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an incident high energy nucleon and a nucleon in the nucleus is short compared to the time between
collisions of the nucleons in the nucleus, he inferred that the high energy reaction could be modelled as
a cascade process. Collisions occur between the incident particle and those particles which are directly
struck in the nucleus. This model was first investigated in two dimensions in 1948 by Goldberger
[Gol48] who performed his calculations by hand for the case of high energy neutrons interacting with
heavy nuclei. The first fully three dimensional calculations were done by Metropolis et al. in 1958
[Met58] for incident protons and neutrons using the MANIAC computer; they also added a second
stage to the cascade calculation during which the excited residual nucleus evaporates particles, as had
also been suggested by Serber.

Many others have contributed to the development of the intranuclear cascade model. The two most
commonly used versions of the cascade code in the theory of high energy heavy ion reactions are due
to Yariv and Fraenkel [Yar79,81] and Cugnon et al. [Cug80-84]. What is the intranuclear
cascade model as it is used in these codes? It is a microscopic simulation of a nuclear reaction at high
bombarding energies. Nuclear collisions are treated as a superposition of independent two body
nucleon—nucleon collisions. Nucleons move on straight line trajectories (since there is no field) until
they collide with a probability given by the free nucleon—nucleon scattering cross section. The creation
of deltas, pions, and other particles and the interaction of all these particles occurs according to
experimental cross sections. The intranuclear cascade models incorporate relativistic kinematics. Target
and projectile nucleons are initialized in configuration and momentum space with random Fermi
momenta and then Lorentz boosted to an appropriate frame, where the collision simulation proceeds.
Momentum and energy are conserved in the particle—particle interactions and the evolution of the
system is followed up to a time where the majority of interactions have ceased. Collisions are only Pauli
blocked according to a simple criterion, say if the total center of mass energy is less than the Fermi
energy in ground state nuclear matter or if the outgoing particle would scatter into momentum space
regions originally occupied by projectile or target.

Both the Yariv—Fraenkel and the Cugnon cascade satisfy the above criteria. They differ in two
respects: (1) the particles in the Yariv—-Fraenkel simulation sit in a potential well of constant depth V;
(2) in the original Yariv—Fraenkel approach the incoming particles (projectile nucleons) are cascading
independently through a medium (the target). In the updated version, this scheme has been improved
by including the so-called cascade—cascade interactions —for a given cascade particle (a particle which
has undergone at least one collision) the other cascade particles are acting as a medium superimposed
on the original target medium.

In the Cugnon cascade, one has the problem that the nucleons are not bound; hence one may get
spurious effects due to nuclear instability, see fig. I1.4 [Mol86]. It is possible to bind the nucleons by
letting each nucleon move only with the beam velocity until it interacts with another nucleon, at which
point it ‘remembers’ it’s Fermi momentum. Note however that the bound Cugnon cascade is theoretic-
ally not very satisfying either, since in real nuclei, nucleons can travel in all directions.

I1.2. Nuclear fluid dynamics

I1.2.1. Conservation laws and the transition to local equilibrium

Just as in the classical case, one can derive from the VUU equation a general transport equation for
a function f [Mar85, Mol85]. Assume for simplicity that the external force F =dp/dr is momentum
independent. Let us also re-write the VUU equation in the simple form:
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(dffdt).,,, = dfldt +v- offor+ F - oflap. (I1.46)

Integration of this equation over p produces:
B V- (ou) = j & p(Afidt)n (11.47)

The term containing the external force vanishes by partial integration. Now the collision term describes
the net rate of gain of particles at position r and with momentum p. Since the collisions take place at a
point and only redistribute particles in momentum space while conserving their number, the integral
over all momenta must vanish. Thus we get the first equation of nuclear fluid dynamics, the continuity
equation:

ffot+ V- (pu)=0. (I1.48)

To obtain an equation for the momentum density, we integrate the VUU equation with a weight of »:

p . 9
;(pu)+V-Jd3puvf+ZEfﬁa—jd"pzﬂ. (11.49)
I )

Again the collision term yields a vanishing contribution, because momentum is conserved in the
collisions locally. In the second term on the left, one may separate an average and a fluctuating part:

Jd3p uvf=fd-‘p uuf+Jd3p (v=u)(v—u)f+fd3pu(t;—u)f+Jd3;J(v—u)uf. (I1.50)

The last two terms vanish because the average of v — u is zero. The fluctuating part defines the kinetic
stress tensor:

P(r0)= [ & 0= - (r.p.1). s1)

Note that the pressure is identically zero only if all the particles have exactly the mean velocity . The
external force contribution can be rewritten using

af a
,—=—(pf)— & I1.52
P a0 p, (pf) — 8;f ( )

and then the first term on the right hand side vanishes in partial integration. The momentum
conservation equation is then:

d
5(,:m)w-(,mm):—v-m%p. (IL.53)

Define the energy density as:
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pE = % J Ep o fir, p, 1). (IL.54)

Then through the introduction of the average velocity pE may be split up into a flow kinetic energy and
a thermal contribution:

pE="pu+ 7 | (0= fr,p. ). (IL.55)

Integrating the VUU equation with a weight of mv’/2 gives

d m m df
9 (oE +V.st B +F‘Jd3 LA ) 11.56
m(ﬂ) pzvvf g (I1.56)

where again the collision term gives no contribution because it conserves kinetic energy of the particles.
The second term is split up into a number of parts:

JdSP% vvzfzJ’ dap%(v—u}z(v-u)f+fd3pf%1u2u+mJ.d3pu-(v— u) (v—u)f

+Jd3p%(”_u)2uf:q.p5u+u.p (1157)

wherein the first term ¢ describes the transport of thermal energy by thermal motion (ther-
moconductivity). The second and third term are combined to give the transport of total energy by
collective flow and the last term describes the work done against the stresses. Finally the external force
contribution can be re-written by partial integration [Mol85]:

d
F-Jd3p£v2£=—F-Jd3puf——-pu-F (11.58)

and the conservation of energy equation reads:

%(pE)-i-V'(pEu):—V'(u-P)+pu'F. (11.59)

These then are the equations of nuclear fluid dynamics, which assume a local equilibrium, in contrast to
the more general VUU theory which includes non-equilibrium phenomena. These are macroscopic
equations which can be solved in three dimensions for two interacting nuclei.

11.2.2. Fluid dynamics and the nucleon mean free path

For the applicability of the fluid dynamical concepts it has to be ensured that fast equilibration and
thermalization of the incident momentum and energy occurs in high energy heavy ion collisions. This is
the case if the mean free path A is small compared to the typical dimension, L, of the system
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AL<1. (I1.60)
The mean free path A is given by
A=1/(o"p)

where o is the total nucleon-nucleon scattering cross section and p is the actual nuclear density. For
normal nuclear density p, and a free n-n scattering cross section owy~30mb at high energies
(E, ., >200MeV/n), the mean free path is A~2fm, which is not too small against the nuclear
dimensions L~ 10 fm [Sch68, Sch74a, Sch74b].

High relative momenta between nuclei, signifying no overlap in phase space, as well as the large
longitudinal momentum decay length calculated from the free n-n scattering cross section were
interpreted as a complete transparency for the two nuclei at high energies and as the death for
compression (shock) waves at energies above 1GeV/n [Sob75]. However, in the “formation flight” of
ensembles of nucleons, collective scattering phenomena, namely the enlargement of the cross section
due to precritical scattering close to phase transitions [Gyu77, Ruc76] and compression effects cannot
be neglected, so that the scattering cross section and the density can be modified drastically leading to a
decrease of the mean free path

AT A (IL.61)
a-coll p

The precritical scattering of nucleons in the vicinity of a phase transition is in analogy to the
critical opalescence, which is characterized by the great enhancement of the scattering cross section of
light near a liquid-gas phase transition, or of the critical scattering of neutrons in ferromagnets near the
Curie point [Sta71] or—as a last example —the critical scattering appearing in two colliding plasma
beams: When the drift velocity of the two plasmas exceeds a critical value, unstable plasmon modes
appear, resulting in a growth of strong electric fields, which greatly reduce the penetration depth of the
two plasmon beams in comparison to values estimated from free two body collisions. Thus the vicinity
of a phase transition-e.g. the onset of pion condensation or gluon condensation is expected to be
marked by the occurrence of critical nucleon-nucleon scattering, i.e. a large enhancement (a factor of
2-4 for pion condensation) of the density dependent n-n cross section [Gyu77, Ruc76].

This would mean that even at bombarding energies above one GeV/n nuclei do not become
transparent to each other: On the contrary, very violent collisions can be expected. One should keep in
mind, however, that nucleus-nucleus collisions are a quantum mechanical process. Hence —in the sense
of quantum mechanical fluctuations — under the same initial conditions processes with violent ran-
domization (i.e. the occurrence of pronounced shock waves) may occur as well as processes with less
pronounced interaction. It is a formidable experimental task to separate the former from the latter.

Indeed, recent experiments (which we shall discuss later) show that up to lab-energies of 4 GeV/n a
considerable part (~30%) of the total cross section is due to violent events with very high multiplicities
and large momentum transfer.

11.2.3. Nuclear fluid dynamics and quantum mechanics

Immediately after the discovery of quantum mechanics, the formal analogy of quantum mechanics to
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fluid dynamics had been discovered [Mad26]. One uses the Schrodinger equation

h*A

2m

d
b+ V(g =1ih 7"? (11.62)

and the separation of a phase S in the wave function
U(r, 1) = ¢(r, t)-exp {imS(r, 1)/h} (11.63)

one gets

(— h—2v2¢+£¢(vsf—ihv¢>-v’5—ﬁ¢v25+w) . exp[imS/h]
2m 2 2 exp

] S .
= (1 b ¢) -explimS/h] . (11.64)

Multiplication by * = ¢ - exp(—i mS/#) and separation of real and imaginary part results in

= (VS)Z—h—zvzm Vo = - ¢>H—S (I1.65)

7 ¢ 2m g at '
and

dIplat+ VP - VS +36V>S =0 (11.66)

respectively. The last equation may be transformed to
d
;cb? + V- (4°VS)=0. (11.67)
{7

This is nothing else than the well known continuity equation describing the conservation of probability
density in quantum mechanics. According to (I1.63) the probability density is

p(r, t)= ¢7(r, 1) (I1.68)
and the probability current is
j(r )= ¢*r,1)-VS(r, 1) (I1.69)

following from the definition

h .
jr )= — [0V — yVyr]. (11.70)
2im
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From (I1.68) and (I1.69) a velocity field
v(r,1)=VS(r, 1)

can be deduced with V X » = 0. Equation (I1.65) may be treated similarly. After some manipulations and
using eq. (I1.67) one finds

a h* $V*
—(m@*VS)+ V- (mp>VSVS) = -V V + qSZV(“ ¢ ¢) (I1.71)
ot 2m ¢2

and with the definitions of p and » one finally obtains
] h? \/pV’
= (mpz)+ V- (mpov) = — pVV - pV(**M), (I1.72)
at 2m P

that is identical with the conservation equation of the momentum with an external force due to a
potential V. Only the last term on the right-hand side is new. It depends solely on density and may be
interpreted as an inner pressure caused by quantum mechanical effects. It disappears in the classical
limit of #—0.

Equations (11.67) and (I1.72) have been obtained for the probability density of one single particle.
Thus the conclusion of a quantum mechanical many body system, behaving like interpenetrating fluids
with interaction, is obvious. It is important to note that (c.g. in contrast to kinetic theory) each single
quantum mechanical particle is a continuum itself. Therefore the problem of granulation of the
microscopical density does not occur. However, the main problem will be a reasonable definition for the
many particle densities and velocities. An important question will be, whether all quantities entering
the equations of motion may be described as functions of these macroscopic variables (and a
temperature) or not.

I1.2.4. Nuclear fluid dynamics and TDHF

For many-particle systems it is also possible to derive continuity equations. However, the procedure
is very lengthy as has been seen above. For reasons of simplicity, we will therefore restrict ourselves to a
deviation by analogy of the hydrodynamic equations from the TDHF equations. That is less general but
the principal argument [Won77, Mar77] is the same as the one used above in chapter II.1. The TDHF
equations are well known:

: d hz 2 e 1) ¥ X 1
h= e = =SV (n O+ t)fd'r V(r—r)% Yia(r', 1) (7', 1)
=S ) [ & V-1 gs 0 (0 w.73)
B

where ¢, is the single particle wave function and V(r - r’) is the two particle interaction. In analogy to
the results of the previous section we define a many-particle density and a many-particle current density
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p(r,1)= 3 2(r, 00, (. 0) = 2 b1, 1) (11.74)
i )= ja(n )= 3 ¢i(r ) VS.(r 1), (11.75)

with a separation of the one particle wave function as above,

o, (r. 1) = ¢,(r, 1) -expli mS,(r, 1)/h] . (11.76)

In complete analogy to the previous section, we then obtain again a continuity equation with the mean
collective velocity being

ol )= J(r. (7, )= 3 8305 0 VS, (5.0 / S 6. 1)= {2 puve} /| z ot (11.77)

p. and v, again are the single particle quantities. The collective velocity therefore is the weighted
average of the single particle velocities. Due to the average the velocity field v is no longer curl-free.
The derivation of the momentum equation again is completely analogous and can be written

= (F°2m)V*)¢,
e

J 2 1 & 20| Pa 3 7 i
~ir)+Y- 2 (G2VSIS)=-— 3 qb,,Viq() ( }—ﬁvjd-rf Ve
I = m -, m

2

1
B J &S VVr-7) (1178)
m

2 ana(r)

This form is not yet usable for a fluid dynamical description. For the transition to hydrodynamics all one
particle quantities have to be expressed by p, j and by a temperature field T.
We will start with the second term of eq. (IL78). Introducing the collective velocity v (I1.77) we get

V-3 (9295,75,) = - (pov + 3 62(TS, - 0)(7S. - 0))
=V (poo + l P)
= e b (11.79)
with P being — in analogy to the kinetic theory, cf. II.2.1 - the stress tensor

P=m> ¢2(VS, - v)(VS, — ), (11.80)

which results from the statistical deviations of the single particle velocities from the mean value v.
In order to reduce the potential terms in eq. (I1.78) we will use a separation of the n—n force into a short
range, density dependent part V, and into a long range part V; [Bet68].




*

328 H. Stiicker and W. Greiner, High energy heavy ion collisions
V(r=r)=V.(p(r)s(r, ')+ V,(r— r') . (IL81)

The first (direct) potential term in (I1.78) then becomes |

[ @ V-1 p)= Viotr) o)+ Ui, sy |
U, 1s the mean potential, stemming from the long range interaction

Ui(r) = f d*r Vi(r=r) p(r'). (11.83)
For the exchange part, the Slater approach is used, yielding [Mar77]

1 5 4 2 P d 3}

—[ereve-n|Spinne)| =-LvLwer,. (11.84)

m @ m  dp

Wi(p) stands for a contribution to the exchange force stemming from the binding energy per nucleon at
a given density p, whereas F, reflects the Coulomb part of the exchange force. F, cannot be further
simplified. Fortunately, it is small in most cases and can be neglected. Particularly in high energy
collisions the Coulomb interaction does not play an important role.

The direct short range term as well as the exchange term are not explicitly calculated because they
are contained in the effective part of the density dependent binding energy resulting from nuclear
matter calculations [Sto79]. That is one way quantum effects can be included effectively in the equation
of state.

The Navier-Stokes equations of motion of a viscous fluid, i.c. a fluid with some non-equilibrium
properties (thermal conductivity and viscosity, which can be physically associated with finite mean free
path effects) can be written as continuity equations for the baryon number p, momentum density pv, and
energy density pE with the gradients of the pressure P, the potentials V, and the viscous stress tensor,
P, as source terms,

r;]p s 6i(pvi) = 0 -}
1 1
5(pv) + d(pvp) = = — P +— [0 (0w, + G = 38,0e0) + L0025,V (11.85)
m

(?r(pET) + {}!(pEIU!) = K(;fT + ijj[*PTcsﬁ + ??((?;ﬁj + ij)g - _%ﬁfjé'kvk)-k géijakvkl i
The indices i j and k are running over the space coordinates and there is a summation for indices
occurring twice in one term. The coupled non-linear equations for the density fields p(r, £), momentum
density fields p(r, /)v(r, 1) and energy density fields p(r, 1)E(r, t) are solved simultaneously. The source
terms p, V, k d; T and the viscosity part will be discussed below.

I1.2.5. Relativistic fluid dynamics

We have only discussed the non-relativistic equations of motion up to now. However, as the
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bombarding energy is increased, relativistic effects become increasingly important. The range of validity
of the non-relativistic formalism is not sharply defined, but at bombarding energies E,.,>
500 MeV/nucleon, the relative velocity of projectile and target exceeds the speed of light, ¢, and at best
qualitative results may be obtained.

There are two ways in which a system may become relativistic. It may be

(a) macroscopically relativistic in that the flow velocity becomes large or

(b) microscopically relativistic in that the excitation energy is non-negligible in comparison to the rest
energy.

Case (a) is reflected by the equations of motion and case (b) by the equation of state.

As in the non-relativistic case (eqs. II.85), the relativistic equations of motion reflect the con-
servation of baryon number, momentum and energy, and may be brought into the continuity equation
form:

Gt di(prog) =0

oM; + 3. (Mw,)=-4,P (11.86)
oL+ dileLv) = =0, (Poy),
where long range potentials and dissipative terms have been dropped.
The quantities p,, M and e, are the densities of baryon number, momentum and energy

respectively as specified in a fixed (“lab™) reference frame. These are related to the “proper” or
“co-moving” densities in the local rest frame by

pL=7ypP
M; = y*(e + P)v, (11.87)
e.=y(e+tP)-P
where
y = (1—v? " is the usual Lorentz factor,
pis the proper baryon number density,
e = p(m,c’ + E(p) + E,(p, T)) is the proper internal energy density, including the rest energy and

P is the pressure.

The proper densities p, e and the velocity v, which are the physically interesting quantities, must be
obtained from the lab densities p, , M, ¢, by inverting the non-linear equations (11.87) with P = P(p, e)
from the equation of state. This non-trivial technical problem is a complication over the non-relativistic
case, where the velocity can be calculated directly from p and po.

We show in figs. I1.13 and 14 the relativistic nuclear fluid dynamical model calculations [Gra84] for
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Fig. I1.13. Collision of Ar (770 MeV/nueleon) + Pb at & = 0 fm in the Nuclear Fluid Dynamic model. Note the remarkable similarity to the VUU theory
[Gra84).

the reaction Ar (770 MeV/nucleon) + Pb at b =0 and 4 fm studied above in the VUU non-equilibrium
theory. Note the surprising similarities of the fluid dynamical results with the VUU calculation. Similar
results are, however, only obtained when heavy projectiles and targets are studied, because only in this
case does the VUU approach predict the approach to thermal equilibrium. For light systems like C+C
the fluid dynamical model does not apply — there is simply not enough target material in the way of the
projectile to result in nuclear stopping.

I1.2.6. One dimensional shocks

The above equations describe fluid dynamical processes completely. However, it is often ad-
vantageous to gain more insight into the physical processes by solving more simplified, schematic
models, which can be solved (at least to some extent) analytically. In this case another set of equations
is applied in the more schematic treatment of the fluid dynamical description of high energy heavy ion
collisions, namely the shock equations: Shock waves have to be clearly distinguished from sound waves.
In contrast to sound waves, shock waves are connected with a strong, density dependent mass flow
velocity u;. The shock front itself propagates with the shock velocity v;> vy and also depends strongly
on the compression amplitude [Sch74, Bau75]. Shock waves are non-linear phenomena-for large
amplitudes p > p, both v, and v, tend to the velocity of light (see fig. I1.15), while for small
perturbations p ~ p, they approach the linear limit of sound waves. Shock waves imply a large entropy
production: The matter flow through the shock front is highly irreversible, it is not only connected with
strong compression, but also with large thermal excitation [Hof76, St677, St677a, Sto78].
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The shock calculations have to be viewed as an idealization assuming a zero width of the shock front
together with the discontinuous jump of the state variables (e.g. p, T, e, P). However, comparison of the
nuclear shock wave calculations with the result of the full Navier Stokes calculations [St679b] shows
that the resulting compression rates and temperatures are very similar, although in the Navier Stokes
calculations the compression front is smeared out over 1-2 fm due to the viscosity. Such a width seems
to be rather realistic, as the width of a shock front is approximately given by 2-3 mean free path, which
can be less than a fermi in high energy nuclear collisions. For a large nuclear transparency, the shock front
width may be of the order of the nuclear radius. However, no indication for transparency has been found in
the high energy experiments up to now.

The relativistic Rankine-Hugoniot equations can be derived from the continuity of the

particle flux density [/ = [pu:] = 0
energy flux density [To.] = [i uou,] =0 (I1.88)
and momentum flux density [T]=[usz+ P]=0

where [ | denotes the jump of the respective variable across the shock front, and x gives the direction
normal to the shock front as seen from the shock front’s rest frame.
Eliminating the velocities u, from the continuity equations yields the relativistic shock equation

| iolpa— 21p” + (P — Po)io/pt — i/p?) = 0 (11.89)

" which gives a unique connection between the free enthalpy i, pressure P, and density p within the
' respective rest frame of the matter (subscript , stands for the undisturbed matter in front of the shock
wave, quantities without subscript refer to matter in the compressed state). When we insert i = pW + P
and i, = p, W, the equation

W2 — Wi+ P(Wip — Walpo) =0 (11.90)

is obtained. This is the Rankine-Hugoniot equation, which determines the temperature 7 as a function
of p, i.e. T(p). If W is equated with the center of mass kinetic energy one can solve for the density
p(Eva) and therefore for the bombarding energy dependence of any other thermodynamic quantity.
Here W(p, T) is the energy per baryon, which characterizes the nuclear equation of state. Neglecting
pions and resonances and regarding the pure nucleon fluid only, the relation Py = apE; obtained above
can be used to obtain a quadratic equation in E;, which can be solved in terms of the nucleon density p
analytically. E. is the temperature-dependent part of W(p, T).

The shock velocities v, and v; can be determined by the continuity of the energy and momentum flux
density. From the relative velocities of the matter with respect to the shock front, the relative matter
flow velocity vy is obtained by covariant summation (see fig. 11.12),

v _ {( PWp )}”2 o _ {ﬂfﬂ‘_ﬂ"%)} - (1L91)

¢ U(Wp— Wopo)(Wop,+ P ¢ WP+ p,W,)

A simple illustrative model can be constructed to calculate the shock compression and temperature
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in the central collision of two heavy nuclei as a function of the bombarding energy [Bau75, St678]. This
model assumes the compressed fluid to be at rest in the center of momentum system (equal velocity
frame). Three dimensional fluid dynamical calculations show that this requirement is fulfilled fairly well
for non-peripheral collisions of heavy nuclei near the collision axis: A quasi-stationary compression
stage develops. That means, that practically all of the incident kinetic energy is transformed into
internal energy (compression and excitation). As v, denotes the flow velocity of the shocked matter,
which is at rest in the c.m. frame, relative to the target matter, we can calculate the laboratory bombarding
energy via

Eiw=[(1- (/o))" = 1]W, (11.92)

where v, = 2v,/(1 + (v//c)’) is the projectile velocity.

Though this model will, due to the lack of kinetic energy of the compressed matter and due to the
outflow of matter perpendicular to the collision axis, give too large values for compression and
temperatures as a function of the bombarding energy (as compared to three dimensional calculations), it is
sufficient to give an overview about the expected compression and thermal excitation. The influence of the
beam energy and the nuclear equation of state (e.g. different compressibility constants) and the importance
of resonance and pion production in the collision dynamics can thus be studied nearly analytically.

111. Confrontation of the Theory with Experimental Data — Extraction of the Nuclear Equation of State

I11.1. Expansion, fragment formation and the entropy puzzle

II.1.1. Compression and expansion

In the preceding chapter the fluid dynamical model has been introduced. Historically fluid dynamics
has been the first approach to be applied to high energy nuclear collisions. This model is most intuitive
in that it refers directly to the thermodynamical concepts developed in chapter 1. Therefore the
underlying physics of high compression and excitation can be discussed in a macroscopic language. The
spatial and temporal distributions of the density, velocity, temperature, etc. as obtained from this
approach are analyzed in the following. The dependence of the thermodynamic variables on the impact
parameter, bombarding energy, and projectile—target combination is studied. The fluid dynamical model
is the only one of the above discussed approaches for which the nuclear equation of state serves as
immediate input—the VUU approach also includes the compression energy, but since it is a non-
equilibrium theory the statistical variables temperature, thermal pressure, etc. are not easily accessible.
We use the fluid dynamical model in the following as a reference case —not only to compare to the data,
but also to the microscopic theories.

The fluid dynamical development of a heavy ion collision typically proceeds in the following way (fig.
I11.1): When two nuclei collide at high energy the overlap zones are stopped and a strong non-linear
shock wave is formed. High density, pressure and temperature are created in this region. This stage is
described by the “compression” line in fig. II1.1. The numbers on that line indicate the energies in
GeV/n at which the corresponding maximum values for p/p, and T are reached. At E, ,, = 200 MeV/n,
for example, a maximum compression of three times equilibrium density and a temperature of about
40 MeV can be obtained. During that stage the entropy of the system rises up to a certain saturation




