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Abstract:

We review the recent progress in extracting the equation of state of hot dense hadronic matter from relativistic heavy ion collisions. At
first a discussion of the bulk properties of infinite nuclear matter is presented. Next the theoretical approaches are developed which describe the
complicated dynamics and non-equilibrium features in actual high energy nucleus-nucleus collisions: Nuclear fluid dynamics, the intranuclear
cascade model, classical equation of motion simulations, the Vlasov Uehling-Uhlenbeck theory and the time dependent Dirac equation with meson
field dynamics are exhibited. The recent experimental confirmation of the early hydrodynamic predictions on nuelear shock compression establishes
the key mechanism for creating high nuclear density and temperatures in the laboratory, and thus the key mechanism for investigating the nuclear
equation of state. Evidence for a surprisingly stiff nuclear equation of state is presented from a comparison of the distinet theoretical predictions to
recent high multiplicity selected 4 data on fragment formation, pion production and collective sidewards flow. We also discuss the possible creation
of a deconfined quark gluon plasma at future ultra-relativistic heavy ion facilities.

Introduction

Little is known to date about the properties of hadronic matter at finite temperatures and densities
other than the nuclear ground state density p, = 0.15 fm *. Hadronic matter may have a rich structure in
this hitherto unexplored domain of high excitation energies and compression (see fig. 1.1). There are
conjectures about a nuclear liquid-vapor phase transition at moderate temperatures T < 20 MeV and
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Fig. 1.1 Phase diagram of nuclear matter shows the fundamentally different states that have been conjectured. Experimentally, only the point (1, 0) is
known [Sto85).
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densities p < p,, and about abnormal nuclear matter (density isomers and pion condensates) at high
densities, p = 3-5p,. Pionization of nuclear matter is predicted for high temperatures, T > 50 MeV. The
deconfinement phase transition from hadronic matter into the quark-gluon plasma is expected to happen
at even higher densities, p =5-10p,, and/or very high temperatures T = 150-250 MeV. Such extreme
energy densities, temperatures and baryon number densities have probably prevailed during the birth of
the universe in the first fractions of a second of the big bang, and during the death of stars in supernova
explosions and neutron star formation. However, until recently there was no opportunity to study these
extreme conditions in the laboratory. With the recent discovery of nuclear shock compression
[Gus84a, b, Ren84], which had been predicted in classic papers by Scheid and Greiner [Sch68,
Sch74a, b], and extended considerably by the Frankfurt school [Ban75, Hof76, Ruc76, St678, 79, 80, 81,
82, 83. Buc80, 81, 83, 84, 85], the key mechanism for high compression and heating of nuclear matter
in the laboratory was unambiguously established.

Experimental information about the properties of hot dense strongly interacting systems is now being
sought by analyzing high energy collisions of heavy nuclei. If two colliding nuclei can stop each other,
high energy densities are achievable for short time spans =10 * seconds. The first exploratory
investigations of violent collisions between massive nuclei, A = 100, have been carried out during the last
few years at the Berkeley BEVALAC [Gus84a,b], i.e. in the bombarding energy range E; =
100 MeV/nucleon to 2 GeV/nucleon. Fundamental, exciting results have emerged, which have spurred
further efforts for relativistic heavy ion facilities.

In this article we shall present a survey of the recent theoretical and experimental developments in
the field of high energy heavy ion reactions. First we present the statistical concepts employed in the
study of the properties of infinite hadronic systems at high density and finite temperatures, in particular
the nuclear matter equation of state and the conjectured phase transitions. In the second chapter we
develop various theoretical approaches to describe the dynamical evolution of the highly excited
strongly interacting system in the complicated time dependent situation of an actual heavy ion collision.
In the third chapter the recent 47 experiments on the production of nuclear fragments, pion
multiplicities and collective flow (under shock compression) are confronted with theoretical model
predictions. In stark contradiction to a decade of reluctance by some people to accept nuclear
hydrodynamics [Ber75, Sob75], it is found that this model can well describe the complex processes in
relativistic nucleus—nucleus collisions. We also point out the implications of these experiments for the
recent attempts to determine the nuclear equation of state. It was particularly R. Stock [Sto82, 83] who
followed early suggestions [St&78, 81] to investigate the nuclear equation of state via the excitation
functions of pions and extracted for the first time valuable information pointing towards a stiff nuclear
equation of state. Finally, we turn to the ultrarelativistic domain, Ey.,> 1 GeV/N and discuss the
deconfinement phase transition from hadron matter into the quark-gluon plasma, with particular
emphasis on the available energy densities, the transition parameters and the space-time structure of the
high energy density regions.

I. Infinite Nuclear Matter in Global Equilibrium — The Nuclear Equation of State
I.1. Statistical and thermodynamical concepts
Before we start to discuss the properties of systems composed of ‘infinite nuclear matter’, we have to

stress that such systems exist(ed) only in astrophysical events remote in space and time —e.g. in the big
bang, supernova explosions, and in the interior of neutron stars. High density matter is formed in
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nuclear collisions only for brief moments, and global equilibrium can not be reached at high bombard-
ing energies. However, statistical concepts have been successfully applied to nuclear collisions, e.g. in
the nuclear fluid dynamical model, which assumes that local (rather than global) equilibrium is closely
approached even on rather short time scales. The assumption of statistical equilibrium in nuclear
collisions can only be checked via microscopic theories which are able to describe the evolution of the
system from the non-equilibrium situation to the locally equilibrated state. These theories and the
questions related to the equilibration are discussed in detail in the second part of this article.

Here we want to discuss the general statistical concepts appropriate to describe the near equilibrium
situation. The nuclear matter properties can be characterized by two macrocanonical variables, namely
by the density p and by the temperature T. The discussion of the properties of a piece of hadronic
matter at rest then usually starts with the definition of the energy per baryon, W, as a function of the
density and the temperature. The energy per nucleon can obviously be related to the center of mass
energy in nuclear collisions. It is convenient to divide the total energy per baryon W(p, T) into a
thermal and a compression part [Sch74, Bau75, St678-84, Buc80-85]:

W(p, T)= E(p, T) + Ec(p)+ W, (L1)
where
Ec(p)=W(p, T)~ W(p,, T=0)=W(p, T=0)-W, (1.2)

is defined to be the compressional energy and E is the thermal excitation energy per nucleon, which
is—by definition —zero if the temperature vanishes. W, =923 MeV is the rest energy of a nucleon at
equilibrium density. In order to understand the physical significance of W(p, T) let us consider a piece
of nuclear matter of volume V. Its energy content is given by E, = [v pW(p, T)dV, where e = pW is
the energy density of the matter. We would like to point out that in evaluating this quantity we have
excluded the Coulomb energy and the long range part of the Yukawa energy, which lead to divergences
if infinite systems are considered. Hence, in this chapter we are concerned with the short range part of
the nuclear interaction only. This is the origin of the binding energy of 16 (rather than 8) MeV/nucleon
used here —we are at this moment concerned with the volume term of the Bethe—Weizicker formula
only, surface and Coulomb terms are neglected. Once the functional form of W is given, standard
thermodynamic relations can be used to calculate the pressure, P, entropy, S, enthalpy, H, etc. of the
system at a given density and temperature. For example, the pressure is calculated from the internal
energy as
,JE

P=p"— 1.3
3;0 S=const ( )

and can therefore be separated into two parts, P. and Py, accordingly. Similarly, one obtains the
entropy of the system from the thermal energy alone: Because of Nernst’s theorem, the 7'= 0 part of
the equation of state does not contribute to the entropy. We will now discuss Ec and Er in greater
detail.

1.2. A model Lagrangian for a relativistic mean field theory

The total energy per baryon can, on the other hand, also be written as an expression involving kinetic
and potential terms. This becomes particularly obvious in the mean field approach. The relativistic
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mean field theory developed by Walecka et al. [Wal74, Ser85] and Boguta et al. [Bog77, Bog83] is of
special interest, since one can show that these approaches are strictly relativistically covariant,
thermodynamically consistent and — as field theories — renormalizable. The relativistic mean field model
discussed here consists of nucleons obeying the Dirac equation, of a classical spin zero attractive meson
field (sigma) obeying the Klein-Gordon equation, of a spin one repulsive meson field (omega) obeying
the Proca equation and a meson—baryon interaction between them. The resulting coupled field equations
are solved simultaneously in a mean field approximation. The theory is treated in the Hartree
approximation which yields an effective Lagrangian. The masses and coupling constants for the mesons
are phenomenological and are adjusted to fit static nuclear matter properties.
The model Lagrangian density is

L=l sz-(y#r?fﬁxu + mn) —3(daf ox, ) - Ulo)

—iFuE = miw,, +igdy,e, — gio, (L4)

where
F..=(d/ox,)o, —(3/ix,)w, . (L.5)
The potential function is taken to be a quartic polynomial in the field o [Bog77, Bog83],
U(o)=3m20”+3ba’ + Lco* (I.6)

The addition of non-linear terms to the Lagrangian (I.4) allows for a more realistic fit to other nuclear
properties, such as the compressibility and effective nucleon mass.

1.3. Cold nuclear matter

For translationally and rotationally invariant infinite nuclear matter the field equations in the mean
field approximation, o - gy, w, =18, 0w, are

3 2 = -
m <Ta " bﬂ'o = CU(J o _gsps ]

(1.7)
miwg=gp,, =0,
where
2
P=3- ki

is the vector density, referred to throughout the rest of the article as the baryon number density, while
the scalar density is given by

kf

4 . m
= ke,
P @ny f T Ty
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and the effective mass of the nucleon
m = My + £o0y . (18)

Here we have written down the expressions for zero temperature matter; finite temperatures are

discussed e.g. in [Bog81, The83]. The energy density e, pressure P and compressibility constant K at
T=0are

ke
4 :
e=3(g/mypit f &k’ +m*)'"? + U(o), (1.9)
(27Y) .
P = pi(d/dp,)(elp.), (1.10)
K =9p3(d*/dp)(elp,) . (L11)

respectively. The energy of a particle moving through matter with momentum k is given by

E = g.wo+ (k*+ m*?)'? = (k> + m{)'?+ Uen , (1.12)
100 :
~
r o~
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Fig. 1.2. Energy per baryon of cold nuclear matter as calculated in thermodynamically consistent relativistic mean field theory [Bog83] with different
parameter sets compatible with known ground-state properties of nuclei.
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where U,y is the effective nuclear potential
U= E—[(E~ gywo) + mi— m*]'2 (1.13)

This model has been applied to dynamical calculations by Cusson et al. and will be discussed in
chapter III. Let us here discuss the equation of state resulting from these relativistic mean field theories
for infinite nuclear matter, i.e. neglecting the space- and time-derivatives in the equations of motion,
and assuming thermal equilibrium. Figure 1.2 shows the compression energy, Ec(p) of nuclear matter as
calculated in the relativistic field theory [Bog83] with additional non-linear terms in the Lagrangian
(solid lines) and in non-relativistic many-body calculations using the variational method (dots) [Fri81].

It is found that the results of both approaches agree for p < 1.2 p, for any reasonable incompressibility
coefficient K and effective nucleon mass m* at saturation density p,. However, at higher densities
p > 1.2p, the nuclear equation of state is so sensitive to K and m™ at p, that differences of several hundred
percent arise even if K and m* are only varied within their presently assumed experimental 10-20%
uncertainties. These results demonstrate that even a precise determination of the nuclear properties at
normal ground-state densities does not enable us to predict the high density behavior of nuclear matter
with reasonable accuracy. A theoretical determination of these properties is also very difficult in view of
the fact that many body forces can play an essential role, in particular at high densities. Hence
experiments which probe the dense nuclear matter directly must reinvigorate the quest for the high
density equation of state of strongly interacting matter.

14. A phenomenological ansatz for the equation of state

Unfortunately a field theoretical treatment beyond the mean field approximation is not yet
developed. To describe the collision dynamics in a time dependent theory, semiclassical approaches
must be used which include the nuclear potential, but also the effects of two body collisions (see chapter
II). For these approaches phenomenological equations of state have been developed. In the following
we present the equation of state in such a phenomenological theory, and study further simplifying
assumptions. The compression energy Ec(p) incorporates phenomenologically the nuclear binding
energy, the Fermi energy of the nucleons, hard core effects and the exchange part of the nuclear forces.
[t is often loosely referred to as the “nuclear equation of state”. Two commonly used functional forms for
Ec(p) originate from the extended liquid drop model of Scheid and Greiner [Sch68]:

Ec(p) = Kilp = po)’/(18pp,) (L.14a)
Ec(p) = Kq(p — po)’/(18p3) (1.14b)

the first being referred to as the linear- and the second as the quadratic EOS, respectively, in accord
with their asymptotic increase with density.

L35. Finite temperatures
The temperature of the system is the second thermodynamic variable of importance for the equation

of state. The total energy of the system at finite temperature is being described by the interaction
energy plus the kinetic energy of the particles in the system. The latter is given by interacting relativistic
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" Fermi-Dirac and Bose—FEinstein distributions, hence the total energy per baryon is given by
[Hei79, Hah85]

Ag, 2V e? — m3c*
3 J d )
2ahc) exple/T] -1

mic”

/2 24
dmg, e\Ve —mic

d
i—oet1 p(27he)’ JZ exp[(e + U—w)/T]+1 ¢

nic

W=U+2 (p?m,.czfp #*
i=1 Pl

=)

o

+

(1.15)

~ where the first sum runs over the Bose-degrees of freedom, the pion, the n-meson, and heavier mesons,
while the second sum is over all the excited states of the nucleon — the 4 (1232) resonance being the
most important resonance in the GeV/nucleon energy region. Here it is assumed that all nucleonic
resonances feel the same interaction energy per particle U, which is assumed to depend only on the
total baryon density p [Hei79, Hah85]. The potential energy must be included into the Fermi- Dirac
distribution function in a selfconsistent treatment.

The baryons are assumed to be in chemical and thermal equilibrium and therefore have the same
chemical potential u. Both the chemical potential and the interaction potential for the bosons are taken
to be equal to zero. pf is the contribution of the Bose ground state to the density of the boson phases.
The connection between the baryon density and the chemical potential reads

)

2": 47rg; eVe?— mic* ;
& = (@mhey J exple + U-p)TI+1 (1.16)
The number of mesons can be calculated via
= g — 4mg,V eVer—-mict
=8 / -1} — - e .
& {exp(mr:/ ) } (277’16')3 2 exp[efT]-l de (I 17)

We also need the connection between U and the compression energy E.. For T— 0, eq. (1.16) becomes
(u - UP = m*c*+ (pClg)*° (1.18)

with C = 672(hc)’. In the same limit, we get for eq. (I.15)

W(T=0)=075X + U+

m*c* {SX 3m3c*

e ln[(X-i—Xl)/mcz]} (1.19)

where g=4, mc” =939 MeV, X = mc* + X, Xl=(pC!g)”3, assuming that for 7=0 only the
nucleonic ground state is populated, which should be true for small densities. This point can be
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questioned, if the nucleon-4 interaction is much stronger than the nucleon—nucleon interaction
[Bog81]. Expanding (1.18) and (1.19) for small densities, we obtain the well known approximation for
the energy
p—U=mc*+iX3Ime*+ . .. (1.20)
W=U+mc+ 0.3(0/ o) ([ m )67 po/g P + . . . (I.21)

The difference between the exact expression (I.19) and the approximation (I.21), is about 1 MeV for
plpo=3. By comparing (I.1) and (1.19) we finally get the relation between U and E:

2.4 3X 3 2 .4
Uip)= Bt m,—msx-ﬁsi {?—%—In{()( ¥ XI)/mCZ]}. (1.22)
1 1

For the pressure, we have [Hei79, Hah85]

=
h

d7rg; T e —
p=-7Y @Tif f e V(e2= m3ch) In(1 - exp[—&/T]) de
i=]
- dmg 3 7.4 2 oLl
T 3 @ahey | €V(E-mic)In(1+expl(n - U-e)T))de +p = (1.23)
i=op+1

2
nic

and for the entropy per baryon

U 1 =
S/Ny=Pl(pT)— % W 1 > g In(1 —expl-m,c*[T))+ (W — u)/T. (1.24)
P B i=

L.6. Pionization in hot systems — Formation of the hadron plasma

These equations have been used in simplified models of heavy ion reactions [Hah85] to extract the
temperature from pion multiplicities. The dependence of the number of pions per nucleon on the
temperature as calculated with the above approach, which includes all firmly established resonances, the
pion and the n meson, are shown in fig. 1.3. Observe that the pion yield increases rapidly with
temperature from zero to about one per nucleon at 7'=100 MeV, and then flattens out— nuclear
matter is gradually transformed into a hadron plasma. This becomes obvious in fig. L4, which shows the
distribution of pions over the various pion producing channels [Hah85]: At low energy, i.e. temperatures
of the order of 50 MeV or less, most of the pions reside in the Bose condensed zero momentum state. At
higher temperatures, the pion yield is due to nuclear resonances. The 4-(1232) resonance is of particular
importance in the BEVALAC energy regime, Ei.,,~1 GeV/nucleon, while the more massive
resonances become important at temperatures above T =100 MeV. Figure 1.3 can be used to extract
the temperatures in the moment of pion emission from the observed pion yields [Hah85]. One finds that
the temperature rises smoothly with the bombarding energy, reaches about 7= 100 MeV at the top
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Fig. 1.3. Pion multiplicities versus the temperature for baryon densities two times (solid line) and four times (dashed line) normal nuclear matter
density. The curves describe the properties of a hot and dense picce of infinite nuclear matter |Hah83].
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Fig. L.4. Various contributions to the pion yields fora C + C reaction. Dotted line: delta resonance; dashed line: free pion gas; solid line: Bose condensed
pions; dashed-dotted: heavy resonances [Hah85].

BEVALAC energies and can be extrapolated to temperatures exceeding the critical temperature for
deconfinement, T ~200 MeV, at energies in the range of relativistic heavy ion facilities presently under
construction at CERN and Brookhaven, E, ,, = 10 GeV/nucleon (see fig. 1.5). This equation of state is
too complicated to be of practical importance for many three dimensional model calculations. Therefore
we will now discuss simpler approximations widely used in practical applications to determine the
energy and density dependence of the thermal energy.
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Fig. 1.5, The freeze-out temperature of the pions calculated from the pion multiplicity data per nucleon. For Ey ., <400 MeV/nucleon, a freeze-out
occurs for py < p < 3py, for higher energies between two and five py [Hah85].

The simplest ansatz for the thermal energy is the classical ideal gas E;=3T! This is actually the
asymptotic value for the full non-interacting non-relativistic Fermi gas, i.e. it neglects the influence of
the interactions on the thermal energy, but it contains the Fermi degeneracy energy — this means
E;=3T is the full kinetic energy, the T=0 Fermi energy should be subtracted from the compress-
ional energy if this approximation is used [San85, Hah85). However, the classical approximation is
only reasonable anyhow if the temperatures are considerably larger than the chemical potential, i.e. the
Fermi energy at a given density. On the other hand, for temperatures below the Fermi energy, the
Fermi gas expansion has been used:

sZ
Exp, T)= A PP =—p* = E(p, §) (1.25)
2 283
where
T:i“_/ =£p3’3, ﬁ:(g_w)m_@f’
s 1o B 6 fic

here S being the nucleon’s specific entropy.

At high temperatures, the production of resonances can be treated explicitly using the statistical
approach developed above. However, a nice physical insight in the formation of resonances is obtained
from the simpler classical gas ansatz for a mixture of resonances [Cha73, Hof76, St681]. As practically
nothing is known about the N-N* and N*-N* interactions, let us assume that the N* interaction only
depends on the total baryon density. Therefore the compression energy E(p) is unchanged (assuming
that the subtraction of the Fermi degeneracy energy discussed above can be neglected). The first
interesting quantity is the thermal excitation energy of the isobars. The thermal energy of a free ideal
gas of resonances with mass m,c? is

ET- =

T (1.26)

bt
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The resonances can be viewed as excited nucleons (resonance pair production is not important at the
above temperatures). A Boltzmann distribution for the excitation probability of the ith resonance can
be assumed at temperatures much above the Fermi energy. Baryon number conservation then yields
the partitions [Hof76, Sto81]

y o wexp(BT) 1.27)

> 7 exp(— Ei/T)

where
3/2 i i . . 3/2
g mi (2 Spin(i) + 1) - (2 Isospin(i) + 1) "
e - — (1.28)

is the statistical weight factor of the ith resonance, and E; = (m; — m,)c” is the energy necessary for the
resonance excitation.
The density of the ith phase is then given by

pi=Aip (1.29)

and the total energy density e = pW is given as the sum over the energy densities of all phases
e=> e=> pW,. (1.30)

As all baryons are assumed to interact only via Ec(p), the energy per resonance i 1s
W. = mic*+ Ec+ Er, (1.31)

which corresponds to a mean energy per nucleon

Wi(p, T)= moc*+ Ec+ 2 M(Er, + E) (1.32)
where the mean thermal energy per baryon is

&:ZME, (1.33)
and

AMC2= 2 A.;Ef (1'34)

is the mean additional rest mass due to the occupation of the resonances with m; > m,. A free pion gas
can be included via a polynomial fit [Mek78] to give the pionic energy per baryon
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E, =1.85p,(TIm,.)"*m,, . (1.35)

That this is of little importance at higher temperatures has been seen above in the evaluation of the
relativistic integrals, because most of the pions stem from the decay of the A resonance. The direct
production of pions due to pion Bremsstrahlung has also been studied, but we will not discuss this here
[Vas80, 84].

The pressure is evaluated from the relation

JE iW(p, T
pe_ (ﬁ) o i 1) (1.36)
oV/g ap s
Taking nucleons only, we immediately obtain
dE, dE+(p, o)
= e T e Sl
PPt Pr=p q +p e . {.37)
For the compression energy (I.14a) we obtain the compression pressure
K
o= -p3). (1.38)
18p,

If the temperatures are small compared to the Fermi energy, the thermal pressure of the Fermi gas is
given by

P_I_ — %ﬁ ]Szpﬁfﬂ - %Bp l,f’3?"2 (]-39)
which leads to the relation
Pr=3pEy. (1.40)

This equation is valid not only for the low temperature Fermi gas limit, but in fact it holds, in the
non-relativistic case, for any temperature and is also valid for a classical ideal gas as can be seen directly
from PV = NkT, which is equivalent to P=p- T and with Ex=3T one has Pr=3%pE.,.

It is sometimes of practical advantage to use this form for the pressure if resonances are included:

Pr=a(p, Ex)pE;. (1.407

Here the cooling influence of the reasonance s absorbed in the density and temperature dependence of
a. Calculations then can be carried out with the usual form of the equation of state, eq. (1.37), supplemented
with the temperature dependent a. Since a significant portion of the “thermal” energy goes into the
excitation of hadronic resonances at higher bombarding energies, the relative reduction of the temperature
is greatest here. This also reduces Pr, since part of the thermal energy now goes into the additional rest
energy, Am, of the resonances. The coefficient a(p, Er) is almost independent of the density and depends
strongly on Ej.
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L7. The liquid—vapour transition

At intermediate bombarding energies, E,.,= 100 MeV/nucleon, the temperatures are not high
enough (7 <20 MeV) to cause substantial hadronization. However, another interesting phenomenon
has been predicted to occur in the late stages of these collisions, namely when the density has dropped
below normal nuclear matter density [Dan79]: The pressure diagram P(p, T = const) shown in fig. 1.6
[St683] exhibits the maximum-minimum structure typical for matter with long range attractions and
short range repulsions, i.e. a van der Waals gas. This can be interpreted as a liquid—vapor phase transition
in low density nuclear matter. The nuclear equation of state exhibits a critical point at p. =~0.4p, and
T. =18 MeV. It turns out that these values are not too sensitive to the details of the assumed interaction
[Kap84, Cse85]. The liquid and the vapor phase can coexist in a well determined density regime once the
temperature is less than the critical T, (the shaded area in fig. 1.6). We would like to point out
that moderate T values are also achieved in the late expansion stage at higher energies due to the
adiabatic cooling. The Gibbs condition for thermodynamic stability of the two phase system is

Tliquid = Tgas ]
Pliquid = Pgas: (]41)
PLquuid = ju'p_as .

3

_ pressure (MeV fm™3)
P(T)| ot constant
temperature

T{MeV)

+2F

+I

super
cooled

phase rixture

Of5 1.0 1.5
DENSITY p/p,

Fig. 1.6. The liquid gas phase transition in nuclear matter in the pressure density plane [Sto83].
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At the critical point, P.(p,, T.), the isothermal has a saddle point, while for 7> 7. the isothermal
pressure is monotonic. Then the liquid-vapour phase separation no longer exists and this phase is
therefore called the fluid phase.

The occurrence of a liquid-vapor transition in heavy ion collisions should manifest itself by
substantial changes of the mass distributions of light and medium heavy fragments. We would like to
point out the importance of the study of finite size effects and time scales and a detailed description of
the correlations in the nuclear system in the late break-up stage of the reaction. For a detailed
discussion we refer the reader to the recent review article of Csernai and Kapusta [Cse85].

1.8, Abnormal matter

The possible existence of density isomers in nuclear matter has been suggested repeatedly by many
authors [Feed6, Bod71, Mig72, Lee74]. Lee and Wick observed that the non-linear scalar meson
self-interaction model — the chiral sigma model — can lead to an abnormal state at high density,
plpo=3-5. They found that chiral symmetry is restored in this state—i.e. the nucleons become
massless. The binding energy of this state can be enormous, leading to secondary minima in the
compressional energy which are several hundred MeV/nucleon deep. Another mechanism proposed to
create secondary minima in Ec(p) is the collective excitation of zero frequency spin—isospin modes in
nuclear matter which carry the quantum number of the pion, therefore called pion condensation
[Mig72, Wei76). These conjectures have spurred considerable activity. However, it turns out that many
of these proposals did either not attempt to describe the nuclear equation of state at other densities or
else, as in the case of the linear sigma model, the description of the known properties of nuclear matter
was incorrect. Since the existence of isomeric superdense matter is speculative, it is desirable to study
this question in models which describe normal nuclear matter in a selfconsistent way. Figure 1.7 shows a
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Fig. 1.7. Possible abnormal states with bends or secondary minima in E(p) caused by the delta resonance coupling, as predicted by the relativistic mean
field theory [Bog82], which is in agreement with known nuclear properties at ground-state density.
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recent calculation [Bog82] which fulfills this requirement and still predicts abnormal superdense states.
The model used is the relativistic mean field theory discussed above, which is well able to describe
normal nuclear matter. The abnormal state comes in by introducing the A-resonance into the theory.
The occurrence of abnormal state depends now on the strength of the scalar interactions of the 4. If the
coupling constant for this interaction is only one third larger than the corresponding coupling of the
nucleon, secondary minima occur in Ec and the abormal state is predominantly populated by the
resonance rather than the nucleon. A similar mechanism has been discussed at high temperatures,
leading to abundant resonance formation above a critical temperature [Hei79, Gar79]. Since the scalar
coupling of the 4 is unknown, a possible existence of these baryonic resonance isomers can not be ruled
out a priori. Only by doing a careful analysis of high density experiments can this question be settled.

1.9. Deconfinement and chiral transition — Creation of quark matter

A transition from the deconfined quark-gluon plasma phase to confined color singlet states has
(probably) occurred during the rapid expansion of the early universe. Temperatures were very high but
the net baryon charge was small. Therefore one can assume zero baryon chemical potentials in
calculating the thermodynamic properties of strongly interacting matter in the early universe. It is
sought to re-establish these conditions and thus enable a study of quark deconfinement in the laboratory
via nuclear collisions at ultrarelativistic energies, E., >20GeV/N [OM79, OM80, QMS82, QMS3,
QM84; see also the recent review Cle85]. The energy densities attainable in both the central rapidity
region, i.e. the nucleus—nucleus center of momentum frame, as well as in the fragmentation regions
have been estimated to be 1-2 GeV/fm®. This range of values coincides with the energy densities at
which the deconfinement transition is predicted by SU(N) Yang Mills theory (pure gluon matter) on the
lattice [Cle85]. The Monte Carlo data indicate a first order phase transition at temperatures of about
T~ 190 MeV and zero baryon density, as seen in fig. 1.8 [Eng82].
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Fig. 1.8. Normalized energy density versus inverse strong coupling constant as obtained with lattice QCD calculations using Monte Carlo methods
[Eng82]. The crosses are the pure Yang Mills theory, the open circles include effects of dynamical fermions. A rapid change to a deconfined state is
predicted at a temperature of about 200 MeV for zero chemical potential.
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Unfortunately to date there is only very limited information available about the high density (high
chemical potential) region. Lattice QCD calculations of the thermodynamic properties of a plasma with
light quarks included are hampered by severe theoretical difficulties: The introduction of fermions on
the lattice is at this time only feasible in the quenched approximation, i.e. quarks have to acquire a large
mass m, > T, so that the hopping parameter (I/mq) expansion converges [Cle85]. Detailed non-
perturbative calculations for the situation expected to occur in violent nuclear collisions, a plasma of
light quarks and antiquarks plus gluons, can therefore not be studied to date. Furthermore, inclusion of
fermions requires that the charge and baryon number assume integer values for color singlet states.
These problems have been studied but so far without success.

The behavior of the confined phase, i.e. hadron matter, can be described by the effective relativistic
field theory of strongly interacting matter discussed in section [.2. This approach has been applied
successfully to describe known properties of nuclei and nuclear matter. Though developed for normal
nuclear systems, this theory may turn out very useful for a phenomenological approach to the phase
transition [The83]: A sharp rise is observed for zero chemical potential in the normalized energy density
e/T*. A phase transition occurs at a critical temperature 7, = 190 MeV, with quite similar ther-
modynamic appearance as the one observed for SU(2) and SU(3) Yang Mills theory on the lattice; the
order of the phase transition depends on the strength of the coupling constants [The83]. Furthermore,
chiral symmetry is effectively restored in this theory just above the critical temperature. The theory does
not incorporate deconfinement, though.

Hence, a different approach is necessary if one wants to study deconfinement and the quark-gluon
plasma phase at least qualitatively. One can approach the transition region from high temperatures,
making use of perturbative QCD to estimate the thermodynamic properties of a plasma of light quarks
and gluons at finite chemical potential u and temperature 7. We would like to emphasize that sizable
non-perturbative corrections can be done, but the results should still be taken only as what they are
intended to be, namely a qualitative handle on the unsolved non-perturbative treatment [St684, Cle85].

For zero temperature, the thermodynamical potential can be written as a perturbative expansion P
in @ with terms up to order o2 Ina, a vacuum pressure contribution Avac (the Bag constant B in the MIT
model [Cho74]) and an instanton term P, which takes non-perturbative effects partially into account
[Shu80]:

P = Ppurl + F’insl - AV.’!C 2

4

M
f41'1*2

20 o
Poe=n [] R In(an) - 0.74n, + 7.78] ; (1.42)

iz 8 5/3
‘Dinst = RCAV;IL'”B ’

where n; and n, are the number of quark flavors and baryon density, respectively and C=
1000 MeV fm®. The dilute instanton gas term increases the pressure substantially, which results in a
large decrease in the energy per baryon. In fact, the energy per baryon of the quark phase falls below
the nucleon mass for a wide range of densities. Therefore this term is often omitted from the
calculations.

The thermodynamical potential of a finite temperature plasma at non-zero chemical potential has
been calculated up to third order in g = (4ma)'"” [Kap79):
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The g° term in this expansion corresponds to the plasmon term in quantum electrodynamics. For small
temperatures, it does not converge to the zero temperature perturbation expansion. On the contrary,
this term contributes a finite entropy

S(T=0)/V~ dQ/éT = const u’ (1.44)

to the system even at zero temperature. Furthermore, its contribution to the energy per nucleon, which
is zero (as it should be) for zero temperature, is large and negative for finite temperatures. In fact, the
excitation energy per baryon is decreasing with increasing temperature. Because of this unphysical
behavior the plasmon term must be omitted from further calculations.

Following renormalization group arguments, the running coupling constant « can be written as

47 1
= z 31 A2 (1.45)
11— 50, In MY A 00

where n; is the number of quark flavors involved, M is the effective momentum scale in the matter
and Ay, is the scale fixing parameter of QCD. The effective momentum scale is estimated to be
[Kap79]

_— E E@: (1.46)

where the sum is over all the constituent species present, each with a number density n;. (p*); is the
thermal average of the three momenta of species i. In the case of massless quarks, the above formula
reduces to:

%(16f dpp"Np+6Zf dpp“np)
ME= 0 f Jo

16J dpp®N,+6 >, J dpp’n, (1.47)
0 F (4]

where

i ] 1
n = aplpt )T +1 T epl(pr @I Tl e explpT)=1°

The Bose integrals are evaluated using the identity:
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-}

[= —1 dz = I'(x) {(x) x (1.48)

0

where I' is the factorial function and { the Riemann zeta function. The Fermion integrals for arbitrary
chemical potential and temperature yield

’ (16-4126) T +6 3 de p4np)

M?> :§ - ) (1.49)
(16-2- [3) T+ 6§f: L dp pznp)
They can be solved analytically for the limiting case T = 0 and # =0 only. For T=0
NP $p? . (1.50)
Foru=0
M?*=15622 T, (1.51)

For finite x and 7T the integrals have to be evaluated numerically. It is interesting to note that the
numerical result can be approximated by M?=~%u2+15.622 T2 This expression agrees within a few
percent with the correct result. The theory therefore has two free parameters, namely the scale fixing
parameter Ayonm and the energy density of the real vacuum, Avac. Ayom and Ay ac can be determined
by adjusting the pressure and energy density as calculated in this approach at zero chemical potential to
SU(N) Yang Mills Monte Carlo data. One obtains [Cle85] Ayonm = 100 MeV and Avac =190 MeV/fm>.
These values are often adopted as reference parameters for simple calculations.

The energy density e, entropy density s, and baryon number p of the deconfined quark-gluon phase
are obtained from the thermodynamical potential via

e=—pudQdu — ToaT + 0 (1.52)
S/V=—080/aT (1.53)
p=—300du. (1.54)

The pressure P and energy density e of the plasma tend towards *B,,., respectively, for u— 0. The
running coupling constant exhibits, however, a pole at chemical potentials on the order of 100 MeV, so
the calculation can not be continued below this value of w. It is interesting to note that this chemical
potential corresponds to zero baryon number density. Hence, the unphysical pole in the coupling
constant can be avoided by plotting the thermodynamic variables as 2 function of the baryon number
density p.

To do this let us use for simplicity the MIT bag model which describes hadrons and — for this
matter —also quark-gluon plasma as a volume in space from which the true vacuum has been



1

expelled — it is filled with color carrying objects, i.e. quarks and gluons, which can not exist in the true
vacuum. The bag is a color singlet state, for which a finite energy can be calculated. One can show
[Cho74, Chi78] that this simple bag model fits the mass spectrum of the light hadrons quite convincingly,
if the following conditions are fulfilled:

(a) The bag, i.e. the volume in which the quarks move, has a constant positive energy density,
B = Ay, Therefore the total energy increases infinitely with the bag volume. This bag energy accounts
for the quark confining potential, which does not allow the separation of single quarks from each other.

(b) The zero point motion has to be included for quarks which move within the small volume of a
hadron.

(c) The energy of the quarks is included by solving the Dirac equation for a bound quark state inside
the bag.

(d) Low-order terms in the quark-gluon coupling constant are additionally included to take into
account the mutual interactions more realistically.

For the extended quark gluon plasma the zero point motion can be neglected, as the bag here is
supposed to be much larger than a hadron bag. For the kinetic energy of the quarks the Fermi gas
expression for ultra-relativistic particles yields for zero temperature
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E; = 3(6m1g,) Phepy” . (1.55)

From the quark Fermi energy, the Fermi pressure may easily be calculated as

which yields

Pr,=3(67°/80) Phic p3’ . (1.56)
Thus, the Fermi energy and -pressure of the quark gas are related via

Pr, = 4poEo- (1.57)

The latter relation hold not only for T = 0, but is actually valid for all temperatures, if massless particles
are considered. The interaction of the quarks can be calculated from the running coupling and leads to
an effective rise of the density-dependent Fermi energy [Sto677].
The density-dependent ground-state energy of the quark bag is then given by
} A 3 6‘}1‘2 1/3 5 A .
Epoo = —2C 4+ = (—) he(1+ a)py’ = —=+E; . (1.58)
BAG Po 4\ g, ( Q Po Fo

Epag is depicted in fig. 1.9. A typical curve for normal nuclear matter is also shown. Observe that near
the normal ground state of nuclear matter, with the parameters used by Chodos et al. [Cho74] the quark
matter energy is approximately 300 MeV/nucleon above the corresponding nuclear matter curve; here
we used Ay, =56 V/fm® and a constant a.=0.5. However, for smaller B and «. values, this
difference is much smaller and the quark energy may be lower than that of nuclear matter at high

o ——————————————— e e




298 H. Sticker and W. Greiner, High energy heavy ion collisions

AJ Elp)/N [GeV]

Qe = 0.5
025
S =Tl
A L -#-nucleans
T =
e | B
e e, p (GeV/fm™)
N PLAS
2} QUARK‘GLUO i
! HADRON ]
MATTER
e p
S B M e 100 200 300 400 500
6 8 P/B] Mg/3 (MeV)
Fig. 1.9. Energy per baryon of cold quark matter (solid lines) as Fig. L10. Phase coexistence region of the quark-gluon plasma and the
compared to nuclear matter (short dashed). The contributions of hadron plasma in a simple two phase model [Mol84b, Sub85] is shown
volume bag energy (dashed-dotted) and kinetic Fermi energy (long in the energy density-chemical potential plane. The dynamical path as
dashed) are shown for various  strong coupling  constants obtained in the fluid model js sketched by the line with arrowheads.

a, [St677b, 80c].

quark matter is apparently energetically disfavored as compared to ordinary nuclear matter: Other sets of
parameters and calculations with running coupling confirm this result [St684]; for Ay, = 100 MeV and
Avac =190 MeV/fm? the minimum energy per baryon of the deconfined phase is about 1.34 GeV, i.e. at
an excitation energy per baryon 0.4 GeV higher than the ground state of nuclear matter. Only at high
densities would the deconfined state be energetically favorable compared to confined matter at the same
density. Absolutely stable quark matter would result, however, if & =0 (see fig. 1.9).

The energy density at the crossing of the zero temperature compression energy of the quark matter
equation of state with a conventional nuclear compressional energy is (1.4-1.8 GeV/N)- (0.6-1.2
baryons per fm®) = 0.8-2.2 GeV/fm® hence in the same ball park as the critical energy density obtained
from Monte Carlo data at # = 0. The energy per particle depends on the choice of Avac and Ayop,.
The energy gap is 0.9 GeV/N when Avac is increased to 450 MeV/fm®. These excitation energies may
well be achievable in the fragmentation region of ultrarelativistic nuclear collisions and in the central
region of stopping collisions.

Figure 1.10 shows the finite temperature phase equilibrium calculation done with this simple model
[M0184b,Sub85]. Observe the broad phase coexistence region of the quark-gluon plasma with the
hadron plasma. A latent heat of about one to two GeV/fm® is to be released from the transition from
the deconfined phase to the confined phase. This may prove a major handicap for the detection of the
quark plasma if it is formed in ultrarelativistic nuclear collisions: Any signal from the interior of the
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system has to travel through the broad region of the phase coexistence and might be lost by the time it
arrives at the surface of the system. This is particularly important for strongly interacting probes like
antimatter [Hei84, Sub85) and strangeness [Raf82, Koc83], which will be subject to the complicated
hadronic reaction dynamics which has to be tackled on top of the hard problems connected to the
confinement problem itself. We will in the next chapter develop the theoretical framework necessary for
the quantitative description of the collision dynamics.

II. Many Body Theory of Nuclear Collisions — Finite Time Scales in Finite Systems
11.1. Microscopic kinetic theory
I1.1.1. Hierarchy of theories

A comprehensive theory of nuclear collisions at high energies should describe relativistic quantum
mechanical wave packets interacting simultaneously with all other wave packets via the correct two
nucleon interaction for scattering inside the medium. Although this already neglects correlations, such a
quantum mechanical treatment has not yet been attempted, but even the formulation of the interaction
itself poses formidable problems. A natural suggestion—and one that has been very successfully
employed in the cascade calculations—is to use measured free N-N cross sections as the primary
physical input. This is legitimate if only binary N-N interactions occur and the scattered nucleons always
reach their asymptotic states before encountering another nucleon; in other words: if the system is
dilute. The cascade models and all other models that assume N-N scattering to occur at a point require
diluteness.

If one does not want to assume diluteness, the simultaneous interaction of many nucleons has to be
allowed. In this case scattering can no longer be described in terms of asymptotic states and cross
sections, but an explicit interaction potential is required. The models that use this approach generally
describe the nucleon motion in terms of classical trajectories and forces and are therefore often called
classical dynamics models. In the relativistic realm there are huge problems even with the formulation
of the theory — although it is possible to replace the Dirac equations by relativistic Newton's equations,
the meson fields do not obey classical equations even approximately. The only possibility to obtain a
solvable model seems to be to ignore second quantization and treat the meson fields classically. The
model which comes closest to solving the many-body aspect exactly are the non-relativistic equations of
motion with two body potentials, which are actually solvable. The major problem associated with this
approach is that classical potentials provide only a poor approximation to N-N scattering and to nuclear
binding properties. We will start the discussion of dynamical models with this approach.

IL.1.2. Newtonian force model — The classical limit

Consider the classical I" space description of an A body system with fixed degrees of freedom: we
have in mind the colliding system of A = Ap+ A nucleons. Recall that I" space is a 6A dimensional
phase space and the state of the system is represented by one point in this space. Let
p(ry, ..oy Pas P1s- ooy Pas £)dI” be the probability to find the system at the point (ry, ..., Fa, P, . .- . Pa)
in I" space at time 7: p is the A-body distribution function. The classical Liouville equation then follows
from considering p as a probability fluid:




