear from evolution of mean IMF multiplicities 〈NIMF 〉 at all the three incident energies.

As shown in Fig. 5.3 (bottom panel), the IMF yields saturate much earlier than with

conventional MST approach. Clearly, the IMF yield obtained using SACA (1.1) method

at 60 fm/c (shown as shaded boundary), is underestimated in MST approach even at

asymptotic times. These findings also confronts the common standpoint of thermal origin
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Figure 5.4: Average binding energy per nucleon calculated as a function of time in
197Au+197 Au collisions at incident energies of 400, 600 and 1000 AMeV and at an impact
parameter of 8 fm.

of fragments i.e. fragments are created after the thermalization sets in. The further rise

in 〈Amax〉 after 60 fm/c in SACA (1.1) is due to the reabsorption of surrounding light

fragments by the heavier fragments [33]. We see that heavier 〈Amax〉 survives at smaller

incident energies than at higher incident energies. Further early fragment recognition is

also supported by stability of the fragments predicted at earlier times. Figure 5.4 shows

the binding energy per nucleon for fragments with mass A=4 and intermediate mass

fragments IMFs [5 ≤ A ≤ 65] as a function of time. In MST calculations, the binding

energy turns negative around 100 fm/c. However, with SACA method one obtains stable

fragment configuration at much earlier times. As is clear from the figure that bound
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fragments can be identified as early as 60 fm/c just after violent phase is over. All the

fragments at this time posses binding energy greater than 4 AMeV. Strikingly, earlier

detection of fragments at all incident energies upto 1000 AMeV gives us possibility to

look into the n-n interactions when nuclear matter is still hot and dense. Further, one is

also free from the problem of stability of fragments. The failure of MST method to detect

the final fragment pattern also questions its validity at incident energies as high as 1000

AMeV.

5.6 The persistence coefficient and gain factor

The time development of fragments and stability at microscopic level can also be

checked via persistence coefficient and gain factor terms. Let’s first understand the defin-

ition of these terms in brief. Let NC be the number of nucleons in a cluster C at time t. The

number of nucleon pairs in cluster C at that time t is defined as bC(t) = 0.5NC(NC − 1).

After certain time interval ∆t, some nucleons have left the cluster C and are part of other

cluster or are singles. Let NCA
be the number of nucleons which have been part of cluster

C at time t and are at t+∆t in the cluster A. We define aC(t+∆t) =
∑

A 0.5NCA
(NCA

−1)

where sum goes over all clusters A present at time (t + ∆t). The persistence coefficient

for the cluster C is then defined as [19, 20]:

PC(t +
∆t

2
) = aC(t +

∆t

2
)/bC(t). (5.3)

The average persistence coefficient P for an ensemble of clusters is then defined as:

P (t +
∆t

2
) = 〈 1

Nt

Nt∑
C=1

PC(t +
∆t

2
)〉, (5.4)

where Nt is the number of fragments present at time t in single simulation. The quantity

is then averaged over large number of QMD simulations.

The gain factor is another important quantity that estimates the inter-fragment inter-

actions at given time step. It represents the percent gain of nucleons for a given cluster

between two times steps. Let NC be the number of nucleons in cluster C at the time t.

Let NCA
be number of clusters which have been part of cluster C at time t and are at

t + ∆t in cluster A. Gain factor at later time (t + ∆t) is, therefore, defined as:

Gain(t +
∆t

2
) = η ×

∑
A(NA −NCA

)

NC

. (5.5)
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Figure 5.5: The persistence coefficient of LCPs (top panel) and IMFs (bottom panel)
displayed as a function of time for 197Au +197 Au reaction at incident energy of 1AGeV
and impact parameter of 8 fm.

We take η = 0, 0.5 and 1 if NCA
< 0.5NA, NCA

= 0.5NA, if NCA
> 0.5NA respectively.

True gain for the fragment C is there if its nucleons constitutes at least half of the mass of

new fragment A. In Fig. 5.5, we display the persistence coefficient for LCPs (top panel)

and IMFs (bottom panel) observed at incident energy of 1000 AMeV and at an impact

parameter of 8 fm. We see that persistence coefficient saturates earlier in SACA (1.1)

method than in the MST method. This indicates significant production of LCPs using

SACA (1.1) method. The MST approach, however, does not yield too much LCPs. In

other words, n-n correlations in MST method are preserved, giving rise to fewer LCPs and
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Figure 5.6: Same as in Fig. 5.5, but for the gain factor of LCPs (top panel) and IMFs
(bottom panel).

IMFs, but heavier Amax. These trends are visible at all the three incident energies (See

Fig. 5.3). In Fig. 5.6, is displayed the gain term for the same reaction. Top and bottom

panels show the calculated gain term for LCPs and IMFs, respectively. It again shows

significant yields of LCPs and IMFs obtained using SACA (1.1) method. It implies that

MST method does detect a single heavier 〈Amax〉 which gets detached from the rest of the

system earlier leading to smaller yield of IMFs in peripheral collisions. Contrary to this,

higher gain factor for IMFs using SACA (1.1) method implies swallowing of surrounding

lighter clusters.
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5.7 Impact parameter dependence of various frag-

ment species

It would be of interest to compare fragment multiplicities obtained using MST (at

200 fm/c) and SACA (1.1) (at 60 fm/c) approaches. For this, we simulate Au+Au

collisions at E=600 AMeV as a function of impact parameter b. Figure 5.7 displays

the average size of largest fragment Amax, multiplicity of free nucleons, fragments with

mass A=2, light charged particles LCPs [2 ≤ A ≤ 4] and intermediate mass fragments

IMFs [5 ≤ A ≤ 65] as a function of impact parameter b. For the central geometry, one

can see that SACA (1.1) approach compares well with MST method for the multiplicities

of different fragment species as well as for 〈Amax〉. It shows the capability of SACA

method to recognize the final fragment pattern at the time as early as 60 fm/c. MST

approach, however, is able to detect fragmentation pattern only at asymptotic times.

Multiplicity of free nucleons, fragments with mass A=2, and LCPs depict a falling pattern

with increase in impact parameter indicating their origin from participant region mainly.

The rise and fall pattern in IMF yield is underestimated by MST approach, which is

a positive feature with SACA (1.1) method. One can clearly see that IMF yield at

higher impact parameters change drastically if SACA (1.1) method is employed. This

shows the importance of binding energy correlations among fragments at microscopic level

to recognize the final fragmentation pattern. This is not, however, possible with MST

approach where fragments are detected based upon simple coordinate-space correlations.

MST approach sees intermediate mass fragments just as the constituents of Amax, being

very close in coordinate space.

5.8 Confrontation with ALADiN experimental data

Finally, we aimed to confront our model calculations using SACA (1.1) and MST meth-

ods with 197Au+197 Au fragmentation data taken on ALADiN set-up. Figure 5.8 displays

the mean IMF multiplicity 〈NIMF 〉 as a function of impact parameter b in Au+Au re-

actions at bombarding energies of 400, 600 and 1000 AMeV. Our model calculations for

197Au +197 Au reactions with SACA (1.1) method are in nice agreement with ALADiN

data [5] at all incident energies. As is clear from the figure, we also achieved a reason-

able reproduction of the shape of impact parameter dependence of 〈NIMF 〉. Due to the
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Figure 5.7: The mean size of heaviest fragment Amax, multiplicities of free nucleons,
fragments with mass A=2, light charged particles LCPs [2 ≤ A ≤ 4], medium mass
fragments MMFs [5 ≤ A ≤ 9], and intermediate mass fragments IMFs [5 ≤ A ≤ 65]
as a function of impact parameter b. Results are shown here for MST and SACA (1.1)
analysis for 197Au +197 Au reactions at an incident energy of 600 AMeV.

77



0 2 4 6 8 10 12 14
0

1

2

3

4

5 E=1000 AMeV

b (fm) 

  

0

1

2

3

4

5 E=600 AMeV ALADiN
 SACA (60 fm/c)
 SACA (t

min
)

 MST

 

 

 

0

1

2

3

4

5

6
197Au + 197Au E=400 AMeV

〈〈 〈〈 N
IM

F
 〉〉 〉〉
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shallow minima in the size of Amax sometimes, we also display the mean IMF multiplic-

ity observed at second local minimum (earlier than 60 fm/c) for peripheral geometries.

The calculated values at these minima using SACA (1.1) method are marked as black

filled squares. These values are further closer to the data reflecting the philosophy behind

SACA technique to detect the fragment yield faster. Further, the peak value of 〈NIMF 〉
and the corresponding impact parameter b is also well estimated with QMD + SACA

method. The prominent feature of the spectator decay is the invariant nature of the

IMF distribution with respect to the bombarding energy. The SACA method successfully

reproduced the universal nature of spectator fragmentation at all the three bombarding

energies. It is worth interesting to note that these universal features observed in multi-

fragmentation of gold nuclei persist upto much higher bombarding energies than explored

in this work [34]. Contrary to this, the normal spatial correlation method fails badly to

estimate yields of IMFs at all peripheral geometries. This analysis questions the validity

of MST method in describing the fragmentation pattern in HI collisions.

In recent literature, the fragment emission from the decay of quasi-projectiles has

been linked to bimodality behavior in nuclear system [35–37]. The bimodality distribu-

tion is regarded as co-existence of two event classes: one with residue-evaporation channel

and other with multifragmentation channel. With an increase in the excitation energy,

the probability of residue formation and evaporation decreases while that of ‘gas’ like

multifragmentation events increases. This non-equilibrium feature of co-existence of ‘liq-

uid’ and ‘gas’ like phases has been regarded as signature of critical behavior in nuclear

matter [36, 38–41]. Various models have employed charge asymmetry variables such as

a12 = (Zmax − Zmax−1)/(Zmax + Zmax−1) to study bi-modal behavior in fragmentation

[5, 10, 12]. Such asymmetry can be related to density partition between ‘liquid’ type

(residue matter) and ‘gas’ type (fragmented matter) phases. Recently, Aichelin and Col-

laborators investigated asymmetry parameter a12 within the QMD model [37, 40]. Their

calculations, however, pointed towards bimodality as fast process which is a quite general

trend in heavy-ion reactions. Next, we calculate the charge asymmetry variable 〈a12〉 for

Au+Au collisions at incident energies 400, 600 and 1000 AMeV to see whether invariance

with respect to incident energy also holds true for charge correlations or not. We display

in Fig. 5.9, the time evolution of charge asymmetry of two heaviest fragments i.e. 〈a12〉
using MST and SACA (1.1) approaches for the unfiltered events. One can see that at the

start of the reaction, a12 is equal to unity. With the passage of time, heaviest fragment
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Figure 5.9: The asymmetry of heaviest to second heaviest fragment 〈a12〉 as a function of
time for 197Au +197 Au reactions at 400 (left), 600 (middle), and 1000 (right) AMeV and
with b=8 fm.

decays into second heaviest and other light fragments. This leads to decrement in the

values of a12. With SACA (1.1) method, final a12 can be realized quite early just after

the high density phase is over. The asymmetry parameters for both approaches, however,

converge to same value at asymptotic times as expected. Interestingly, our calculations

also highlight the invariant nature of calculated 〈a12〉 with respect to projectile beam

energy.

5.9 Summary

In this chapter, we have studied spectator fragmentation at relativistic bombarding

energies at microscopic level using advanced clustering techniques namely Simulated An-

nealing Clusterization Algorithm (SACA (1.1)). For this analysis, we performed QMD

simulation of 197Au +197 Au collisions at incident energies of 400, 600 and 1000 AMeV

and over full geometrical overlap. Fragments obtained using MST and advanced SACA

techniques were compared for phase space characteristics, their time evolution as well as

impact parameter dependence. Our calculations for the mean multiplicity of intermedi-
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ate mass fragments employing SACA (1.1) method indicated strikingly nice agreement

with ALADiN data. Further, SACA (1.1) method allows us to study time scale of mul-

tifragmentation phenomenon in nuclear collisions. One can, therefore, predict the time

when fragment configuration can be realized in phase space. The universality behavior in

fragmentation i.e. independence from the incident energy chosen is also well reproduced.

This universality characteristic has also been there for other charge correlations such as

charge asymmetry between the two heaviest fragments. This study puts SACA approach

on reliable footing to probe the dynamics of fragmentation process in intermediate energy

heavy-ion collisions.
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Chapter 6

Simulated Annealing Clusterization
Algorithm with Realistic Binding
Energy Check: Application to ultra
low energy collisions

6.1 Introduction

The production of intermediate mass fragments (IMFs) in spectator zone has been

recognized as a response towards compression and expansion of participant nuclear mat-

ter [1–3]. It is well established that spectator components contribute significantly towards

IMF emission at relativistic energies. An extensive experimental study over ALADiN set-

up has shown universality pattern in spectator fragmentation and which remains insensi-

tive towards target-projectile combination and beam energy [4]. This observation implies

that gold residuals from 197Au+197Au reaction would be having nearly the same excitation

energies at different bombarding energies. However, as discussed earlier in chapter 5, the

molecular dynamics approaches such as the QMD model and microscopic models based

on purely statistical mechanics such as statistical simultaneous multifragmentation (SSM)

model [5] underestimated the fragment yield from the decay of spectator matter [6–9].

Further, peak IMF multiplicity was also observed at smaller impact parameters than in

experiments. Donangelo et al [1] has related this discrepancy towards the lesser heat

capacity. Due to this, much lesser excitation energy is deposited in the spectator matter

which does not produce sizeable number of IMFs. As reported in previous chapters, a

novel clusterization algorithm based upon simulated annealing technique [10] was quite

successful in explaining the universality characteristics over incident energies 400-1000
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AMeV as reported by ALADiN Collaboration [4]. The basic principle behind this algo-

rithm is energy minimization via simulated annealing technique which yields maximum

binding energy of the system. In this algorithm, each cluster is subjected to a constant

binding energy check of -4 MeV/nucleon.

In the present chapter, we aim to propose an extension over the original SACA method

via optimization of cluster binding energy check. As we know, the binding energy depends

on the mass of the fragment/nucleus, one is always wondering whether criterion of average

binding energy is justified or not. We wish to address the above question by subjecting

each fragment to its true binding energy that has now been measured to a very precise

level with reference to unstable and stable isobars, proton-rich and neutron-rich nuclei. We

shall show that this improvement for binding energy check does not yield different results

even at relativistic incident energies, justifying the validity of extended version of SACA

subroutine. In the following section, we shall describe the extended SACA formalism.

This approach shall then be investigated for its ability to reproduce experimental trends

in spectator decay at ultra low excitation energies.

6.2 Extended SACA formalism

In SACA method, due heed is given to momentum correlations among nucleons to

recognize final bound fragment structure. This aspect is totally neglected in conventional

MST method. As explained in chapter 5, the SACA (1.1) method imposes a constant

binding energy check of -4 AMeV on fragment’s binding energy per nucleon. This assump-

tion of constant binding energy for each cluster in SACA (1.1) is crude one. However, we

know that binding energy depends on mass and/or neutron-to-proton and thus can’t be

the same for all nuclei in the periodic table. In this chapter we are interested to optimize

the binding energy criterion and study its influence on fragment multiplicities in detail.

The choice of proper binding energy can be based on either experimental information or

theoretical one. Since experimental information is range bound, we shall use theoretical

formulation.

6.2.1 Different nuclear mass formulae

In nuclear physics, one strives for improvised mass formulas that would not only predict

masses of β-stable nuclei but also nuclei lying along neutron and proton drip lines with
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quite different features and shell effects. In last few decades, several global as well as local

mass formulas have been advanced which are quite useful in determining gross properties

of nuclei especially those which are far from β-stability line. On experimental front, main

interest has been focussed on discovery of super heavy elements (SHE), or isotopes close

to proton/neutron drip lines. These observations demand careful checking of theoretical

formulas for the prediction of nuclear masses and revision of parameters. For instance, the

finite range droplet model (FRDM) combines macroscopic terms with microscopic pairing

and shell effects [13]. This mass formula has now become a standard reference chart

to calculate the nuclear masses and other properties such as deformations, quadrupole

moments, compressibility, and fission barrier heights.

One of the earlier attempts to reproduce the gross features of nuclear binding energies

was made by Bethe and Weizsäcker [14]. This formula also known as Bethe-Weizsäcker

(BW) mass formula was an empirical refinement of the liquid drop model (LDM) given

as [15]:

E(Nf , N
z
f ) = avNf − asN

2/3
f − ac

Nz
f (Nz

f−1)

N
1/3
f

− asym
(Nf−2Nz

f )2

Nf
+ δ. (6.1)

Here, N z
f stands for the proton number of the nucleus. The various terms involved in

BW mass formula are the volume, surface, Coulomb, asymmetry and pairing terms. The

strength of different parameters is: av=15.777 MeV, as=18.34 MeV, ac=0.71 MeV and

asym=23.21 MeV, respectively [16]. The pairing term δ is given by:

δ = +apN
−1/2
f for even N z

f − even Nn
f ,

δ = −apN
−1/2
f for odd N z

f − odd Nn
f ,

δ = 0 for odd Nf nuclei,

with ap = 12 MeV and Nn
f being the neutron content of the nucleus.

This formula (6.1) was based upon the bulk properties of nuclear matter, thus can

reproduce gross properties of medium and heavy mass nuclei. However, it faces serious

problem for light nuclei along the drip line and with nuclei having rich neutron or proton

content. The liquid drop model (LDM) incorporates macroscopic terms such as volume,

surface and Coulomb terms to describe the bulk properties of very dense, charged liquid

drop apart from microscopic interactions i.e. asymmetry and pairing interactions.
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Another attempt to extract liquid drop parameters was made using relativistic mean

field theory (RMFT) [17]. The macroscopic part of binding energy of the nucleus was

obtained by subtracting the Strutinsky shell corrections from the RMFT energy as:

ERMFT
macro = ERMFT − En

shell − Ep
shell. (6.2)

The RMFT calculations were performed for 150 even-even nuclei only between proton

and neutron drip lines with almost zero quadrupole moment. The parameters obtained

by fitting these even-even nuclei using liquid drop model of Myers and Świa̧tecki [18] gave

following expression:

ERMFT
macro (A,Z) = −15.19(1−1.66I2)A + 16.81(1−1.21I2)A2/3 + 0.68

Z2

A1/3
−1.3

Z2

A
(6.3)

with (A,Z) as mass and charge of a nucleus and asymmetry I = N−Z
A

. The main demerit

of this mass parametrization is large deviation for the binding energies of several isotopes

and isotones that can reach as high as 30 MeV. Another model known as Duflo-Zucker

(DZ) mass formula is considered as most predictive model that can consistently predict

nuclear masses as given in recent Atomic Mass Evaluation 2003 (AME-03) [19]. The DZ

model consists of pairing and Wigner terms apart from isospin dependence of nuclear

radii [20]. This model gave more accurate information on nuclear masses as compared to

FRDM model [21].

Recently, Souza et al [22] tried to include density dependence of symmetry energy

for the highly asymmetric nuclear matter. The surface asymmetry and Coulomb terms

are added to existing liquid drop model (LDM) parametrization (Eq. (6.1)). Resulting

parametrization dubbed as improved liquid drop model (ILDM) reads as:

EILDM
bind (A,Z) = av{1− k

[
(A− 2Z)

A

]2

}A − as{1− k

[
(A− 2Z)

A

]2

}A2/3

−acZ
2/A1/3 + apA

−1/2 + cdZ
2/A. (6.4)

Here, the extra term cdZ
2/A takes into account Coulomb corrections due to surface dif-

fuseness. The parameters corresponding to ILDM fit (6.4) can be found in Ref. [22].

A recent work by Samanta et al [16, 23, 24] highlighted the discrepancy of LDM model

(Eq.(6.1)), and its extended versions in explaining the binding energy versus neutron
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number curve of several light nuclei near drip lines. They rectified earlier discrepancy by

modifying the asymmetry and pairing energy terms in the liquid drop model. This new

mass formula dubbed as modified Bethe-Weizsäcker (BWM) mass formula [16] is given as

[16]:

EBWM(Nf , N
z
f ) = avNf − asN

2/3
f − ac

Nz
f (Nz

f−1)

N
1/3
f

− asym
(Nf−2Nz

f )2

Nf (1+e
−Nf /17

)
+ δnew. (6.5)

The strength of various parameters now reads: av=15.777 MeV, as=18.34 MeV, ac=0.71

MeV and asym=23.21 MeV, respectively. The pairing term δnew is given by:

δnew = +apN
−1/2
f (1− e−Nf /30) for even N z

f − even Nn
f ,

δnew = −apN
−1/2
f (1− e−Nf /30) for odd N z

f − odd Nn
f ,

δnew = 0 for odd Nf nuclei,

with ap = 12 MeV.

It may be stated that though BWM formula doesn’t incorporate any shell effects, it is

quite promising formula to predict nuclear masses along the β-stability line. This formula

with modified asymmetry and pairing energy terms was able to predict binding energy

versus neutron number curve of all elements from Li to Bi. It particularly explains the

binding energies and one-nucleon separation energies of lighter nuclei near the drip line

[23, 24].

We shall extend the SACA (1.1) method by incorporating this binding energy check

(6.5) during the formation of clusters. Each fragment at the end of the Metropolis proce-

dure is subjected to the new binding energy check (Eq.(6.5)). Any fragment that fails to

fulfil this binding energy criterion is treated as a group of free nucleons. At the end, all

fragments obtained will be bound and stable. This version is labeled as SACA (2.1) [25].

6.3 Spectator matter fragmentation using SACA

(1.1) and SACA (2.1) versions

In this section we shall study the results obtained with original SACA version and

improvised version i.e. SACA (2.1) and compare with ALADiN multifragmentation data

[4] at relativistic energies.
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6.3.1 Time evolution of various fragments

To investigate the influence of modified binding energy check (Eq. 6.5), we compare the

time evolution of average size of largest fragment 〈Amax〉, multiplicity of various fragments

obtained using original SACA (1.1) and extended SACA (2.1) versions. First we study

the fragment observables for 197Au +197 Au at 600 AMeV and impact parameter of 12

fm. Figure 6.1 displays the mean size of the largest fragment 〈Amax〉, multiplicities of

free nucleons, light charged particles LCPs [2 ≤ A ≤ 4], medium mass fragments MMFs

[5 ≤ A ≤ 20], heavy mass fragments HMFs [21 ≤ A ≤ 65] and intermediate mass

fragments IMFs [5 ≤ A ≤ 65] as a function of time. We have used here a soft equation of

state along with standard energy dependent n-n cross section [26]. As expected, 〈Amax〉
is nearly independent of the binding energy criterion. As far as different fragment species

are concerned, very insignificant different can be seen of this modification. Similar trends

are also visible for same reaction but at an impact parameter b=3 fm (See Fig. 6.2.)

6.3.2 Persistence coefficient and gain factor

We have to also find out the time step at which fragment structure is clearly recognized

and can be easily compared with experimental data. For this, persistence coefficient and

gain factor are the two terms which can give us useful information. As discussed earlier

in chapter 5, the persistence coefficient gives fraction of nucleons in ith cluster at time

(t+∆t) which are also part of the cluster at earlier time t. From Fig. 6.3, we can see that

persistence coefficient for MMFs [5 ≤ A ≤ 20] and IMFs [5 ≤ A ≤ 65] nearly saturates to

the value 0.7 at 60 fm/c and for later times. One can see that similar profiles of persistence

coefficient and gain factor are obtained for the two versions. There is a sharp decrease

in the persistence coefficient of LCPs during early stage. It means that light fragment

are swallowed by heavier fragments and Amax. After the compressed phase is over, it

stays constant beyond 60 fm/c with value ∼ 0.8. It indicates that heavier fragments have

detached themselves and no longer interact with participant zone afterwards.

6.3.3 Impact parameter dependence of the various fragment
multiplicities

To further explore the characteristics of fragment structure obtained with modified SACA

(2.1) method, we analyzed the impact parameter dependence of mean size of 〈Amax〉 and

90



0

50

100

150

200

 SACA (1.1)
 SACA (2.1)

197Au + 197Au

  

 

0

50

100

150

200

E=600 AMeV
b=12 fm

F
ree N

ucl.

 

 

 

0

4

8

12

16

L
C

P
s

 

 

 

0

1

2

3

4

5

M
M

F
s

〈〈 〈〈 A
m

ax
 〉〉 〉〉

 

 

 

0 250 500 750 1000
0.0

0.4

0.8

1.2

1.6

H
M

F
s

t (fm/c) 

 

 

 

0 250 500 750 1000
0

2

4

6

IM
F

s

 

 

 

 

Figure 6.1: The size of heaviest fragment 〈Amax〉 and the multiplicities of various fragment
species as a function of time for the reaction of 197Au +197 Au at 600 AMeV and at an
impact parameter of 12 fm. The solid and dashed lines depict the results due to original
SACA and its extension, respectively.
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Figure 6.2: Same as in Fig. 6.1, but at impact parameter b= 3 fm.
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93



multiplicities of various fragment species This will also help to understand the energy

deposition in spectator matter properly. The results obtained using SACA (1.1) and

SACA (2.1) for 197Au +197 Au collisions at incident energies 400, 600, and 1000 AMeV

are displayed in Figs. 6.4, 6.5 and 6.6, respectively. The time for realization of different

fragments was chosen to be 60 fm/c. We can see that similar fragment emission profiles

are observed at all the three incident energies. In central collisions, SACA (2.1) predicts

smaller 〈Amax〉, whereas trend reverses in peripheral collisions. As a result, free nucleons

also behave accordingly. The yields of IMFs and MMFs don’t reduce considerably for

central as well as peripheral geometries using extended version of SACA. This is due

to the fact that fragments recognized by SACA method are properly bound, therefore,

simple cut also yields same results.

6.3.4 Confrontation with ALADiN multifragmentation data

Finally, we are also interested to check the performance of improvised version of SACA

in explaining the ALADiN data. For this purpose, we compare the model predictions

using SACA (2.1) and original SACA (1.1) versions with ALADiN data on 197Au+197 Au

collisions at 600 AMeV. Figure 6.7 displays our calculations for mean IMF multiplicity

〈NIMF 〉 (top panel) and mean charge of heaviest fragment 〈Zmax〉 (bottom panel) as

a function of impact parameter b. One can see that SACA (2.1) compares well with

SACA (1.1) in reproducing the overall b-dependence of IMF yield and charge of heaviest

fragment. Agreement is quite satisfactory in peripheral collisions where results obtained

SACA (2.1) version agree closely with experimental trends for IMF multiplicity and mean

charge of heaviest fragment.

We extend our analysis to investigate IMF yields at two other incident energies of 400

and 1000 AMeV also. Figure 6.8 shows the calculated 〈NIMF 〉 as a function of impact

parameter b at these energies using SACA (1.1) and SACA (2.1) versions. Also shown is

the ALADiN data for IMF yield [4]. Overall we see that both versions are close to each

other and SACA (2.1) method explains the experimental data quite nicely. We have also

tested the spectrum for actual experimental binding energies [19]. Negligible difference

has been seen for the case of very light nuclei only. This analysis shows that SACA (2.1)

version is working satisfactorily and is well suited to describe the spectator fragmentation

at relativistic energies.
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Figure 6.4: The impact parameter dependence of 〈Amax〉 and multiplicities of various
fragment species for the reactions of 197Au +197 Au at incident energy 400 AMeV. The
solid and dashed curves depict results of SACA (1.1) and SACA (2.1), respectively.
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Figure 6.5: Same as in Fig. 6.4, but at incident energy 600 AMeV.
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Figure 6.6: Same as in Fig. 6.4, but at incident energy 1000 AMeV.
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Figure 6.7: The IMF multiplicity 〈NIMF 〉 (top panel) and charge of the heaviest fragment
〈Zmax〉 (bottom panel) as a function of impact parameter for the 197Au +197 Au reaction
at incident energy of 600 AMeV. Open circles depict the experimental data points [4].
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reaction has been studied at incident energies of 400 AMeV (top panel) and 1000 AMeV
(bottom panel). Open circles depict the experimental data points [4].
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6.4 Spectator matter fragmentation at low excita-

tion energies

As far as peripheral collisions are concerned, pattern of ‘rise and fall ’ in the IMF

multiplicity is observed as a function of impact parameter at higher incident energies

(≥ 400AMeV). In the collision of two Au nuclei, maximum multiplicity is observed around

≈ 100 AMeV. Above 100 AMeV, there is a fall in multiplicity of IMFs observed at

central impact parameter. In low incident energy channels, dynamics involved is quite

different, which is mainly dominated by the fusion-fission events, deep-inelastic scattering

and dissipative n-n collisions. The final fragmentation pattern takes time long enough

to realize. The question of thermal equilibrium also becomes important at such low

incident anergies. Within conventional minimum spanning tree (MST) method, one may

not obtain the fragment structure accurately as it would take a longer time for separation

of fragments in configuration space and get identified. Recently, charge distributions for

the 40Ca+40 Ca collision at 35 AMeV were analyzed within QMD and CoMD approaches

[27]. The results obtained with MST method [27–30] highlighted discrepancy in the QMD

calculations in accurately reproducing experimental data [31]. We aim to apply advanced

SACA approach to see whether it can explain spectator fragmentation in low excitation

channels or not. Finally, we shall confront model calculations employing SACA (2.1) and

MST approaches with experimental data taken with Multics-Miniball array [32].

6.4.1 Time evolution of fragments with MST and SACA (2.1)

First of all, we study the time evolution of Au(35 AMeV)+Au reaction at a ‘reduced’

impact parameter b/bmax = 0.55 using two clusterization approaches. We have chosen

here a soft equation of state (K = 200 MeV ) and standard energy dependent n-n cross

section. The reactions are followed for a time span of 300 fm/c. Figure 6.9 shows that

SACA (2.1) is able to predict the mean size of heaviest fragment 〈Amax〉 as early as

100 fm/c, just after violent stage of the reaction is over. The QMD+MST approach, on

the other hand, detects a single heavier 〈Amax〉 even when average nucleonic density has

reached saturation. Heavier Amax obtained using MST method implies that it actually

consists of smaller heavy fragments viz. medium mass fragments (MMFs), light charged

particles (LCPs) etc, and aren’t recognized being very close in configuration space. The

bottom panel displays the evolution of clusters with mass A ≥ 5. One can see that SACA
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Figure 6.9: The time evolution of (a) mean nucleon density ρavg, (b) size of heaviest frag-
ment Amax, and (c) multiplicity of heavier clusters with mass A ≥ 5 in Au(35 AMeV)+Au
collisions at reduced impact parameter b/bmax = 0.55 (bmax = 1.142[AT

1/3 + AP
1/3]).

(2.1) approach significantly alters the dynamics of cluster recognition in phase space.

For asymptotic times, however, both clusterization techniques converge to same cluster

configuration, as expected.

6.4.2 Fragment charge distribution

Another interesting observation can be seen if we compare the charge dispersion obtained

with these two clusterization approaches. Figure 6.10 depicts the charge distribution N(Z)

obtained using MST and SACA (2.1) approaches for unfiltered events in Au (35 AMeV)+

Au collisions. Filled circles represent the experimental charge distribution obtained from
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Figure 6.10: The charge dispersion of nuclear fragments in peripheral Au (35 AMeV)+
Au collisions in the impact parameter interval 0.5 < b/bmax ≤ 0.6. Models calculations
using MST (dashed curve, 300 fm/c) and SACA (2.1) (solid curve, 100 fm/c) approaches
are compared with experimental data (filled circles) [33].

decay of the quasi-projectile (QP) in the impact parameter interval 0.5 < b/bmax ≤ 0.6

[33]. One can clearly see that MST method predicts larger production probability of

heavier charges. SACA (2.1) finds that heavier 〈Zmax〉 is further composed of smaller

charged products which MST fails to recognize, being very close in configuration space.

As a result, the tail of charge spectrum shifts towards high Z values with MST method.

Moreover, it also neglects the momentum correlations among the nucleons of the fragment.

Hence, MST method can’t address the time scale of fragment formation as well. SACA

method, therefore, seems to be well suited to study early dynamics of cluster production

in low energy HI reactions.
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6.4.3 Rapidity distribution

To derive quantitative information on the temperature and excitation energy deposited in

the spectator matter, one needs to investigate the stopping behavior of particle emission.

Next, we address the question of stopping of fragments in the reaction system which has

an overall influence on thermalization achieved in the reaction. It may be mentioned

that complete equilibration of nuclear matter isn’t, however, possible except for central

collisions when all nucleons are expected to be stopped at midrapidity. Fragment rapidity

distribution dN/dy of different fragments is one of the dynamical observables to infer

stopping of nuclear matter in heavy-ion collisions. Figure 6.11 depicts the longitudinal

rapidity distribution dN/dy for light charged particles LCPs [2 ≤ A ≤ 4] and intermediate

mass fragments IMFs[5 ≤ A ≤ 65] calculated in the reaction Au(35 AMeV)+Au at

b/bmax = 0.55. We find that MST method is able to generate the fragments out of the

participant zone only as indicated by peak at (y/ybeam)c.m. = 0. Here ‘ybeam’ is the rapidity

of projectile beam in the center-of-mass frame. It fails to explain the fragment yield

away from the midrapidity zone. Using the SACA (2.1) method one obtains, however,

significant contribution from spectator-like remnants. The emission of LCPs and IMFs

near projectile and target velocities reflects essentially the binary character of collisions,

apart from midrapidity source emission. There are observed clearly the two maxima for

IMFs that implies that entire system isn’t fully equilibrated. It is indicative of non-

thermal origin of fragments in peripheral geometries. Dynamical fragment production

mechanism is there for participant zone with quasi-projectile and quasi-target zones also

contributing as IMF emission source. Similar fragment production mechanism has been

suggested in the experimental study of 58Ni +58 Ni collisions at 30 AMeV [34]. There

also IMF production was observed due to two different mechanisms namely statistical and

dynamical one.

6.4.4 Cluster distribution in 3D-coordinate space

Next, we turn to study the cluster distribution in three-dimensional (3-D) coordinate

space obtained using MST and extended SACA pictures. Figure 6.12 depicts the 3-D

snapshots of single event of Au(35 AMeV) + Au reaction at b/bmax = 0.55 obtained using

these clusterization techniques. In MST picture, free nucleons and LCPs [2 ≤ A ≤ 4]

are abundantly scattered in whole space (shown as red hollow spheres) indicating their
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Figure 6.11: The longitudinal rapidity distribution dN/dy of LCPs (top panel) and IMFs
(bottom panel) in Au (35 AMeV) + Au collision at a ‘reduced’ impact parameter of
b/bmax = 0.55. Model calculations are done with MST (dashed curve) and SACA (2.1)
(solid curve) approaches.
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isotropic emission from the participant zone. A very small fraction of nuclear matter is

emitted as intermediate mass fragment IMFs [5 ≤ A ≤ 65]. The formation of IMFs is

seen to be coming from the overlap region of two colliding nuclei only. On the other hand,

significant enhancement in the production of IMFs is evident within SACA (2.1) picture.

The contribution towards IMFs doesn’t seem to come from any specific region or partici-

pant zone only, rather spectator zones also contribute significantly. In other words, QMD

calculation with SACA (2.1) suggests that IMFs originate from ‘extended neck’ region

as well as from the spectator components. The MST approach fails to efficiently break

the spectator component and generate sizable number of IMFs. This shows that QMD

contains the essential ingredients to describe the excitation energy transfer to spectator

region, provided the momentum space information of nucleons is given due importance in

cluster recognition algorithms.

6.4.5 Confrontation with Multics-Miniball experimental data

Taking the advantage of the fact that SACA (2.1) method is capable of realizing the

fragment structure quite earlier on reaction time scale, we compare the model calculations

of mean charge of heaviest fragment 〈Zmax〉 using extended SACA version (at 100 fm/c)

and MST (at 300 fm/c) for unfiltered events with experimental data [32] taken with

combined Multics-Miniball (MM) array. This is a combined array situated at K1200

cyclotron, Michigan State University (MSU) with detection efficiency greater than 87 %

of 4π. For the data presented here, events were recorded in forward hemisphere from the

decay of quasi-projectile [33]. Multics array can detect reactions products with charge

Z ≤ 80 in the angular range θlab = 3◦ − 23◦. The MSU Miniball detector, on other

hand, is designed for detection of fragments with charge Z ≤ 20 in the angular range

θlab = 23◦ − 160◦.

Figure 6.13 shows the calculated 〈Zmax〉 as a function of reduced impact parameter

b/bmax for the reaction Au(35 AMeV)+ Au. The QMD+MST approach shows inability to

break-up spectator matter and overpredicts the mean charge of heaviest fragment 〈Zmax〉
even at 300 fm/c. SACA (2.1) method, on other hand, reproduces the experimental

〈Zmax〉 at different peripheral geometries quite satisfactorily. From the point of view of

better agreement with experimental data, SACA (2.1) turns out to be reliable clusteri-

zation algorithm which can be clubbed with molecular dynamics approach such as QMD

model. These findings suggest that SACA (2.1) method is well suited to investigate early
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Figure 6.13: The mean charge of heaviest fragment 〈Zmax〉 as a function of reduced
impact parameter b/bmax. The QMD calculations employing MST (dashed curve) and
SACA (2.1) (solid curve) approaches are compared with experimental data (filled circles)
[32].

dynamics of low energy HI reactions.

6.5 Summary

In this chapter, we have proposed an improvisation over original SACA method

by incorporating the microscopic binding energy calculated from the modified Bethe-

Weizsäcker (BWM) mass formula. Based on our calculations, we noticed that results

obtained with SACA (2.1) version doesn’t differ much from those obtained with original

SACA version. Further, calculated IMFs yields using improved SACA (2.1) method re-

produce the ALADiN multifragmentation data quite well at relativistic energies. Results

obtained with SACA (2.1) method are particularly encouraging in describing the Au+Au

fragmentation data at 35 AMeV, whereas standard minimum spanning tree method com-

pletely fails. The SACA approach along with its extension are, therefore, suitable can-
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didates to address time scale of fragment formation and predict early dynamics of HI

reactions at low and intermediate energies.
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Chapter 7

On the Nuclear Incompressibility via
Au+Au Fragmentation at 35
MeV/nucleon

7.1 Introduction

One of the important goal of heavy-ion (HI) physics is to gain information about the

nuclear equation of state (EoS) by modeling interactions among nucleons and nucleon-

nucleon scattering. An empirical property that is used to characterize the equation of

state of nuclear matter is the nuclear incompressibility ‘K’ which is a measure of the

stiffness of nuclear matter in ground state against change in the density ρ [1]. Response

of nuclear matter towards external pressure (or, change in the density) can be studied

via change in the compression energy stored in cold nuclear matter as shown in Fig.

1. This relationship is what commonly known as equation of state (EoS). For a given

nuclear interaction employed, it should be able to reproduce the well-known ground state

properties of nuclear matter in ground state i.e. binding energy of about -16 MeV/nucleon

at ρ◦=0.17 fm−3 [2]. The labels 1 , 2 , & 3 in the Fig. 7.1 depict the stages arrived

during the compression of nuclear matter in heavy-ion collisions. Red arrows in Fig. 7.1

indicate how the total center-of-mass energy per baryon Ec.m. is divided into compressional

part Ec and thermal part Eth. It is worthwhile to see that the curvature of the binding

energy is a measure of the stiffness of nuclear matter near the saturation point (ρ◦,T=0).

A larger curvature implies that more energy is needed to compress the nucleus and makes

the nuclear matter stiffer. The key question is how to measure the density, compression

energy Ec and/or temperature reached in such highly excited nuclear matter.
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Figure 7.1: A sketch of the nuclear EoS relating the energy per baryon E/A (ρ,T=0) to

the density of nuclear matter. The labels 1 , 2 , and 3 indicate various stages arrived
in a reaction.

7.2 Nuclear equation of state and heavy-ion collisions

Earliest attempts to pin down the nuclear EoS (or, incompressibility) were based

upon the study of giant monopole resonance (GMR) [3]. The scattering of α-particles off

the nucleus induces volume oscillations with L=0, which can be used to determine the

incompressibility ‘K’ of that nucleus. These results generally yield incompressibility in

the range K ∼ 250-270 MeV indicating the matter to be softer. A recent GMR study in

the 208Pb and 90Zn nuclei showed that softening of nuclear matter is needed to explain

the collective modes with different neutron-to-proton ratios [4]. Another study on the

fusion reported linear momentum transfer to be sensitive to both the EoS and n-n cross
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section [5]. Within the quantum molecular dynamics (QMD) model, an incompressibility

of K=200 MeV (i.e. soft EoS) was reported to explain the experimental data on energy

transfer in a compound nucleus formation [5].

The study of heavy-ion collisions at intermediate energies can be of importance to

probe the compressibility of nuclear matter and/or nuclear EoS. Various attempts have

been made to find the observables which are sensitive to the nuclear EoS [6–14]. These

microscopic transport models have the convenience to use EoS as input directly and study

different quantitative aspects. The main problem in dealing with heavy-ion collisions is

that the equilibrium can not be guaranteed always even at later stages of the reaction.

The concept of equation of state is, however, valid for the system under equilibrium.

This picture is very well realized in neutron stars (NS). In fact, internal structure and

composition of neutron stars and supernovae depend strongly on the high density behavior

of nuclear EoS.

To find an appropriate nuclear EoS, one should, in principle, develop a many-body

theory whose parameters governing n-n interactions should describe the behavior of nu-

cleons in vacuum as well as in bulk nuclear medium. Earlier attempts using realistic n-n

interactions could not accurately reproduce the ground state characteristics i.e., binding

energy and saturation density ρ◦ of the nuclear matter [15]. Even higher order correla-

tions were also taken into account to explain the ground state characteristics of normal

nuclear matter [16]. The microscopic models like Hartree-Fock theory, VUU and QMD

[17–20] use phenomenological parametrization of the nuclear EoS that originates from the

Skyrme-type interaction [21]. For the cold and symmetric nuclear matter, the baryonic

energy e(ρ, T = 0) is given as:

e(ρ, T = 0) = TF (ρ, T = 0) +
α

2
ρ +

β

γ + 1
ργ. (7.1)

The first term in Eq.(7.1) is the kinetic energy of a non-relativistic cold Fermi gas. Re-

maining terms constitute the potential energy. In the vicinity of saturation density, the

energy density per nucleon e(ρ, T = 0) can be expanded around ρ◦ as:

e(ρ, T = 0) = e(ρ◦, T = 0) +
K
18

(
ρ− ρ◦

ρ◦

)2

+−− . (7.2)

Clearly from Eq.(7.2), compressibility K is defined as curvature of e(ρ, 0) versus ρ curve

near ρ◦ i.e.

K = 9ρ2 ∂2e(ρ, 0)

∂ρ2

∣∣∣∣
ρ=ρ◦

. (7.3)
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For the case of asymmetric nuclear matter at supra-normal densities, different values of

nuclear compressibility have been predicted by microscopic approaches such as Brueckner-

Hartree-Fock (BHF) [22], Dirac-Brueckner-Hartree-Fock (DBHF) [23] and phenomeno-

logical models like NL3 [24]. This has led to intense focus on constraining the symmetry

energy component of nuclear EoS [25, 26] in high density region. The isospin dependence

of nuclear EoS finds immense application in understanding the structure of neutron stars

(NS) [26]. Unfortunately, due to different density dependence of symmetry energy, it has

remained difficult till now to constrain the exact relationship between mass and radius of

NS. For instance, BHF calculations give maximum mass of NS close to two solar masses

(=2M¯), while DBHF and variational equations predicted slightly higher value ' 2.2 -

2.3M¯ [25]. Besides this, knowledge of symmetry energy component of the nuclear EoS is

important for understanding structure of radioactive nuclei, nuclear reactions with radio-

isotopes as well as liquid-gas phase transition in asymmetric nuclear matter [26–30]. For

asymmetric nuclear matter with asymmetry δ = ρn−ρp

ρ
, the energy density upto second

order expansion is given as:

e(ρ, δ) = e(ρ◦, 0) + δ2esym(ρ), (7.4)

where ρ = ρn + ρp is the baryon density with ρn and ρp denoting neutron and proton

densities, respectively. The symmetry energy term esym is, therefore, defined as:

esym(ρ) =
1

2

∂2

∂δ2
(e(ρ, δ))

∣∣∣∣
δ=0

. (7.5)

To illustrate the effect of isospin content and thus, asymmetry of nuclear matter on

equation of state, we display in Fig. 7.2, the energy per baryon for pure neutron matter

(upper curve) and symmetric nuclear matter (lower curve). From Eq.(7.4), we can now

define esym for the extreme cases of pure neutron matter and symmetric matter (as shown

in Fig. 7.2) as:

esym(ρ) = e(ρ, 1)− e(ρ, 0) (7.6)

Frankfurt-Heidelberg-Chandigarh Collaboration has made extensive efforts to investi-

gate observables which are sensitive towards nuclear EoS. Hahn and Stöcker have proposed

a thermal model which could reproduce the measured pion multiplicity over incident en-

ergy 30 AMeV upto 4 AGeV. In the comparison of thermal energies with experimental

values, a surplus of about 60-70 % was found in the experimental data [32]. Their inves-

tigation have shown that in-medium effects strongly influence the observables related to
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Figure 7.2: Energy per nucleon E/A is shown as a function of nucleon density ρ for pure
neutron matter (upper line) and symmetric nuclear matter (lower line). The figure is
taken from Ref. [31]).

particle production for instance, π, K, λ yields, and deuteron-to-proton yield ratios etc

[7, 14, 20, 33]. The collective flow observed in HI collisions is another observable which

is very sensitive towards the stiffness of nuclear EoS [7, 8, 10, 11]. The collective trans-

verse in-plane flow and balance energy (the energy at which flow becomes zero) have been

studied extensively over the past two decades so as to constrain the EoS, but still the

uncertainties are very large. For example, a stiff EoS with K=380 MeV reproduces the

transverse flow data equally well as obtained with soft momentum dependent EoS with

K=210 MeV [6, 12, 20, 34]. Similarly, comparison of transport model calculations with

data of EOS Collaboration for the energy dependence of collective flow favored neither

the ‘soft’ nor the ‘hard’ equation of state [10]. Another study by Pan and Danielewicz

estimated the value of K in range ∼ 160-220 MeV for the multiplicity dependence of side-

ward flow [34]. In recent comparison of elliptic flow data with microscopic transport model

calculations of the Refs. [35, 36], no consistent agreement between data and calculations

could be obtained [37] for two different models of Refs. [35] & [36].

It is clear from the above review that an appropriate choice of nuclear equation of state

is still far from settlement. The task of deriving quantitative information about the EoS

requires detailed comparison of theoretical calculations assuming different equations of
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state with experimental data. At lower beam energies, mean-field effects and long range

Coulomb force govern the reaction dynamics. The phenomena such as fusion-fission,

cluster decay, and deep-inelastic scattering dominate the heavy-ion physics in low energy

regime [38–41]. At incident energies above 20 AMeV, non-fusion events like production of

intermediate mass fragments (IMFs), projectile-like and target-like fragments (PLFs and

TLFs) dominate the exit channel. The phenomenon of multi-fragment emission in low

energy domain is, however, least exploited to infer the nuclear EoS. Naturally, the study

of fragment-emission in low energy domain may be of importance in probing the nuclear

incompressibility, where the role of different n-n cross sections is minimal.

7.3 Au+Au collision as a probe to determine the in-

compressibility

To explore the possibility of extracting information on the nuclear incompressibility

via low energy nuclear collisions, we proposed to study the peripheral reactions of 197Au

+197Au at 35 AMeV and at different peripheral geometries where accurate data has been

measured recently [42]. We shall perform the QMD simulation of Au+Au reactions using

a ‘soft’(S) and a ‘hard’(H) equations of state. Parameters corresponding to the two

equations of state employed in the QMD model can be found in chapter 3. If propagating

nucleons come too close, these can scatter elastically or inelastically depending upon

available center-of-mass energy. The influence of different n-n scattering cross sections

(σnn) will be determined by employing a set of different cross sections varying from energy-

dependent cross section [43] to constant and isotropic cross sections of 40 and 55 mb

strengths.

For the present study Au+Au with mass Atot=394 is the system of choice. This is

because, Au nucleus is nearly the largest drop of nuclear matter that can be created on

the earth. Further, it also approximates infinite nuclear matter in some traits; most en-

compassing of which is the nuclear equation of state. It has been shown previously that

for Au+Au system, the balance energy Ebal (at which attractive and repulsive parts of

nuclear interaction balance each other) has weaker dependence on the impact parameter

as well as on the n-n cross section in mass-impact parameter plane [11]. For the lighter

systems such as Ar+Sc, the balance energy is found to show little sensitivity towards

nuclear incompressibility K [11]. Magestro et al have [11] studied the balance energy
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for different values of compressibility: K =180, 200, 235, and 380 MeV. Their calcula-

tions based on the BUU approach showed that only K=200 MeV can explain the data

accurately. This value of incompressibility corresponds to softer nuclear matter.

7.4 Different nucleon-nucleon cross sections

The choice of different nucleon-nucleon cross sections σnn tends to influence the reaction

observables such as fragment emission [7] and collective transverse expansion [44]. Peilert

et al had earlier shown that the effective in-medium cross section led to appreciable

transparency in the reaction system [7]. One may expect that cross sections have more

or less same strength at low incident energies. However, it may not be the case always.

A parametrization of the in-medium cross section was proposed based upon Bonn meson

exchange potential and Dirac-Brueckner theory for nuclear matter [45]. This cross section

is observed to deviate substantially from the energy dependent cross section parameterized

by Cugnon [43]. In the following subsections, we shall elaborate various kinds of n-n cross

section employed in the QMD approach.

7.4.1 In-medium cross section

It has been shown that medium-dependent cross section strongly affects the reaction ob-

servables such as density, temperature [6], fragment and flow variables [46–48]. Not only

static properties of hadrons (e.g. rest mass) but also the dynamical ones (e.g. n-n scatter-

ing) differ from the corresponding counterparts in free space. In this direction, Tübingen

Collaboration led by Prof. Faessler has extensively studied the in-medium scattering [49]

based upon non-relativistic Brueckner theory and Reid soft-core optical potential [50].

Using this approach, mean field, and in-medium total cross section as well as differential

n-n cross section are calculated self-consistently in the QMD approach. We call this as

self-consistent quantum molecular dynamics model since we now have consistency be-

tween mean field and n-n cross section which together govern the dynamical evolution of

nucleus-nucleus collisions. The essential ingredient to investigate the microscopic optical

potential between two nucleons is the Bethe-Goldstone (BG) equation [49]:

G(ω) = V + V
QF

ω −H◦ + ιε
G(ω), (7.7)
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where V is bare n-n interaction (Reid soft-core interaction, in our case), ω is the starting

energy and QF is the Pauli operator. To solve the BG equation in momentum space,

matrix inversion method proposed by Haftel and Tabakin [51] is employed. Here, we

introduce the c.m. momentum K = 1
2
(k1 + k2) and relative momentum k = 1

2
(k1 − k2)

of the two nucleons with momenta k1 and k2. The Hamiltonian operator H◦ acting on a

two-nucleon state gives:

H◦|k1k2〉 = (ε(k1) + ε(k2))|k1k2〉, (7.8)

The single-particle potential U(k) is calculated in a self-consistent manner as:

U(k) =
1

4

∑
spin,isospin

∫

F

d3ḱ

(2π)3
〈k, ḱ|G(ω = ε(k1) + ε(k2))|k, ḱ〉, (7.9)

where integration is done over all occupied states in Fermi sea F occupied by two colliding

Fermi spheres F1 and F2. The numerical calculations of G-matrix is done using standard

averaging for Pauli operator and single particle potential in the energy denominator. We,

thus obtain decoupled partial wave BG equations:

〈ḱ|Gji(ω,K)|k〉 = 〈ḱ|Vji|k〉+
2

π

∑

l

∫
dk

′′
k
′′2〈ḱ|Vjl|k′′〉

× Q̄F (k
′′
,K)

ω − Ē(k′′ ,K) + ι̇ε
〈k′′ |Gli(ω,K)|k〉, (7.10)

where i, j, and l represent partial wave (LSJT) and QF and E are averaged quantities. The

differential cross section dσ
dΩ

for n-n scattering is calculated as a function of relative momen-

tum k for two nucleons with K=0. Solution of Eq.(7.10) i.e. 〈k|Gji(ω = 2 ε(k),K = 0)|k〉
then corresponds to the partial wave scattering amplitude in the c.m. system. The dif-

ferential cross section is given by:

dσ

dΩ
=

1

4

∑

ms,ḿs

|T S=1
ḿs,ms

(θ)|2 + |T S=0(θ)|2, (7.11)

with

T S
ḿs,ms

(θ) =
∑

LĹJ

√
2L + 1

4π
Y Ĺ

ms−ḿs
(θ, 0)〈L0Sms|Jms〉〈Ĺms − ḿsSḿs|Jms〉

×〈k, ĹSJ |G|k, LSJ〉. (7.12)

Equation (7.12) contains an appropriate combination of T=0 and T=1 parts depending

on nn, pp, or pn scattering. As an example, we display the G-matrix cross section
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Figure 7.3: The in-medium total cross section σnn calculated using non-relativistic Brueck-
ner theory as a function of incident energy per nucleon ENN,lab in the laboratory frame
(Figure is taken from Ref. [52]).
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σnn =
∫

dσ
dΩ

dΩ in Fig. 7.3 as a function of incident energy ENN, lab for the average

relativistic momentum per nucleon Kr=2.1 fm−1. Also shown in the figure is free nucleon-

nucleon cross section for comparison. At low incident energies, G-matrix cross section

drops to zero as expected due to Pauli blocking of final state. A horizontal dashed line

represents constant cross section of 40 mb.

7.4.2 Energy-dependent cross section

For energy dependent cross section, parametrization proposed by Cugnon et al is employed

in the QMD model. In this parametrization, 4 resonance is included in elastic and

inelastic channels. For 4-excitation channel (nn → n4), the total inelastic cross-section

is calculated as [43]:




σin
nn→n∆(

√
s) = 0 ;

√
s ≤ 2.015

= 20(
√

s−2.015)2

0.015+(
√

s−2.015)2
;
√

s > 2.015

angular distribution : isotropic.

(7.13)

The cross section for 4-absorption channel (n4→ nn) can be obtained from Eq. (7.13)

with the use of detailed balance principle:



σn∆→nn(
√

s) = 1
8
(p2

f/p
2
i )σnn→n∆(

√
s),

angular distribution : isotropic.
(7.14)

Here pf is the momentum in final n-n state given as:

pf =
[s2 − 2s(m2

1 + m2
2) + (m2

1 −m2
2)

2]1/2

√
s

. (7.15)

For elastic channels (nn → nn, n4 → n4 and 44 → 44), we use the following

total and differential cross-sections:



σel
nn(
√

s) = 55, ;
√

s ≤ 1.8993

= 20 + 35
1+100(

√
s−1.8993)

;
√

s > 1.8993

dσ
dt

= aebt ; t = −2p2(1− cosθ),

(7.16)

with
√

s as n-n center-of-mass energy. σ(
√

s) and
√

s are taken to be in mb and GeV

respectively. Parameter b(
√

s) is chosen to be:

b(
√

s) =
6[3.65(

√
s− 1.8666)]6

1 + [3.65(
√

s− 1.66)]6
. (7.17)

Angular distribution has been studied intensively by Puri and Collaborators and no in-

fluence of this has been seen on fragment formation and rapidity distribution [53].
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7.4.3 Constant and isotropic cross section

The constant and isotropic σnn of magnitudes 40 and 55 mb have been widely used in the

simulation of heavy-ion collisions [54]. The choice of constant cross section of such high

values becomes essential in low energy collisions where most of the collisions are Pauli

blocked and wavelength of incoming particle is comparable with nuclear size. It is worth

interesting to state that a large reaction cross section was reported for the reaction of 22C

on a liquid hydrogen target at 40 AMeV. It was significantly larger than corresponding to

neighboring 19,20C isotopes [55]. A constant cross section of 40 mb has been motivated by

the hard core radius of the nucleon-nucleon potential. Further, a constant cross section of

55 mb corresponds to the cut off value in the Cugnon parametrization for invariant energy
√

s <1.8993 GeV. It is the only medium effect present in this parametrization based upon

free nucleon-nucleon scattering data. As mentioned above, strengths of σnn obtained from

different G-matrix calculations vary considerably. It is, therefore, more useful to employ

constant cross sections of 40 and 55 mb strengths to probe the collision of Au+Au at such

low energy.

7.5 Results and discussion

7.5.1 Effect of different σnn on reaction dynamics

As mentioned above, one may not expect different nucleon-nucleon cross sections to have

same strength even at lower energy regime. It is, therefore, important to understand

the inter-play of different n-n cross sections. We have studied characteristics of fragment

emission in peripheral 197Au +197 Au collisions at 35 AMeV employing various strengths

of n-n cross sections. A hard EoS with energy dependent cross section is labeled as HCg.

Incorporation of isotropic and constant cross sections of 40 and 55 mb strengths have been

labeled as H40 and H55, respectively. Similarly, for the soft equation of state, we have SCg,

S40 and S55, respectively. The phase space, thus obtained was subjected to SACA(2.1)

clusterization subroutine [56, 57]. In Fig. 7.4, we display the average values of nucleon

density ρavg, nucleon-nucleon collision rate dNcoll/dt, and size of heaviest fragment Amax

as a function of time. As expected, the choice of different cross sections σnn has negligible

role to play at such a low incident energy. However, n-n collision rates differ appreciably

due to medium-dependence of these cross sections. One notices several interesting points
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from these results:

(i) Maximal density is obtained nearly at same time at both impact parameters,

whereas saturated value is slightly more at more peripheral geometries.

(ii) The choice of different σnn has negligible effect on present results. This happens

due to effective Pauli blocking at such a low incident energy that prohibits binary

n-n collisions.

(iii) However, stronger dependence can be seen on the nuclear EoS. This difference is

clearly visible in the evolution of heaviest fragment 〈Amax〉.

The mean size of the heaviest fragment 〈Amax〉 reaches minimum value around 100 fm/c,

where stable fragment configuration can be realized and compared with experimental

results. With stiff EoS, heavier 〈Amax〉 is registered as shown in Fig. 7.4. Significant

differences are also visible for the multiplicity of free particles, light charged particles

LCPs [2 ≤ A ≤ 4], and clusters with mass A ≥ 5 obtained using soft and stiff equations

of state (See Fig. 7.5). Using the hard EoS, dissipation of energy takes place mainly

via emission of free-nucleons that cools down the nuclear system in case of hard EoS.

Consequently, lesser yields of LCPs and fragments with mass A ≥ 5 are obtained with

a stiff EoS. On the other hand, soft EoS favors emission of LCPs and heavier fragments

(A ≥ 5) from the spectator zone, thereby decreasing the size of Amax. One can, thus,

conclude that fragment observables are least affected with the choice of different σnn. This

observation would be helpful to constrain the nuclear EoS. To investigate further the role

of different nuclear EoS, we have used standard energy-dependent cross section.

7.5.2 Stopping phenomenon and nuclear EoS

The phenomenon of stopping and equilibration of various fragment species is closely re-

lated with n-n interactions used and thus nuclear EoS. We display in Figs. 7.6 and 7.7, the

spectrum of scaled transverse (left panel) and longitudinal (right panel) rapidity distrib-

utions of free particles and intermediate mass fragments IMFs [5 ≤ A ≤ 65] at ‘reduced’

impact parameters of b/bmax=0.55 and 0.85 respectively.

We find that cluster emission is quite sensitive to nuclear incompressibility that brings

significant changes in their stopping as well as transverse expansion. Using a ‘stiff’ EoS,

the system seems to cool-off via abundant production of free nucleons from midrapidity
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Figure 7.4: QMD simulation of Au (35 AMeV)+Au collisions at reduced impact parameter
b/bmax=0.55 (left panel) and b/bmax=0.85 (right panel) as a function of time for (a) mean
nucleon density ρavg/ρo; (b) n-n collision rate dNcoll/dt; (c) size of heaviest fragment
Amax, respectively.
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Figure 7.5: QMD simulation of Au (35 AMeV)+Au collisions at reduced impact parameter
b/bmax=0.55 (left panel) and b/bmax=0.85 (right panel) as a function of time for the
multiplicities of (a) free nucleons; (b) light charged particles LCPs; (c) fragments with
mass A ≥ 5, respectively.
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Figure 7.6: The rapidity distribution dN/dy as a function of scaled transverse, y(x)/ybeam

(left) and longitudinal, y(z)/ybeam (right) rapidities for Au(35 AMeV) + Au reaction at
reduced impact parameter b/bmax=0.55. Solid and dashed curves correspond to model
calculations using a ‘soft’(S) and a ‘hard’(H) EoS, respectively.
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Figure 7.7: Same as Fig. 7.6, but at reduced impact parameter b/bmax=0.85.
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as well as from spectator zones, whereas a ‘soft’ EoS contributes significantly towards the

emission of IMFs at target and projectile rapidities. It means that system propagating

under the soft interactions is less equilibrated. Similar trends are also visible in the

transverse rapidity (y(x)) distribution of free nucleons and IMFs. Using hard interactions,

a larger fraction of free nucleons are emitted into transverse direction. IMFs are not,

however, dispersed much into transverse directions and continue to move at target and

projectile velocities. As a result, heavier fragments leave the participant zone quite early

and suffer less binary collisions. These findings suggest that fragment emission from the

decay of spectator component is quite sensitive to the mean field and compressibility of

participant nuclear matter.

7.5.3 Fragment charge yields and comparison with experimental
data

Next, we turn to estimate the fragment charge yield N(Z) from the spectator matter de-

cay in peripheral Au (35 AMeV)+Au collisions. We shall also attempt to compare our

model predictions using soft (S) and hard (H) equations of state with experimental data

of Multics-Miniball Collaboration taken at K1200-NSCL cyclotron [42]. Beams of Au ion

at E=35 AMeV were accelerated by K1200 cyclotron which were used to bombard Au foils

of about 5 mg/cm2 arial density. The light charged products with charge Z ≤ 20 were

detected in the angular range 23◦ < θlab < 160◦ by the MSU Miniball detector [58]. Reac-

tion products with charge Z ≤ 83 were detected in the angular range 3◦ < θlab < 23◦ by

the Multics array [59]. To account for events from the decay of quasi-projectile in forward

hemisphere, the charge dispersion at six different impact parameter intervals has been

calculated using forward rapidity condition (y > 0.5 ybeam) in the center-of-mass frame.

Further, it also exclude events from midrapidity and quasi-target emission. We can see

from Fig. 7.8 that QMD model can reproduce experimental trends in charge distribu-

tion quite well at all impact parameter intervals. In the last panel (for b/bmax > 0.95),

two peaks can be seen in experimental charge distribution. As one moves towards semi-

peripheral impact parameters, U-shape disappears and slopes of curves become steeper.

This also indicates more input of excitation energy into the spectator zone. Further,

systematic differences can be seen clearly in the charge distributions obtained with soft

(solid line) and hard (dashed line) equations of state. To make the picture more clear and

distinguish between the two equations of state, we calculated the integrated multiplicity
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Figure 7.8: The charge distribution N(Z) obtained for Au (35 AMeV)+Au reactions at
different impact parameter intervals using a ‘soft’ (solid line) and a ‘hard’ (dashed line)
EoS. Filled circles depict experimental data points [42].
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Figure 7.9: The impact parameter dependence of multiplicity of fragments with charge
3 ≤ Z ≤ 80 obtained using a ‘soft’ (solid line) and a ‘hard’ (dashed line) equations of
state in Au(35 AMeV)+Au collisions. Filled circles depict the experimental data points
[42].

of charged particles with 3 ≤ Z ≤ 80 (i.e.
∫ 80

3
N(Z)dZ) at 100 fm/c as a function of ‘re-

duced’ impact parameter b/bmax. Calculated multiplicities along with the experimental

data points [42] are displayed in Fig. 7.9.

It is worth mentioning that multiplicities were calculated keeping in mind the angular

range covered by the combined Multics-Miniball array. A soft incompressibility modulus

is observed to explain the impact parameter dependence of charged particle multiplicity

obtained from the spectator matter decay much nicely. Due to more explosive nature of

hard EoS, spectator matter mainly de-excites via emission of free nucleons and therefore,

decline in multiplicity of heavier clusters occurs. An increasing trend of fragment multi-

plicity with centrality can be understood in terms of more excitation energy deposited in

spectator matter. In semi-peripheral events, a larger chunk of excitation energy gets trans-

ferred to spectator matter, thereby, leading to rise in multiplicity of fragments with charge

3 ≤ Z ≤ 80. A slight discrepancy between fragment charge multiplicity (using a soft EoS)

and experimental data at extremely peripheral geometries may be due to lower detection
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efficiency of combined Multics-Miniball array when quasi-projectile mainly flies off at lab-

oratory angles smaller than minimum detection angle [42, 60]. Nuclear mean-field seems

to be important factor governing the outcome of spectator decay, while nucleon-nucleon

collisions dominate the participant matter physics. This analysis clearly illustrates the

relatively softer nature of nuclear matter in accord with previous findings [3, 11].

7.6 Summary

In conclusion, dynamical calculations within the framework of QMD approach are

performed to probe the nuclear incompressibility in low energy domain. First of all,

we have analyzed the inter-play of different n-n cross sections using the soft and hard

equations of state in 197Au +197Au collisions at 35 AMeV. The choice of different cross

sections has marginal role to play in the reaction dynamics at such low excitation energies.

These findings allow us to constrain the nuclear EoS parameter ‘K’ to a very precise

level. The stopping of fragments and charge yields obtained from the spectator decay are

observed to be highly sensitive towards nuclear incompressibility of the nuclear matter.

The hard EoS results in enhanced emission of free nucleons and fewer heavier fragments.

Model calculations using soft EoS for charge yields from the decay of quasi-projectile are

in accord with experimental trends. These findings favor softer nature of nuclear matter.

130



Bibliography
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[17] H. Kruse, B. V. Jacak and H. Stöcker, Phys. Rev. Lett. 54, 289 (1985); H. Kruse,

B. V. Jacak, J. J. Molitoris, G. D. Westfall and H. Stöcker, Phys. Rev. C 31, 1770
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Chapter 8

Stability of Nuclei Propagating with
Momentum Dependent Interactions
and Multifragmentation

8.1 Introduction

The parametrization of Skyrme interaction described in chapter 3 is an oversimpli-

fied prescription. It neglects the exchange effects of nucleon-nucleon (n-n) interaction

that gives rise to momentum dependence of nuclear mean field. The idea of momentum

dependence of mean field comes from the optical model potential fitted to n-n scatter-

ing data. In fact, momentum dependent interactions (MDI) explain the repulsive nature

of mean field as demanded by the optical model potential fits. In theory, nuclear po-

tentials based on the Brueckner approach produce an effective mass of a nucleon in the

range m∗/m = 0.6 − 0.7 due to momentum dependence in low incident energy regime,

and m∗ = m at higher energies [1]. In the present chapter, we plan to study the role

of momentum dependent interactions in fragmentation and finite size effects observed in

heavy-ion collisions. However, one is always concerned about the stability of nuclei prop-

agating within momentum dependent interactions. Even a use of cooling procedure via

Pauli potential is also reported in the literature [2]. Before one applies the momentum

dependent potential to study fragment formation, one should also study the behavior

of single computational nuclei propagating with momentum dependent interactions. We

shall shed light on this aspect as well and then extend this study to the case of heavy-ion

reactions where target and projectile initialized within QMD approach undergo fragment

formation. Our calculations are done at final stage of the reaction when nuclear matter
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is dilute and cold.

8.2 Importance of momentum dependent potentials

Important aspect related with the study of momentum dependent mean fields is the

constrain on nuclear matter compressibility ‘K’ [3, 4]. This interaction along with soft

equation of state (EoS) is observed to mimic the stiff equation of state. The momentum

dependent interactions are reported to lower the value of K predicting rather a soft EoS

[3, 5]. Earlier HI experiments indicated that flow angle and transverse momentum dis-

tribution of nucleons could be explained assuming a ‘stiff’ EoS with an incompressibility

K ∼ 400 MeV [6]. This data is easily explained when momentum dependent interac-

tions (MDI) are properly taken into account in BUU equation along with a ‘soft ’ EoS [7].

Aichelin and Collaborators have also made extensive study for the influence of momentum

dependent interactions on observables in heavy-ion collisions [8–12]. It was shown that

the momentum dependence of n-n interaction suppresses the π, κ, λ yields, and results in

larger transfer of momentum in transverse direction compared to static soft case [5, 13].

In a similar manner, momentum dependence of G-matrix potential was calculated in

Brueckner theory from Reid soft-core potential. Such momentum dependent potential has

been used earlier in QMD approach to study reactions of 93Nb +93 Nb at 400 AMeV [11].

The G-matrix potential results in increase in transverse momenta quite earlier during the

reaction [11]. As a result, smaller central density is reached in nuclear system and lesser

stopping of nuclear matter occurs. This many-body approach based on the non-relativistic

Brueckner theory [14] is however, not able to reproduce the saturation properties (i.e.

saturation density and energy) of nuclear matter correctly, when two-body forces are

applied [15]. It has been observed that the use of non-relativistic G-matrix theory may

not give reliable results regarding the fragment formation as it is only summing the ladder

diagrams and not calculating the effective interactions in the nuclear medium [16]. The

Skyrme-type effective interactions, however, show reasonable agreement when momentum

dependence is taken into account.

At low incident energies, Pauli principle comes into play due to fermionic nature of

nuclear matter. In general, Pauli potential which is also a repulsive momentum-dependent

potential is employed to mimic the fermionic nature of nuclear matter in ground state.

The use of Pauli potential becomes relevant at low incident energies around the Coulomb
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barrier where fusion-fission events dominate the scenario [17, 18]. One of the earlier efforts

to describe the fermionic nature of nuclei in ground state was made by Wilets and Col-

laborators [19]. They introduced a momentum dependent repulsive potential consisting

of 2-body terms as:

V Pauli = V◦

(
~

q◦p◦

)3 ∑

i,j 6=i

exp

[
− r2

ij

2q2◦
− p2

ij

2p2◦

]
δτi,τj

δσi,σj
, (8.1)

where V◦ > 0 and rij and pij are the distances between points (ri, pi) and (rj, pj) of the

two particles in R3 and P3 spaces, respectively. The parameters q◦ and p◦ are related to

excluded phase space volume that is used to mimic fermionic nature of nuclear system.

This form of Pauli potential is though able to reproduce the kinetic energy of free Fermi

gas [20], it could not explain the multifragmentation data within the QMD model [2].

Donangelo et al have attributed this discrepancy to the overestimated heat capacity due to

inclusion of such a repulsive potential [21]. Exact explanation to this failure has not been

found yet. Recent calculations by Taruna et al [22] also highlighted basic flaws in the use

of above form of Pauli potential in the simulation of HI collisions. Their calculations have

shown that it fails to reproduce other characteristics of free Fermi gas such as momentum

distribution and 2-body correlation function. The simulation of interior neutron star as

a cold Fermi gas was performed by Garćıa et al [23] employing Pauli potential using

500 fermions at density ρ◦=0.16 fm−3 and temperature T=0.1 MeV. Their calculations

showed that system has tendency to crystallize, spoiling the uniformity of cold Fermi gas.

At higher incident energies, not only density dependence, but also mean field potential

in whole ρ, p-plane i.e. U(ρ,p) becomes equally important in the description of reaction

mechanism at intermediate energies. Khoa et al [10] obtained the sensitivity of tempera-

ture and density of the nuclear medium formed in heavy-ion collisions towards momentum

dependent potential. The MDI results into smaller central density reached in the nuclear

system. Temperature of the nuclear medium is obtained through effective mass m∗ which

was higher than obtained with static soft case by 50− 400 %. These investigations reveal

the importance of momentum dependent interactions in the studying the observables re-

lated to the heavy-ion collisions. It has been argued recently that momentum dependent

potentials are important to account for the non-equilibrium effects and softening of EOS

[4, 24]. The role of MDI becomes crucial at peripheral collisions. It is found to enhance the

energy of disappearance of flow in central collisions [25], whereas it reduces the energy of

disappearance of flow in peripheral collisions [26, 27]. Another study by KaoS Collabora-
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tion [4] on anisotropy of in-plane to out-plane proton emission in Bi+Bi collisions showed

that momentum dependent mean field characterized by the effective mass of m∗/m=0.70

nicely explains the experimental data.

8.3 Momentum dependent interactions (MDI) in

QMD model

The mean field potential USk used in QMD model is motivated by a local Skyrme

interaction [28] which was later on used in Hartree-Fock calculations [29]. In its simplified

form, the mean field potential is given by:

USk(ρ) =
3

4
t◦ρ +

3

16
t3ρ

2 +
3

80
(3t1 + 5t2)k

2
F ρ (8.2)

Neglecting the momentum dependence, Skyrme interaction gets reduced to a density

dependent potential in the limit of infinite nuclear matter limit:

USk = α

(
ρ

ρo

)
+ β

(
ρ

ρo

)γ

. (8.3)

In order to parameterize the mean field (8.2) for the momentum dependence, we substitute

the term containing k2
F with parameterized form of real part of optical proton-nucleus

potential [9]:

Umdi(∆p) = δ `n2
[
1 + ε · (∆p)2

] ρ

ρo

. (8.4)

This parametrization could reproduce the energy dependence of experimental data upto

1 AGeV [9, 30, 31]. In Fig. 8.1 is displayed experimental data for optical potential along

with phenomenological parametrization of Eq.(8.4) used in QMD approach along with

microscopic G-matrix potential. We see that both Skyrme parametrization and G-matrix

potential agree with that extracted from experiment. We have used this Skyrme para-

metrization to simulate the nuclear collisions and study multifragmentation phenomenon.

In an infinite nuclear matter limit, generalized n-n potential (Eq.(8.3)) leads to following

density and momentum dependent potential (without Coulomb and Yukawa terms):

U(ρ,p) = α

(
ρ

ρ◦

)
+ β

(
ρ

ρ◦

)γ

+ δ `n2[1 + ε · (∆p)2]

(
ρ

ρ◦

)
. (8.5)

Parameters α, β and γ in Eq.(8.5) have to be re-adjusted in the presence of momentum

dependent interactions so as to reproduce the ground state properties of nuclear matter
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Figure 8.1: The optical potential as a function of the relative momentum between scat-
tered particles. Results obtained for parametrization used in QMD approach (dashed
line) and microscopic G-matrix potential (solid line) are compared with experimental
data (dots). Figure is taken from the Ref. [11].

Table 8.1: The parameters of momentum dependent potential (Eq. (8.5)) employed in
QMD model and the incompressibility values.

EoS K α (MeV) β (MeV) γ δ (MeV) ε (c2/GeV 2)

SM 200 -390.0 320.0 1.14 1.57 500

HM 380 -130.0 59.0 2.09 1.57 500

and same incompressibilities as with their static counterparts. The parameters of mo-

mentum dependent potential for soft (SM) and hard (HM) equations of state resulting

from the interaction USk + Umdi are given in Table 8.1.

Another parametrized form was also suggested by Hartnack and Aichelin [32] which
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was based upon extensive experimental analysis of Hama et al [31]. Here the bare in-

teraction V (4p) was folded with gaussian wave function. The results were fitted in the

QMD model using the formula:

U12(p1 − p2) = 0.0667− 0.0589

(p1 − p2)2 + 0.4837
(8.6)

This optical potential is found to be much more repulsive at energies above 400 AMeV.

Calculations based on the QMD model simulation showed that kaon yield gets suppressed

when using (8.6), however no influence was reported on the pion production and results

agree with the older parametrization within statistical errors.

8.4 On the stability of cold QMD nuclei propagating

with momentum dependent interactions

To address the question of stability of computational nucleus in the presence of mo-

mentum dependent interactions (MDI), we initialize a single cold projectile using soft

(S) and soft momentum dependent (SM) equations of state. Earlier theoretical attempts

ranging from the giant monopole resonances [33] to the nucleo-synthesis of heavy elements

in mergers of neutron stars [34] could be explained if EoS is relatively softer than when

it is stiff. Another study concerning the linear momentum transfer occurring in central

HI collisions also showed that a soft compressibility modulus is needed to explain the

experimental data [35]. These theoretical and experimental observations motivated us for

the choice of comparatively softer EoS. We follow the cluster emission pattern and rms

radii of few computational nuclei. Figure 8.2 shows the time evolution of cold QMD nuclei

of 58Ni, 93Nb and 197Au initialized with static soft (S) and soft momentum dependent

(SM) interactions. The cluster emission is followed for the time span of 200 fm/c. Here,

Amax denotes the size of residual nucleus. This should be close to that of parent nucleus

if there is no destabilization of the nucleus.

The sizes of all the three parent nuclei of 58Ni, 93Nb and 197Au reduce with the

inclusion of MDI compared to nuclei propagating with static soft interactions alone. This

happens due to an enhanced emission of free nucleons and light charged particles LCPs

[2 ≤ A ≤ 4] with SM interactions. However, medium mass fragments MMFs [5 ≤ A ≤ 9]

and IMFs {[5 ≤ A ≤ AP /3]; AP being the mass of projectile} are almost insensitive

towards momentum dependent interactions. Superscript marked as asterisk ‘*’ in the
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Figure 8.2: The time evolution of heaviest fragment 〈Amax〉, free nucleons, LCPs [2 ≤
A ≤ 4], MMFs∗ [5 ≤ A ≤ 9] and IMFs∗ [5 ≤ A ≤ AP /3] (AP being the mass of
projectile nucleus) emitted from a single cold nucleus of 58Ni (left), 93Nb (middle) and
197Au (right). Results obtained with soft (S) equation of state (solid curve) are compared
with soft momentum dependent (SM) interactions (dashed curve). The superscript ‘*’
indicates that heaviest fragment has been excluded.
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figure indicates that Amax has been excluded from the multiplicities of MMFs and IMFs.

Only a small fraction is emitted as intermediate mass fragments. It seems that nucleons

close in the space are emitted in bulk, therefore, leading to an enhanced emission of

light clusters. On the contrary, very few nucleons, LCPs and heavier clusters are emitted

when propagating with soft EoS. The enhanced evaporation with MDI is also due to

the repulsive nature of these interactions. Does this enhanced emission prohibits one to

use MDI for fragmentation ? If one sees carefully, majority of mass that leaves the gold

nucleus (for example, with MDI about 19 units are emitted and 〈Amax〉 is close to 177)

is in the form of free nucleons. In the above gold nucleus, out of 19 units about 15 are in

terms of free nucleons. In other words, we see that nucleons from the surface are emitted

and there is no contribution towards emission of intermediate mass fragments. One sees

that even with MDI, only 0.15 IMFs are emitted on the average. Realizing that as many

as 10-12 IMFs can be seen emitted in Au+Au reactions [36, 37], this number with MDI

is negligible.

A survey of time evolution of rms radii of single QMD nuclei also depicts the same

picture. Figure 8.3 displays the time evolution of rms radii of 58Ni, 93Nb and 197Au

nuclei followed till 200 fm/c, which is also the characteristic time of heavy-ion reactions.

The rms radius of nucleus with SM interactions increases gradually compared to that

initialized with static soft interactions. This behavior reflects that MDI create additional

repulsions among nucleons which leads to enhanced emission of free nucleons. The rms

radii of these QMD nuclei in soft case shows negligible deviation for the characteristic

time of HI collision. As discussed above, this enhanced radius is due to the emission of

free nucleons and not due to the IMFs. Therefore, one can study the fragmentation with

MDI since the structure of IMFs is not altered by the inclusion of MDI.

8.5 System size effects and role of momentum depen-

dent interactions in heavy-ion collisions

After conforming the behavior of cold nuclei initialized with momentum dependent

interactions, let us study the effect of momentum dependent forces in heavy-ion reactions.

In this section, we shall present systematic study of fragment observables viz. the time

evolution of density and collision rate, rapidity distribution of fragments, multiplicities of

various fragments obtained in central and peripheral collisions. We shall also discuss the
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Figure 8.3: The time variation of rms radii of single cold nuclei of 58Ni (top panel), 93Nb
(middle panel) and 197Au (bottom panel) using soft (S) equation of state (solid curve)
and soft momentum dependent (SM) interactions (dashed curve).

system size effects in the presence of momentum dependent interactions.

8.5.1 The nucleon density and collision rate

One of the observables linked with the compression and expansion of nuclear matter is

the density of fragmenting system. The total nuclear matter density is obtained as :

ρavg = 〈 1

AT + AP

AT +AP∑

i=1,j 6=i

1

(2πL)3/2
e−(r−ri(t))

2/2L〉. (8.7)

143



0.0

0.5

1.0

1.5

2.0

ρρ ρρav
g  / 

ρρ ρρ o
58Ni + 58Ni

E=50 AMeV

t (fm/c)

  

 

0.0

0.5

1.0

1.5

2.0

 SM
 S

E= 400 AMeV

  

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0
197Au +  197Au

 

 

 

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0
 

 

 

Figure 8.4: The mean central density ρavg/ρo versus reaction time for the central collisions
of 58Ni +58 Ni (top panel) and 197Au +197 Au (bottom panel). The results obtained with
soft (S) and soft momentum dependent (SM) interactions are compared at 50 AMeV (left)
and 400 AMeV (right).

Here AT and AP stand for the target and projectile masses, respectively. In our approach,

average nuclear matter density ρavg/ρo is calculated in a sphere of 2 fm radius.

In Fig. 8.4, we display the time evolution of average nucleon density ρavg/ρ◦ reached

in the central region for the head-on collisions of 58Ni +58 Ni and 197Au +197 Au at

incident energies of 50 and 400 AMeV. The maximal average density tends to reduce

with inclusion of momentum dependent interactions. This happens due to additional

n-n repulsions created in the system that prohibits compression of nuclear matter to a

significant level. This difference in the behavior of ρavg/ρo calculated using S and SM
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Figure 8.5: The nucleon-nucleon collision rate dNcoll/dt versus reaction time for the central
collisions of 58Ni +58 Ni (top panel) and 197Au +197 Au (bottom panel). The results
obtained with soft (S) and soft momentum dependent (SM) interactions are compared at
50 AMeV (left) and 400 AMeV (right).

interactions diminishes at higher incident energies (400 AMeV). This is due to the fact

that in central collisions at 400 AMeV, most of the initial n-n correlations are already

destroyed and matter is already scattered, and therefore, repulsion generated due to MDI

does not play any significant role. As a result, we do not see much difference in average

central density reached at higher incident energy. Another important quantity related

with the initial compression of nuclear matter is the rate of binary collisions.

Figure 8.5 shows similar behavior observed for the n-n collision rate dNcoll/dt also.

Due to additional repulsion created in the nuclear medium by momentum dependent
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Figure 8.6: The rapidity distribution dN/dy of free nucleons and LCPs [2 ≤ A ≤ 4] as a
function of scaled rapidity ycm/ybeam; ybeam being rapidity of the projectile beam for the
head-on collisions at incident energy of 400 AMeV.

forces, the nucleon-nucleon collisions are suppressed. This is clearly indicated by smaller

peak collision rate with SM interactions.

8.5.2 Rapidity distribution and transparency effect

The rapidity distribution of fragments is another useful tool to characterize the stopping

and thermalization of the nuclear matter. To infer the role of momentum dependent

interactions and system size effects, we simulated the central collisions of six symmetric

systems 40Ca +40 Ca, 58Ni +58 Ni, 93Nb +93 Nb, 131Xe +131 Xe, 168Er +168 Er and

197Au +197 Au at incident energies of 50 and 400 AMeV. We display in Fig. 8.6, the
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rapidity distribution dN/dy of free nucleons and LCPs for these symmetric reactions at

400 AMeV. The results shown here are using soft EoS (left panel) and soft EoS including

MDI (right panel). The rapidity distribution is more ‘isotropic’ and nearly full stopping

is achieved in heavier systems like Au+Au and Er+Er. In lighter systems, on other hand,

a larger fraction of particles is concentrated near target and projectile rapidities resulting

into broad gaussian shape. This feature can be seen in both S and SM cases. The lighter

systems, therefore, exhibit larger transparency effect i.e. less stopping. Such features are

also observed in the experimental data of FOPI-group [38]. Based on the experimental

observations and theoretical trends, one can say that smaller the system, lesser is the

stopping. With MDI, a slight increase in the transparency effect is seen due to lesser

stopping of particles in longitudinal direction. This happens due to the reduction in n-n

collisions which deflect the fragments in transverse direction. As a results, one obtains

less particles being stopped in longitudinal direction.

8.5.3 Final state fragment multiplicities and system size effects

To infer the role of MDI on fragment emission characteristics and system size effects,

we calculate the average size of heaviest fragment Amax and multiplicities of various

fragments for six reaction systems mentioned above. These reactions were simulated

at impact parameters b=0 and b=0.6 bmax using S and SM interactions. Figure 8.7

shows the mean size of heaviest fragment Amax obtained as a function to total mass of

the system Atot at incident energies of 50 and 400 AMeV. It is clear that momentum

dependent interactions lead to overall reduction in the size of the heaviest fragment at

central and peripheral geometries. Eventually, nuclear matter is emitted as free nucleons

or broken down into light charged particles (LCPs) and heavier clusters. To look for

the system size effects in the presence of MDI, we display in Figs. 8.8 and 8.9, the

‘reduced’ multiplicities (i.e. multiplicity per nucleon) obtained at central (b=0) and

peripheral (b=0.6 bmax) geometries. Here we parameterized the multiplicities as a function

of total mass of the composite system using a power law of the form: cAτ
tot; Atot being

the total mass of the system. It is clear from Fig. 8.8 that system size effects are more

visible in soft equation of state compared to soft momentum dependent case. A negative

slope obtained for the multiplicities of free nucleons, fragments with mass A=2, and

LCPs at 50 AMeV indicates their origin from the surface of interacting nuclei. As we

move to momentum dependent version, additional break up of n-n correlations leads to
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Figure 8.7: The mean size of heaviest fragment 〈Amax〉 vs total mass of the system Atot.
Results are shown here for S (open circles) and SM (filled circles) interactions obtained
at central (b=0; top panel) and peripheral (b=0.6bmax; bottom panel) respectively.

enhanced emission of free nucleons and light charged particles. This reflects the explosive

character of momentum dependent interactions. Due to this, multiplicity of MMFs∗

[5 ≤ A ≤ 9] and IMFs∗ [5 ≤ A ≤ min {AP /3, 65}] (excluding largest fragment Amax)

gets reduced at 400 AMeV, indicating the vanishing of system size effect with MDI. In

higher energy regime, cluster production via emission of MMFs∗ and IMFs∗ is strongly

suppressed in the presence of MDI. It is worth mentioning that earlier studies, for example

see Ref. [40], also reported the momentum dependent potential to be more repulsive

for high momentum nucleons. This leads to enhanced emission of free nucleons and

LCPs. A similar enhancement of the nucleons emission and light cluster production

was predicted on inclusion of momentum dependent effective interactions in the isoscalar

148



nuclear potential and symmetry potential [39, 40]. Contrary to this, with static soft

equation of state, the production probability of MMFs and IMFs scale with the system

size as power law: cAτ
tot with exponent τ close to 3/2. In peripheral collisions also similar

trends are visible, however, explosive character of MDI gets reduced. As far as heavier

fragments (MMFs and IMFs) are concerned, the role of MDI has just become opposite.

Now the spectator matter decay dominates resulting into enhanced production of MMFs

and IMFs in the presence of MDI as compared to static soft case. Free nucleons and

light charged particles follow the well known trends of emission from the surface region as

indicated by negative slopes. However due to peripheral geometry, the impact of collisions

is not so large. As a result, a larger chunk of nuclear matter goes as medium mass and

intermediate mass fragments only. The vanishing of system size effects is visible even in

this case also. Multiplicities of MMFs and IMFs tend to saturate irrespective of the total

mass of the system Atot.

8.6 Confrontation with experimental data on IMF

multiplicity

Let us now try to confront our calculations with experimental data of ALADiN group

[37]. This comparison also bears relevance in view of earlier failure of QMD approach

to explain the multifragmentation data [36]. The experimental data is very fascinating

because there has been observed a rise and fall in the multiplicity of intermediate mass

fragments with impact parameter [37]. However universality is observed with respect to

target mass and bombarding energies exceeding 400 AMeV. In Fig. 8.10, we display the

multiplicity of intermediate mass fragments as a function of impact parameter using soft

(S) and soft momentum dependent (SM) equations of state. We see that entire spectrum

with projectile beam energy ranging from 400 AMeV (top) to 1000 AMeV (bottom)

is very well reproduced within the soft momentum dependent interactions. Our model

calculations using MDI are in exceptional agreement with experimental IMF multiplicity

particularly at peripheral geometries. One should also keep in the mind that for central

impact parameters, different experimental groups like FOPI [41], ALADiN [36, 37] and

Miniball [36] differ significantly in the multiplicities of IMFs. Overall, we see a clear need

of momentum dependent interactions in heavy-ion collisions.
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Figure 8.8: The final state scaled multiplicity (calculated at 200 fm/c) of free nucleons,
fragments with mass A=2, LCPs [2 ≤ A ≤ 4], MMFs∗ [5 ≤ A ≤ 9] and IMFs∗

[5 ≤ A ≤ min {AP /3, 65}] as a function of total mass of the system Atot. Results shown
here are at incident energies of 50 AMeV (l.h.s) and 400 AMeV (r.h.s). Open circles
depict the calculations with soft (S) interaction while solid circles are for soft momentum
dependent (SM) interactions. The superscript ‘*’ means that heaviest fragment has been
excluded.
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Figure 8.9: Same as Fig. 8.8, but at b/bmax =0.6.
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8.7 Summary

In this chapter, we have presented systematic study of fragmentation and related ob-

servables over wide range of system masses using soft (S) and soft momentum dependent

(SM) equations of state. We started with the case of stability of single cold QMD nuclei.

Initialization with SM case acts as destabilizing factor that leads to enhanced emission

of free nucleons, thereby, reducing size of largest fragment Amax (i.e. parent nucleus).

However, nuclei initialized with MDI don’t reflect any artificial emission of clusters and

remains stable for the characteristic reaction times. In the presence of MDI, lesser stop-

ping is there and ‘transparency ’ effect dominates the scenario. This feature becomes more

pronounced in case of lighter system masses. Momentum dependent forces tend to weaken

system size dependence in the fragmentation. In peripheral collisions, explosive nature

of momentum dependent potential leads to enhanced emission of IMFs out of spectator

zone. This observation is quite encouraging in view of earlier discrepancy where QMD

model using static soft equation of state underpredicted the IMF yield measured in AL-

ADiN experiments [36, 37]. This analysis clearly brings out the importance of momentum

dependent nuclear equation of state to study the reaction dynamics at intermediate en-

ergies.
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Chapter 9

Entropy, Light Cluster Production
and Thermalization in Heavy-Ion
Collisions

9.1 Introduction

Various experimental and theoretical studies in the recent past have indicated a clear

demarcation of colliding matter into participant and spectator zones especially at rela-

tivistic bombarding energies [1–4]. This is characterized by the formation of hot & dense

fireball and relatively cold spectator zones. In earlier chapters, we have discussed, in detail,

the characteristics of spectator matter fragmentation and universality behavior observed

in the emission of intermediate mass fragments. Highly dense fireball is, however, formed

for a very short duration (< 10−22s) where temperature reached can be as high as 70-80

AMeV depending upon colliding geometry and bombarding energy. The bulk condition of

thermal equilibrium may not be fully attained except for central collisions. This is partly

because of rapid evolution of reaction from hot and dense excited zone to expansion and

cooling thereafter. In addition, participant volume is also linked with the emission of

composite particles and ultimately with the mechanism of the production of entropy [5–

10]. Entropy produced in HI reactions is one of the thermodynamic observables that

preserves the signature of violent phase of the reactions. Based upon hydrodynamics, it

has been argued that at certain freeze-out time, the phase space density stays constant

and entropy determines the abundance of clusters produced. The extraction of entropy

from cluster abundances is, therefore, helpful in understanding the EoS of hot and dense

nuclear matter. Entropy is observed to decline with increase in the strength of repulsive
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forces between baryons, which in turn depend upon maximum compression achieved in

the reaction [5, 11].

As a matter of fact, pion production also contributes significantly [12–15] towards the

entropy generation at SPS [16, 17] and higher incident energies. At SPS energies (∼160

AGeV fixed target), the pion number increases with beam energy to about ten times the

number of the nucleons [17]. There, an increase in the entropy production was observed

with beam energy as one moves from AGS energies towards SPS and higher energies [15].

This enhancement may also be conjectured as manifestation of change in the collision

dynamics at such high energy [18]. For the incident energy range considered (400-1050

AMeV) in the present work, the inclusion of the pion production is not going to affect the

entropy production appreciably [13, 14, 19]. For instance, at SIS energies (upto 2 AGeV),

the total number of pions is only 10 % of the nucleons [20].

In the present chapter, we shall address the thermal properties of participant zone

via evolution of mean density and temperature reached in central region, the degree of

equilibration and modeling composite particle formation. We would also compare cluster

distribution in coordinate space and cluster-to-proton yield ratios obtained using soft (S)

and soft momentum dependent (SM) equations of state. In the following section, we shall

describe the method used to extract the baryonic entropy SN from the yields of composite

particles (i.e. p, n, d, t, 3He, and α-particles).

9.2 Tracking the entropy

It has been conjectured that entropy information may be obtained from a classical

charge symmetric gas of nucleons and deuterons in thermal and chemical equilibrium

using the relation suggested by Siemens and Kapusta [5, 6]:

SN = 3.945− `n(d/p), (9.1)

with d/p as deuteron-to-proton yield ratio established during early stages of fireball for-

mation. One source of error arises due to neglect of other light composite particles viz. t,

3He and α-particles. Bertsch and Cugnon [21] proposed to take into account these light

clusters as well generalizing Eq.(9.1) as:

SN = 3.945− `nR̃dp (9.2)
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with

R̃dp = dlike/plike

=
d + 3

2
t + 3

2
3He + 3α

p + d + t + 2 3He + 2α
. (9.3)

In the above equation (9.3), denominator term depicts the participant proton multiplicity

Np that solely depends upon the size of the reaction volume. This neglects the contribution

coming from low-excitation chunks of spectator matter. As can be seen from Eq.(9.3),

R̃dp is the yield ratio of deuteron-like to proton-like fragments that takes into account

these light clusters as well. It has been further established in experiments that highest

proton multiplicity accounts for most of the charges in HI system, thus leaving no room

for heavier clusters. Since in QMD model, there is no scope of isospin identification of

nucleons, we can’t distinguish between different isobars such as t and 3He. For this reason

and to compare our model predictions with experimental data, we define the yield ratio

of deuteronlike (dlike) to protonlike (plike) clusters in the following way [11]:

R̃dp =
Y (Nf = 2) + 3

2
Y (Nf = 3) + 3Y (Nf = 4)

Np

, (9.4)

where Y(Nf ) stands for the number of fragments with mass ‘Nf ’ in one event. Analogous

to experimental results, we calculate the total participant multiplicity Np as:

Np =
ZP + ZT

AP + AT

[Y (Nf = 1) + 2Y (Nf = 2) + 3Y (Nf = 3) + 4Y (Nf = 4)], (9.5)

where ZP +ZT and AP +AT define the total charge and mass of the colliding system,

respectively. This procedure allows us to estimate the baryonic entropy produced in a

reaction. The phase space of nucleons is clusterized employing minimum spanning tree

(MST) procedure [22] as discussed in chapter 4.

9.3 Results and discussion

9.3.1 Time evolution of Nb + Nb reactions and thermalization

First of all we analyze the evolution of thermal properties such as average central density

ρavg, local temperature ‘T’ reached in central zone, and degree of equilibrium for central

93Nb +93 Nb collisions at bombarding energies of 400 and 650 AMeV. Figure 9.1 (a)-

(b) compares the average density and temperature reached in the central region at these
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bombarding energies. Temperature ‘T’ is calculated in the central zone of 2 fm radius

using the hot Thomas Fermi formalism for two overlapping Fermi spheres [23]. To find

the evolution of temperature at each point (r, t) in a HI reaction, in addition to nuclear

matter densities of target and projectile;

ρT (r, t) =

AT∑
i=1

ρi(r, t); ρP (r, t) =

AP∑
i=1

ρi(r, t), (9.6)

one needs to evaluate kinetic energy densities at this point as:

ΓT (r, t) =

AT∑
i=1

p2
i (t)

2m
ρi(r, t); ΓP (r, t) =

AP∑
i=1

p2
i (t)

2m
ρi(r, t). (9.7)

These quantities are calculated in QMD simulations in the nucleus-nucleus c.m. frame.

These are used then, in a generalized local density approximation to extract the temper-

ature. Further details of this procedure can be found in Ref. [24]. The shaded area in

Fig.9.1 corresponds to the time zone for highly excited nuclear matter which is followed by

the decompression and cooling phase. With increase in incident energy, more compression

and thus higher temperature is attained in the participant zone. Beyond this region, the

nucleon density saturates and hard n-n collisions cease almost. In third row, we show the

momentum anisotropy ratio 〈Riso〉 which measures the degree of thermalization achieved

by the heavy-ion system. The anisotropy ratio is defined as follows [25]:

〈Riso〉 =

√
〈p2

x〉+
√
〈p2

y〉
2
√
〈p2

z〉
. (9.8)

From Fig. 9.1(c), one can see that participant zone is already equilibrated around 40-45

fm/c just after the violent phase is over. One can, therefore, measure yields of composite

particles and baryonic entropy at this time. It may be mentioned that full equilibrium

with 〈Riso〉 ≈ 1 is not possible in HI reactions even for the central geometry. This is due to

surface effects that are more pronounced in lighter reaction systems. In the last two panels,

we display the evolution of dlike and plike cluster abundances. The slight enhancement in

these yields at later times is due to de-excitation of and secondary emission from heavier

clusters.

9.3.2 Coordinate space distribution of light clusters

Since it is well established that the production of light charged particles and clusters, and

ultimately the entropy is related to the fireball, it is of interest to see their distribution
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Figure 9.1: The time evolution of central collisions of 93Nb +93 Nb at incident energies of
400 and 650 AMeV. Results are shown here for: (a) average central nucleon density ρavg;
(b) temperature T (in MeV); (c) anisotropy ratio 〈Riso〉; (d)-(e) the yields of dlike and
plike clusters, respectively.
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Figure 9.2: The 2-D snapshots of the distribution of nucleons in Z-X and Z-Y planes for
a single event of Nb(650 AMeV)+Nb collisions at a ‘reduced’ impact parameter b/bmax=
0.6. Time taken here corresponds to the case when n-n collisions cease almost just after
the violent phase of the reaction. Different colors depict the free particles, nucleons bound
in light charged particles as well as in heavier fragments.

in coordinate (R3) space. In Fig. 9.2, we display the 2-D snapshots of 93Nb +93 Nb

collision at 650 AMeV and at a ‘reduced’ impact parameter b/bmax=0.6. Left and right

panels depict the results for soft momentum dependent (SM) and static soft (S) equations

of state, respectively. First of all, consistent with earlier attempts, we see that heavier

fragments belong to the residue of either projectile or target, whereas lighter entities such

as free nucleons and light charged particles LCPs [2 ≤ A ≤ 4] are produced due to the

coalescence and emerge from the mid-rapidity region. As shown in Ref. [25], these light

charged particles carry vital information about the stopping as well as thermalization

of the nuclear matter, therefore, are also good candidates for estimating production of

entropy in HI reactions. A very little influence can be seen of momentum dependent

interactions.

162



9.3.3 Participant proton multiplicity dependence of composite
particle yield ratios

Next we study the final state composite particle yield ratios X/p for the soft (S) and soft

momentum dependent (SM) interactions. This is shown in Fig. 9.3 for the collisions of

93Nb+93 Nb at incident energy of 650 AMeV as a function of impact parameter. Here ‘X’

stands for A=2, 3 and 4 clusters. From these curves, one can observe several interesting

points:

1. The X/p ratio decreases with impact parameter (alternately, increases with NP ) indi-

cating more production in central collisions compared to peripheral collisions. As shown

by many authors [9–11], NP remains same for nearly central collisions and decrease sharply

for semi-central collisions and peripheral collisions.

2. For central impact parameters (or, higher NP values), X/p ratios reach an asymptotic

value indicating that for central events, small variation in impact parameter does not give

different results.

3. Role of momentum dependent interactions is nearly marginal justifying the earlier

attempts [26] and use of soft equation of state.

Since entropy production is mostly measured for central collisions, the use of momentum

dependent interactions will not give different results compared to static soft (S) equation

of state. These different yield ratios X/p also implied that one obtains different behavior

of density reached, collision rate and multiplicity of various light mass fragments for S

and SM interactions.

In Fig. 9.4, we extend the above study by including the ratio of deuteronlike (dlike) to

protonlike (plike) clusters. The calculations for dlike/plike are done using a soft equation

of state for the collisions of 40Ca +40 Ca (at 400 and 1050 AMeV) and 93Nb +93 Nb (at

400 and 650 AMeV) as a function of participant proton multiplicity. The results from

Plastic Ball data [9] are also displayed for comparison. The Plastic ball data takes into

account the overlap region for the yield of deuteronlike and protonlike clusters, while our

ratios are calculated for the unfiltered events using MST procedure. The yield ratios
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Figure 9.3: The yield ratio of light clusters to protons (X/p) as a function of impact
parameter b using minimum spanning tree procedure. The term ‘global’ for the ratios
X/p signifies that particle yield is calculated taking full ensemble into account and not
the limited region only.

are calculated typically after 40 fm/c, when average nucleonic density saturates and n-n

collisions practically cease. At this time, yield of composite particles is well established and

may be compared with experimental data. One can clearly see that our model describes

well the functional form of experimental dlike/plike ratio which is found to increase with NP

(or centrality of the collision) and saturates at higher multiplicity end. At low NP , there

is a large drop in the yield ratios for the model calculations as also observed for individual

cluster-to-proton (X/p) ratios (See Fig. 9.3). These trends are closely related with nuclear

matter stopping and flow effects in the formation of hot & dense fireball. Recently,

Dhawan et al [25] studied impact parameter dependence of light charged particles (LCPs)
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Figure 9.4: The dlike/plike ratio as a function of baryon charge multiplicity Np. The model
calculations (open symbols) at the time of freeze out are compared with experimental data
(solid symbols). The results are shown here for the reactions of 40Ca +40 Ca (l.h.s.) and
93Nb +93 Nb (r.h.s.)

yield and anisotropy ratio. It was found that LCPs production was maximum at central

collisions where maximum stopping of nuclear matter is also achieved. Thus, production

of light clusters can act an indicator of global stopping achieved in the nuclear matter.

Interestingly, dlike/plike ratios calculated using dynamical approach are in good agreement

with experimental data. This shows that one can reliably explore the applicability of

dynamical approach such as the QMD model to further investigate the formation of

fireball at intermediate energies.
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9.3.4 Participant proton multiplicity dependence of baryonic
entropy

We have estimated the entropy produced in the fireball using Eq.(9.2). Figure 9.5 shows

the baryonic entropy SN calculated as a function of participant proton multiplicity NP

for the reactions of 40Ca +40 Ca, 93Nb +93 Nb, and 197Au +197 Au at incident energies

of 400 and 650 AMeV. Note that mass dependence has also been used to understand

physics behind a particular phenomenon [27]. In central collisions (i.e. high NP ), entropy

produced in highly dense matter is expected to be smaller. This happens due to the

inhibition of translational expansion of hot nuclear matter. Contrary to this, lower density

is reached in peripheral collisions leading to larger entropy production. It clearly brings

out the participant-spectator picture of HI collisions at relativistic beam energies. One

can clearly see that at given beam energy, it is the volume of participant nucleons (that

is, NP ) which governs the entropy production rather than the total number of nucleons in

the phase space. It means that participant volume solely determines entropy production,

independent of the system size. These results are in agreement with the experimental

data and theoretical approaches. In the next section, we try to understand beam energy

dependence of baryonic entropy.

9.3.5 Beam energy dependence of baryonic entropy

Using the calculated yield ratios dlike/plike, we tried to understand the beam energy de-

pendence of SN for the collisions of 40Ca+40Ca (at 400 and 1050 AMeV) and 93Nb+93Nb

(at 400 and 650 AMeV). One of the earlier experiments on entropy measurement were

done by Nagamiya et al [28]. Entropy was observed in the range ∼ 5 − 6 and almost

constant as a function of bombarding energy [29]. However, experimentalists have also

used the QSM approach [8] to estimate entropy produced in the heavy-ion reactions. For

Ca+Ca and Nb+Nb systems, it was found to be around SN ∼ 4 based upon Kapusta’s

prescription [5]. This points towards quite unusual mechanism for entropy formation.

In Fig. 9.6, we display our model predictions for baryonic entropy SN along with

experimental data taken with Plastic Ball detector [9]. The calculated SN values in the

range ∼ 4−5 depict weak dependence on beam energy as is expected of an infinite nuclear

matter source. Further, these trends are quite close to experimental values [9, 28]. Nearly

no effect of beam energy on the baryonic entropy is visible in calculations as well as in
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Figure 9.5: Entropy per nucleon SN , as a function of baryon charge multiplicity Np for the
reactions of 40Ca+40 Ca (open circles), 93Nb+93 Nb (half filled circles), and 197Au+197 Au
(open squares). Calculations shown here are at incident energies of 400 (top) and 650
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experimental results.

9.4 Summary

In this chapter, we have discussed, in detail, the thermal properties of hot and dense

nuclear matter produced at different bombarding energies and colliding geometries. Our

calculations indicate that compression and temperature achieved in the participant zone

are directly linked with bombarding energy chosen. The degree of thermalization achieved,

however, shows little sensitivity towards the bombarding energy chosen. Momentum

dependent interactions are found to have negligible influence on the cluster distribution in

coordinate space and cluster-to-proton (X/p) ratios. The dlike/plike yield ratios calculated
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as a function of participant proton multiplicity for unfiltered events accurately reproduce

the experimental trends. The baryonic entropy calculated as a function of participant

proton multiplicity is found to show system mass independence and depends solely on the

volume of participants. Further, entropy calculated for central Ca + Ca and Nb + Nb

collisions is largely independent of beam energy in accordance with experimental data

based upon Siemens and Kapusta’s formalism.
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Chapter 10

Concluding Remarks and Outlook

“It is better to believe than to disbelieve; in so doing you bring everything to the realm of

possibility.” . . . . . Albert Einstein (1879-1955).

This thesis encompasses theoretical study of multifragmentation and related phe-

nomena in intermediate energy heavy-ion collisions. The calculations are performed

within the framework of dynamical approach namely quantum molecular dynamics (QMD)

model. The phase space of nucleons is then analyzed by making use of various clusteri-

zation techniques which may be as simple as minimum spanning tree (MST) procedure,

or more sophisticated one based on the simulated annealing technique used to minimize

the binding energy of fragments.

First part of the thesis is concerned with beam energy dependence of fragment pro-

duction and system size effects at the point of onset of multifragmentation. Our cal-

culations for symmetric reactions over wide range of system masses indicate that peak

center-of-mass energy (at which maximal IMF production occurs) exhibits a linear mass

dependence. These results are in agreement with experimental mass dependence reported

by MSU 4π-Array group. Interestingly, multiplicities of IMFs and other fragment species

calculated as a function of composite mass of the system obey a power law of the form:

cAτ
tot; Atot being total mass of the system. Interestingly, exponent τ is close to unity

in all cases, indicating vanishing of surface-Coulomb effects. These calculations warrant

detailed experimental verification of the same.

At relativistic bombarding energies, IMFs yields as a function of colliding geometry
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is characterized by rise and fall behavior as observed in the ALADiN experiments. This

trend was associated with the universality behavior, that is, it remains independent of

the target-projectile combination and incident energy. We aimed to explain this univer-

sality and rise and fall behavior in the production of intermediate mass fragments using

sophisticated clustering technique known as simulated annealing clusterization algorithm

(SACA). For the first time, we are able to explain experimental data in the incident en-

ergy range 400-1000 AMeV using dynamical approach (QMD model, in our case). It also

resolved earlier discrepancy, where QMD+MST approach couldn’t explain unexpectedly

larger yield of fragments from spectator zone. The clusterization algorithm, however,

remains key tenet to describe the spectator fragmentation. This shows the importance of

secondary clusterization models in describing the reaction dynamics in HI collisions. We

further prescribed an improvement over original SACA method by optimizing the con-

stant binding energy check of -4 MeV/nucleon with realistic binding energy of fragments.

We have used modified Bethe-Weizsäcker (BWM) mass formula to calculate binding en-

ergy of fragments. This improvised version labeled as SACA (2.1) was used to study the

ALADiN multifragmentation data at relativistic energies. Our calculations showed that

fragment yields obtained using SACA (2.1) are still close to original SACA version and

reproduce the ALADiN data quite accurately.

To further explore the applicability of SACA method, we extend this study to frag-

mentation of quasi-projectiles in 197Au+197Au reactions at incident energy as low as 35

AMeV. Our calculations are then compared with standard minimum spanning tree (MST)

method for the charge distribution and charge of heaviest fragment obtained at different

peripheral geometries. As noted MST method fails to predict experimental charge yields

and size of the heaviest fragment even at 300 fm/c. SACA approach, on other hand, is on

reliable footing that can recognize the stable fragment structure at an earlier time. This

study indicates that SACA method is well suited to address the spectator matter physics

over wide range of incident energies.

One can see that binding energy correlations among fragments play a decisive role to

decide the final fragment structure. It would be of further interest to look into such energy

based algorithms that can lead to still faster identification of fragment configuration and

could provide improvisation over the present simulated annealing calculations.
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The importance of quasi-projectile fragmentation was also highlighted to probe the in-

compressibility modulus via simulation of peripheral 197Au+197Au collisions at 35 AMeV.

Theoretical simulations have shown that characteristics of spectator matter fragmentation

during the collision process are directly linked with nuclear matter incompressibility of the

participant matter. The nucleon-nucleon collisions at such low beam energy being Pauli

blocked, reaction dynamics is insensitive to the choice of nucleon-nucleon cross section.

This feature allowed us to predict the nuclear incompressibility to a very precise level.

The prediction of soft compressibility modulus is in accord with earlier theoretical and

experimental attempts.

Next, we tried to understand the role of momentum dependent interactions on the

evolution of single cold QMD nuclei and fragment emission in HI collisions. The nucleus

remains stable against the artificial emission of intermediate mass fragments, even with

the inclusion of momentum dependent interactions. Our calculations using soft and soft

momentum dependent equations of state depict the weakening of system size effects in the

presence of momentum dependent interactions. The role of momentum dependent poten-

tial seems too explosive in nature in central collisions, which gets reduced in peripheral

collisions. Also reaction systems, especially lighter ones exhibit larger transparency i.e.

lesser stopping of nuclear matter in the presence of momentum dependent interactions.

Confrontation with ALADiN experimental data clearly favors the need of momentum

dependent interactions to explain the spectator matter fragmentation at relativistic ener-

gies. It would be of further interest to look into different strengths of this repulsive force

and study space-time characteristics of fragments formed in detail.

As the last aspect, we aimed to study thermal properties of hot and & dense nuclear

matter produced in the fireball. Our calculations showed that mean density and temper-

ature reached in central zone is strongly influenced by bombarding energy chosen. The

momentum anisotropy ratio, however, remains insensitive to the range of bombarding en-

ergy considered here. The full equilibrium could not be guaranteed in HI reactions even

for the central geometry. This may be due to surface affects which are stronger in light

systems and make the situation highly non-equilibrium. The yield ratios of deuteronlike-

to-protonlike clusters exhibit universality phenomenon i.e. these remain independent of
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system mass chosen and depend solely on volume of participants. Also baryonic entropy

extracted from the yield ratios of deuteronlike-to-protonlike clusters is in nice agreement

with data taken with Plastic Ball/Wall detector. These results showed that QMD model

contains essential ingredients to describe the thermal features of fireball produced in in-

termediate energy HI collisions. It would be of further interest to extend this study in

higher incident energy regime where pions also contribute significantly towards entropy

production.

In summary, we have attempted to understand the clusterization mechanism and

its role in faster recognition of fragments in heavy-ion collisions occurring at relativistic

as well as in Fermi-energy domain. We also studied the role of model ingredients on the

mass dependence of fragment production. As a last part of the thesis, we have modeled

composite particles formation and extracted baryonic entropy for the heavy-ion collisions

at intermediate energies.
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