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Abstract We review recent advances on the dynamics of finite-size particles
advected by chaotic fluid flows, focusing on the phenomena caused by the inertia
of finite-size particles which have no counterpart in traditionally studied passive
tracers. Particle inertia enlarges the phase space and makes the advection dynamics
much richer than the passive tracer dynamics, because particles’ trajectories can
diverge from the trajectories of fluid parcels. We cover both confined and open
flow regimes, and we also discuss the dynamics of interacting particles, which can
undergo fragmentation and coagulation.

1 Introduction and Overview

A correct formulation of the problem of the motion of finite-size particles in
fluid flows has presented difficult challenges for generations of fluid dynamicists.
Although in principle this problem is “just” another application of the Navier–
Stokes equation, with moving boundary conditions, a direct solution of the fluid
dynamical equations is not only very difficult, but also not very illuminating. So
from the nineteenth century onwards efforts were made to find the appropriate
approximations which allow one to write the equations of motion of small rigid
particles in a given flow in the form of ordinary differential equations, regarding
the flow’s velocity field as given. Some very subtle issues are involved in making
the right kinds of approximations and assumptions in a self-consistent way, and a
number of incorrect results appeared in the early literature. The issue was finally
resolved when Maxey and Riley [1] wrote down the equations of motion for a small
spherical rigid particle advected by a (smooth) flow and Auton et al. [2], following
Taylor’s work [3], corrected the form of the added-mass term.
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The Maxey-Riley equations allow the global dynamics of a single advected finite-
size particle to be investigated with the techniques of dynamical systems theory.
The dynamics of advected particles in fluid flows have been a favourite subject of
investigation of chaos and related complex dynamical regimes since the pioneering
work of Aref [4], but all the early works assumed that the particles’ size and their
inertia could be neglected – the passive tracer assumption. Finite size results in
inertia, which introduces a new richness to the dynamics, since finite-size particles
are no longer enslaved to the motion of the flow surrounding them – they have their
own dynamics, distinct from that of the fluid. A whole new world of challenges and
possibilities opens up to dynamicists once finite size and inertia are considered. This
gives this subject a great importance from the theoretical point of view alone; not
to mention its practical importance: polluting particles suspended in the atmosphere
and plankton organisms floating in the ocean are just a few of the systems whose
understanding involves the theory of the dynamics of finite-size particles in complex
flows.

This chapter presents an overview of the subject of the dynamics of finite-size
particles in chaotic flows, focusing on a few chosen topics of current research. The
choice of topics reflects the authors’ own research interests; we make no apologies
for that: we in no way claim this to be an exhaustive review on this area. But we do
think the topics we cover here give the reader a good idea of what is going on in this
exciting area of research.

We first introduce the Maxey-Riley equation in Sect. 2. Its assumptions and range
of validity are discussed, as well as some of its basic consequences; but we do not
show the derivations. The dynamics of finite-size particles can often be understood
by using the simpler dynamics of passive tracers as a starting point. In Sect. 3 we
discuss the chaotic advection of non-inertial tracers, and also introduce some of the
flows which will be used as examples in later sections.

The dynamics of non-interacting finite-size particles is the subject of Sects. 4
and 5. Section 4 deals with confined flows, whereas Sect. 5 focuses on open flows.
These two kinds of flow have very different long-time behaviours, which lead to
quite distinct particle dynamics. In these sections, we focus especially on the new
phenomena caused by the particles’ inertia, which are not present in the case of
passive tracers. The challenging and very important topic of interacting finite-size
particles is covered by Sect. 6, which reviews recent results on the processes of
fragmentation and coagulation of finite-size particles. Finally, in Sect. 7, we make
some remarks on the future directions of this research area.

2 Motion of Finite-Size Particles in Fluid Flows

When studying the motion of particles advected by fluid flows, it is commonly
assumed that one can consider the particles as passive tracers, with negligible
mass and size. This amounts to neglecting the particles’ inertia, and assuming that
they take on the velocity of the surrounding fluid, instantaneously adapting to any
changes in the fluid velocity. If u is the (possibly time-dependent) fluid’s velocity
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field, and denoting by r(t) the position of a particle, the passive tracer assumption
implies that r satisfies the differential equation:

ṙ(t) = u(r(t),t). (1)

The passive tracer assumption is extensively used in fluid dynamics [5, 6], and it
is a good approximation in a number of cases. There are many situations, however,
where it does not apply, and we need to take into account the fact that particles have
finite sizes and masses (for reviews see [7–9]). Finite-size particles are not able
to adjust their velocities instantaneously to that of the fluid, and in addition their
density may be different from that of the fluid. Therefore, in general the particle
velocity differs from the fluid velocity. This means that the dynamics of finite-size
particles is far richer and more complex than that of passive tracers.

2.1 The Maxey-Riley Equation

In order to study the dynamics of finite-size particles advected by chaotic flows, we
need to have a simple formulation of the equations of motion of the advected parti-
cles. The problem is that finite-size particles are actually extended objects with their
own boundaries. The rigorous way to analyse their dynamics would involve solving
the Navier–Stokes equation for moving boundaries, with all the complications this
implies. The partial differential equations resulting from this approach would be
very difficult to solve and analyse; and as dynamicists, we would like to have the
particle’s motion described by ordinary differential equations, similar to Eq. (1).
Fortunately, an approximate differential equation for the motion of small spherical
particles in flows may be written down [1, 2]. If a particle has radius a and mass mp,
its motion is given to a good approximation by the Maxey-Riley equation:

mpv̇ = mf
D

Dt
u(r(t),t) − 1

2
mf

(

v̇ − D

Dt

[

u(r(t),t) + 1

10
a2∇2u(r(t),t)

])

−6πaρf νq(t) + (mp − mf )g − 6πa2ρf ν

∫ t

0
dτ

dq(τ )/dτ√
πν(t − τ )

, (2)

where

q(t) ≡ v(t) − u(r(t),t) − 1

6
a2∇2u.

Here r(t) and v(t) ≡ dr(t)/dt are the position and velocity of the particle, respec-
tively, and u(r,t) is the undisturbed flow field at the location of the particle. mf

denotes the mass of the fluid displaced by the particle, and ν is the kinematic vis-
cosity of the fluid of density ρf ; g is the gravitational acceleration.

The derivative
Du
Dt

= ∂u
∂t

+ (u · ∇)u (3)
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is the total hydrodynamical derivative, taken along the path of a fluid element,
whereas

du
dt

= ∂u
∂t

+ (v · ∇)u (4)

is taken along the particle’s trajectory.
The first term on the right-hand side is the acceleration of the fluid element in

position r(t) at time t and represents the force exerted on the particle by the undis-
turbed fluid. The second term represents the added-mass effect, which accounts for
the fact that when the particle moves relative to the fluid, it displaces a certain
amount of fluid with it; the result is that the particle behaves as if it had additional
mass. The third and fourth terms represent the Stokes drag caused by the fluid’s
viscosity and the buoyancy force, respectively. The integral is called the Basset-
Boussinesq history term, and arises from the fact that the vorticity diffuses away
from the particle due to viscosity [10, 11]. The terms involving the factor a2∇2u are
the so-called Faxén corrections [94], and they account for the spatial variation of
the flow field across the particle.

Equation (2) is valid for small particles at low particle Reynolds numbers Rep.
This Reynolds number is calculated by using the particle size as the length scale,
and the relative velocity between particle and neighbouring fluid as the velocity
scale: Rep = a|v − u|/ν. This implies that for Eq. (2) to be a valid approximation,
the initial velocity difference between particle and fluid must be small [1]. Another
condition is that the velocity difference across the particle – more precisely, the shear
Reynolds number ReΓ = a2Γ/ν � 1, where Γ is the typical velocity gradient in
the flow – must be small [1].

If the typical length over which the velocity field changes appreciably is much
larger than the particle radius a, the Faxén corrections can be neglected. Since the
Basset-Boussinesq history term also describes the effect of viscosity (just like the
Stokes drag), in a minimal model it can also be neglected. These approximations
simplify tremendously the equations of motion. The history term would be espe-
cially problematic to analyse, since it depends on the entire past history of the
particle, and it means the dynamics described by Eq. (2) has an infinite-dimensional
phase-space. By neglecting it, Eq. (2) is an ordinary differential equation (and not
an integro-differential equation), which can be studied with the techniques presently
available to dynamical systems theory.

Using these approximations, we redefine the variables by

r → rL, v → vU, u → uU, t → L

U
t,

where L and U are the typical length and velocity scales of the flow. The new vari-
ables are all dimensionless. In these new variables, we get the following dimension-
less equation of motion:

r̈(t) = 1

St
(u(r(t),t) − ṙ(t) + Wn)+ 3

2
R

D

Dt
u(r(t),t), (5)
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where n is a vertical unit vector pointing downwards, and the dimensionless param-
eters are

St−1 = 6πaρf νL
(

mp + 1
2 mf

)

U
, R = mf

mp + 1
2 mf

, W = mp − mf

6πaνρf U
g, (6)

with g = |g|. The parameter St measures the damping intensity and is called the
Stokes number, the dimensionless decay time in the velocity difference between
particle and fluid due to the Stokes drag. The limit of St → 0 corresponds to the case
of point particles with no inertia (since mf and mp are proportional to a3). It is in this
limit that the passive tracer equation (1) holds. R is the mass ratio parameter. R < 2

3
corresponds to aerosols (particles heavier than the fluid), and R > 2

3 corresponds to
bubbles (particles lighter than the fluid). W is the scaled particle settling velocity for
still fluid. Note that W/St is the dimensionless buoyancy force, which is independent
of the particle size. Unless otherwise noted, we shall use Eq. (5) for the remainder
of this work to describe the dynamics of finite-size particles.

2.2 General Features of the Dynamics of Finite-Size Particles

Finite-size particles have very different dynamics from that of passive tracers, which
follow the same dynamics as fluid parcels. Mathematically, this is expressed by the
fact that Eq. (5) is a second-order differential equation, compared with Eq. (1) which
is of first order. An immediate consequence of this is that the finite-size dynamics
given by Eq. (5) possesses a 2n-dimensional phase-space, where n is the dimension
of the configuration space. Thus, in a planar flow a finite-size particle is described
by a dynamical system with four degrees of freedom. In contrast, for non-inertial
particle dynamics the phase-space is two-dimensional.

Another difference is that the finite-size dynamics is dissipative, even in incom-
pressible flows, and the phase-space volume contracts at the rate n/St, which is
always positive. Contrast this to the non-inertial case, in which the phase-space vol-
ume coincides with the spatial volume, which renders the dynamics conservative for
incompressible flows. The dissipative character of the finite-size dynamics raises the
possibility of the existence of attractors in phase-space, which is not possible in the
non-inertial case. This has crucial consequences for the global dynamics of particles
in chaotic flows, as we shall see in later sections.

The density of an advected particle relative to the surrounding fluid plays a cru-
cial role in its dynamics. This is incorporated in the parameter R in Eq. (5). Using a
perturbative analysis valid in the limit of small particle sizes, Maxey has shown [12]
that if particles have higher density than the fluid (aerosols, with R < 2

3 ), they tend to
move away from regions of high vorticity, such as the centres of eddies. This effect
can be intuitively understood as the result of a centrifugal force acting on the particle
and pushing it away from a highly-rotating region. Conversely, particles with lower
density than the fluid (bubbles, with R > 2

3 ) tend to move towards high-vorticity
regions. So bubbles tend to agglomerate in the centres of vortices. These effects are
totally absent in the non-inertial case.
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3 Chaotic Advection of Passive Tracers

In order to understand properly the dynamics of finite-size particles in chaotic flows,
we must first understand the simpler dynamics of passive tracers. In this section
we review passive advection of particles from the viewpoint of dynamical-systems
theory. In the approximation of passive advection, the particles are considered to be
massless and of negligible size. They take on the velocity of the fluid flow instan-
taneously, and their motion is given by Eq. (1). The flows we shall consider here
are typically laminar, i.e., the velocity field u is assumed to be smooth, although
time-dependent. We briefly discuss the case of turbulent flows in the concluding
Section.

3.1 Properties of Passive-Tracer Chaotic Advection

The velocity field of the fluid, described by the right-hand side of (1), is typically a
non-linear function of the position and time. This implies that even if the flow itself
is relatively simple and non-turbulent, the solutions of (1) can become chaotic, a
phenomenon named chaotic advection by Aref [4]. This is an essential difference
between the Eulerian description of fluid motion, which is concerned with the prop-
erties of the velocity field of the fluid, and the Lagrangian description, which is
concerned with the trajectories of the fluid elements. It is argued in [13] that the
advection in any flow with a fluid Reynolds number high enough to generate a time
dependent velocity field around an obstacle displays chaos.

The stretching and folding action of the chaotic dynamics acting on a set of initial
conditions in the phase space, which coincides with the configuration space, can be
seen directly through the behaviour of a blob of dye injected into the fluid. As a

Fig. 1 Surface patterns downstream of the flow-through of a power plant. Loch Faskally, Scotland,
photo taken by Gy. Károlyi. The scale is approximately 2 m
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result, an initially compact blob of particles will trace out a complex filamentary
structure; a real-world example is shown in Fig. 1. In most examples in the area
of dynamical systems, these complex patterns are hidden in a high-dimensional
abstract phase space; here they become visible to the naked eye, and can be pho-
tographed in experiments [14, 15].

We assume throughout this work that the fluid is incompressible. As a con-
sequence, the motion of passively advected particles is volume preserving, hence
the motion of passive tracers is similar to Hamiltonian dynamics, where the phase
space volume is conserved during motion [16]. This property is unique to passively
advected particles.

Advection in two-dimensional (r = (x,y), u = (ux,uy)) and incompressible flows
represents an important subclass of chaotic advection systems. Incompressibility
implies that there exists a stream function Ψ (x,y,t) so that the velocity components
can be written as

ux(x,y,t) = −∂Ψ (x,y,t)

∂y
, uy(x,y,t) = ∂Ψ (x,y,t)

∂x
. (7)

Substituting this into (1) we obtain the equation of motion for a particle advected
in 2D in terms of the stream function:

dx

dt
= −∂Ψ (x,y,t)

∂y
,

dy

dt
= ∂Ψ (x,y,t)

∂x
. (8)

These equations have a clear Hamiltonian structure, variable x playing the role
of the position, y playing the role of the conjugate momentum, and Ψ (x,y,t) playing
the role of the Hamiltonian function [17, 18].

If the flow is stationary, that is, the stream function Ψ does not depend explicitly
on time, the particle trajectories coincide with the level curves of Ψ , called stream-
lines [17, 18]. From a dynamical point of view, passive advection in a stationary,
incompressible 2D flow is a one-degree-of-freedom Hamiltonian system, which is
always integrable. In most realistic situations, however, Ψ is not independent of
time, in which case we have a one-degree-of-freedom system with a time-dependent
Hamiltonian. Such driven systems typically exhibit chaotic motion [19, 20]: the
advected particles move in an unpredictable way and display a great sensitivity to
initial conditions. Even a very simple time dependence, for example periodicity, is
enough to generate chaotic particle motion: no turbulence is necessary for complex
particle trajectories. This phenomenon is often called Lagrangian turbulence, in
contrast to the spatiotemporal complexity of a flow field, which is referred to as
Eulerian turbulence.

Flows can be divided into two main classes: they can be either open or closed.
A flow is closed if it is confined within a bounded domain. A flow is consid-
ered open if there is a net current flowing through the region of observation and
if fluid elements cannot return there from the outflow region. A typical example
of closed flow is mixing in a batch reactor without in- or outflow; an example
of an open flow is the fluid motion in a channel or river in the presence of an
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obstacle. In open flows, most trajectories are unbounded, and most particles escape
the observation region in a finite time. In closed flows, the particles cannot escape
the bounded region. Therefore chaotic behaviour, if it occurs, is persistent in closed
flows. Such flows reveal structures commonly found in usual Hamiltonian systems,
with chaotic regions coexisting with regular islands. Advected particles, if they
start from an initial position in the chaotic region, roam the whole chaotic region,
whereas particles within a regular island remain inside forever. The boundaries
of these islands, formed by Kolmogorov-Arnold-Moser (KAM) tori, are impene-
trable to outside particles. In the chaotic regions, particles initiated close to each
other deviate exponentially along the unstable foliation of unstable fixed points.
This unstable foliation is dense in the chaotic regions, and governs the stretch-
ing and folding of dye blobs. When stretching of a dye blob starts, a filamentary
structure emerges, which becomes space-filling in the limit of long times. Thus,
persistent chaos and transient filamentary structures are features found in closed
flows.

The chaotic motion of passively advected particles in open flows takes a differ-
ent form. Typical particles escape the observation region in finite time, but there
is a fractal set of particle trajectories confined within a finite region, e.g. in the
vicinity of the wake in a flow around an obstacle. These non-escaping orbits form
a non-attracting chaotic set, a chaotic saddle [19, 20], which governs the motion
of particles in its vicinity. This chaotic set, although it consists of unstable orbits
and has measure zero, gives rise to extreme sensitivity of the dynamics to initial
conditions. The stable manifold of the chaotic saddle separates the initial condi-
tions leading to different final states of the particles (such as where they leave the
region of observation). The unstable manifold of the chaotic saddle is traced out
by the particles that spend long times in the vicinity of the saddle. Because the
unstable manifold is a filamentary fractal, the pattern traced out by a blob of dye
takes on a complex shape, shadowing the fractal structure of the unstable mani-
fold. Advection thus leads to transient chaos owing to particles leaving the region
of observation, and to persistent filamentary structures traced out by the advected
particles.

In the following subsections some paradigmatic flows, both open and closed,
are reviewed. These flows will be used later to illustrate the motion of finite-size
particles.

3.2 The Convection and Cellular Flow Models

The convection flow is a simple two-dimensional incompressible flow represent-
ing vortices or roll cells with oscillating velocity magnitude. It was introduced by
Chandrasekhar [21] as a solution to the Bénard problem and has been used since
then in many studies involving active and passive particles [22, 23]. The flow is
defined on a unit cell, but one may study the motion of finite-size particles on an
infinite spatial domain using periodic boundary conditions. The convection flow is
particularly interesting to investigate the principles of particle motion in the ocean
and in the atmosphere since it contains both vortices (convection cells) and linear
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uprising/sinking regions, and can hence be considered as an idealisation of realistic
atmospheric and oceanic flows. The flow is given by the stream function

ψ(x,y,t) = [1 + B sin (ωt)]
1

k
sin (kx) sin (ky). (9)

Here it is assumed that the characteristic velocity U0 = 1 and the characteristic
length scale of the flow L = 1, and we set k = 2π accordingly. The parameters
B and ω denote the amplitude and the frequency of the oscillation of the vortical
velocity magnitude, respectively.

A special feature of the flow described by Eq. (9) it that the non-inertial advection
dynamics remains nonchaotic even in the time-dependent case. In this flow chaotic
advection can only be the consequence of finite-size effects.

To illustrate the flow field we show a snapshot of the velocity field in Fig. 2.
This flow field with the parameters B = 2.72, ω = π is used later for all results
concerning coagulation and fragmentation processes (cf. Sect. 6).

We also consider a slightly modified version of the convection flow, the cellular
flow model. This is a two-dimensional incompressible flow representing a lattice of
oscillating vortices or roll cells. The flow is defined by the stream function

ψ(x,y,t) = 1

k
cos (kx + B sin (ωt)) cos (ky). (10)

The flow is defined in the x,y ∈ [ − π/2,π/2] domain with periodic boundary
conditions, and k is set to 1.

Let us first consider the simplest case where the time dependence is suppressed,
by setting B = 0. Thence ψ is a constant of motion, which implies that real fluid
elements follow trajectories that are level curves of ψ . This is illustrated in Fig. 3a.
For B �= 0, the equations of motion for fluid element or passive tracer are given by
(7) and the trajectories differ from the streamlines. An example is shown in Fig. 3b,
where the Poincaré section of the particle motion is illustrated. The positions of
many particles are plotted at integer multiples of the flow period. Some of the

Fig. 2 Snapshot of the
velocity field of the
convection flow at t = 0
computed from the stream
function (9)
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(a) (b)

Fig. 3 The cellular flow, Eq.(10). ( a) The passively advected particles exhibit regular motion if the
flow is time-independent (B = 0, k = 1). The trajectories of 30 particles with randomly selected
initial positions are shown. (b) Chaotic behaviour in the time-dependent flow (B = 0.3, k = 1,
ω = 2.72224). Snapshots of 200 particles with randomly selected initial conditions are shown at
integer multiples of the flow’s period

passively advected particles exhibit regular motion; they trace out the closed curves
visible in the figure. The rest of the particles fill out the chaotic region. This makes
the cellular flow different from the convective flow in that the passive particle motion
in the cellular flow, due to the oscillating vortex centres, can be chaotic for B �= 0.

3.3 The Von Kármán Vortex Street

The open flow around an obstacle is a classical problem in fluid mechanics [14, 24].
We consider a viscous incompressible flow around a cylinder of radius R0. Far away
from the obstacle the flow is expected to be uniform. We label the longitudinal flow
direction by x, and the transverse direction by y.

Denoting by U the velocity for x → ±∞, the Reynolds number associated with
this flow can be defined as

Re = 2R0U/ν, (11)

where ν is the fluid’s kinematic viscosity. For Re sufficiently small, the flow is sta-
tionary. When Re passes a critical value Rec ≈ 80, the stationary solution of the
Navier-Stokes equation becomes unstable, and the flow becomes time-periodic with
some period T .

Vortices are created in the wake of the cylinder, detach from it and drift down-
stream. They gradually weaken owing to the viscosity, until after some distance they
vanish. New vortices are shed from the surface of the cylinder at intervals of half a
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Fig. 4 Streamlines for the flow around a cylinder at two different times, separated by one quarter
of the full period T of the flow. The vortex shedding is clearly visible

period T/2, alternately above and below the middle of the cylinder (see Fig. 4). By
this process, a von Kármán vortex street is formed behind the cylinder. For simplic-
ity we assume that the lifetime of each detached vortex equals one period T .

An analytical model for the flow in the von Kármán vortex street has been pro-
posed [25, 26], which fits well the results of the direct numerical calculation for
Re = 250 [27]. In this model, the stream function ψ(x,y,t) is explicitly given, and
we shall use this kinematic model in what follows. This model serves thus as an
ideal paradigm for a large class of open chaotic flows and has been widely used to
study different aspects of transient chaotic advection (see e.g., [28–30]).

The stream function ψ(x,y,t) can be directly used in Eq. (1) to find the motion
of passively advected particles in the von Kármán flow by numerical integration. To
appreciate the importance of the unstable manifold of the chaotic saddle, we place
a dye droplet of particles upstream into the flow and follow the deformation of the
shape of this droplet. Assume that the initial droplet overlaps with the stable mani-
fold of the saddle. Particles that fall exactly on the stable manifold hit the saddle and
never leave it. Neighbouring points, however, only approach the saddle; they stay
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in its neighbourhood for a while, but sooner or later they leave the wake along the
unstable manifold. Thus, we conclude that tracer particles that do not leave a region
of observation in the wake too rapidly, must trace out the unstable manifold. In
other words, the unstable manifold of the chaotic saddle is a “quasi-attractor” of the
tracer dynamics: particles accumulate on it while being advected away. In numerical
simulations with a finite number of particles, the manifold serves as a (periodically
moving) template, which becomes gradually emptied as more and more particles
escape through the outflow.

Figure 5 shows the evolution of a droplet in the von Kármán flow. First the droplet
becomes stretched and folded and later it becomes clear that it traces out a moving
fractal object, the unstable manifold. Though a few particles are still visible, the
region is almost emptied in the last panel; this is a consequence of the finite number
of particles used in the simulation.

Note that the von Kármán vortex street is not a particular property of cylindrical
obstacles. Most (approximately) two-dimensional flows past an obstacle have this
property, provided that their Reynolds number is in the appropriate range. Thus, von
Kármán vortices are found in many real situations [31–33].
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Fig. 5 Time evolution of a droplet of 20,000 tracers in the von Kármán flow shown at different
dimensionless times t
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4 Inertial Effects in Closed Chaotic Flows

The most general description of the dynamics of finite-size particles presents an
enormous richness of phenomena (see, for example, [7, 9, 34–40]). It is character-
istic of the dynamics that invariant surfaces in the model without inertia are bro-
ken up. For example, as shown for aerosols in Fig. 6, the particles accumulate on
higher dimensional attractors instead of being confined by the closed curves shown
in Fig. 3b. Figure 6 shows the 2D projection of the attractor located in the four-
dimensional phase space of the particle dynamics.

That the invariant curves no longer exist for inertial, finite-size particles is con-
firmed in Fig. 7. Here, the periodic boundary conditions have been removed from
the cellular flow, and the particles are allowed to fly out of the x,y ∈ [ − π/2,π/2]
domain. For passive advection (not shown), the y = ±π/2 lines are impenetrable
invariant curves; the advected particles can only leave the x,y ∈ [−π/2,π/2] domain
in the x direction. As shown in Fig. 7 the invariant curves y = ±π/2 do not exist for
aerosols, which can fly out in the y direction as well.

In the time-independent case, what were invariant surfaces in the model without
inertia are transformed into spirals, owing to centrifugal forces: outward spirals for
aerosols and inward spirals for bubbles. As a consequence, heavy particles tend to
accumulate at the separatrices of the flow.

For large densities ρp � ρf , particles are no longer confined within vortices.
Stokes drag is the most important force acting in this case, since the added-mass
term becomes negligible as R → 0 in this limit (see Eq. (6)) and gravity is not
acting on the horizontal plane. So to a first approximation Eq. (5) transforms into

Fig. 6 Aerosols (R = 0.5,
St−1 = 0.04) followed in the
cellular flow. The particle
positions are shown at integer
multiples of the flow’s period
after 10 periods. The
parameters of the flow are the
same as those in Fig. 3b
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Fig. 7 Aerosols (R = 0.5,
St−1 = 0.04) followed in the
cellular flow without periodic
boundary conditions. All
particles are initiated within
the x,y ∈ [ − π/2, π/2]
domain. The particle
positions are shown at integer
multiples of the flow’s period.
The parameters of the flow
are the same as those in
Fig. 3b
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and the Stokes number can be written as

St−1 = 9νρf L

2a2ρpU
.

To derive this we used mp = 4
3πa3ρp � mf in Eq. (6).

This is a highly-dissipative and singular perturbation of a Hamiltonian system,
with a four-dimensional phase space:

ẋ = px, (14)

ṗx = −St−1(px − ux(x,y,t)), (15)

ẏ = py, (16)

ṗy = −St−1(py − uy(x,y,t)). (17)

In the time-dependent case, particles tend to accumulate on a chaotic attractor
of the high-dimensional phase space. As the upper panel of Fig. 8 shows for the
cellular flow (9), the projection of the attractor on the plane of the fluid lies within
the chaotic regions of the model flow without inertia. The relative velocity fluctuates



Dynamics of Finite-Size Particles in Chaotic Fluid Flows 65

Fig. 8 Above: dense particles
converge to fractal structures
around a separatrix of the
flow given by Eq. (10) in the
time-independent case.
Below: in the large inertia
limit, the relative velocity of
particle and flow fluctuates
chaotically, in a
Brownian-like fashion

chaotically, due to macroscopic, non-turbulent fluctuations, that act to give the parti-
cles deterministic but Brownian-like motion, illustrated in the lower panel of Fig. 8.

4.1 Neutrally Buoyant Particles

Let us now consider whether even in the most favourable case of neutral buoyancy
a finite-sized tracer particle remains always close to a flow trajectory [41]. With this
in mind, we set ρp = ρf in Eqs. (5) and (6), which corresponds to setting W = 0
and R = 2/3:

dv
dt

= Du
Dt

− St−1 (v − u) . (18)
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In the past it has been assumed that neutrally buoyant particles have trivial
dynamics (e.g., [34, 42]), and the mathematical argument used to back this up is that
if we make the approximation Du/Dt = du/dt, which can be seen as a rescaling of
the added mass, the problem becomes very simple

d

dt
(v − u) = −St−1(v − u). (19)

Thence

v − u = (v0 − u0) exp (− St−1 t), (20)

from which we would infer that even if we release the particle with a different initial
velocity v0 to that of the fluid u0, after a transient phase the particle velocity will
match the fluid velocity, v = u, meaning that if we accept this argument, a neutrally
buoyant particle should be an ideal tracer.

Although from the foregoing it would seem that neutrally buoyant particles rep-
resent a trivial limit to Eq. (2), in the argument presented above we did not take the
correct approach to the problem, because we did not recognise that Du/Dt �= du/dt.
If we substitute Eqs. (3) and (4) for the derivatives into Eq. (18), we obtain

d

dt
(v − u) = − ((v − u) · ∇) u − St−1 (v − u) . (21)

We may then write the velocity difference between fluid particle and fluid as
q = v − u, whence

dq
dt

= −
(

−J + St−1I
)

· q, (22)

where J is the Jacobian matrix:

J =
(

∂xux ∂yux

∂xuy ∂yuy

)

. (23)

If we diagonalise matrix J we obtain the equation for the particle-fluid velocity
difference in coordinates aligned with the eigenvectors, which we denote by qD:

dqD

dt
=
(

λ− St−1 0
0 −λ− St−1

)

· qD. (24)

Therefore, if Re(λ) > St−1, qD may grow exponentially. Now λ satisfies det(J −
λI) = 0, so λ2 − trJ + detJ = 0. Since the flow is incompressible, ∂xux + ∂yuy =
trJ = 0, thence −λ2 = detJ. Given squared vorticity ω2 = (∂xuy − ∂yux)2, and
squared strain s2 = s2

1 + s2
2, where the normal component is s1 = ∂xux − ∂yuy and

the shear component is s2 = ∂yux + ∂xuy, we may write
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λ2 = −detJ = (s2 − ω2)/4 = Q. (25)

Here Q = (s2−ω2)/4 is the so-called Okubo–Weiss parameter [43, 44]. If Q > 0,
λ2 > 0, and λ is real, deformation dominates, as around hyperbolic points. If Q < 0,
λ2 < 0, and λ is complex, rotation dominates, as near elliptic points. Equation (22)
together with dr/dt = q + u defines a dissipative dynamical system

dξ/dt = F(ξ ) (26)

with ξ = (r,q). Equation (26) has constant divergence ∇ · F = −2/St in the four
dimensional phase space of ξ . While small values of St allow for large values of the
divergence, large values of St force the divergence to be small. The Stokes number
is the dimensionless decay time of the particle (see Sect. 2.1): with larger St, the
particle has more independence from the fluid flow. From Eq. (24), in areas of the
flow near hyperbolic stagnation points with Q > St−2, particle and flow trajectories
separate exponentially.

To illustrate the effects of St and Q on the dynamics of a neutrally buoyant parti-
cle, let us consider the simple incompressible two-dimensional model (10). In Fig. 9
(top left) the contours of Q are depicted. Notice that the high values of Q are around
the hyperbolic points, while negative Q coincides with the centres of vortices –
elliptic points – in the flow. Figure 9 (top right) shows the trajectory of a neutrally
buoyant particle starting from a point on a fluid trajectory within the central vortex,
but with a small velocity mismatch with the flow. This mismatch is amplified in
the vicinity of the hyperbolic stagnation points where Q is larger than St−2 to the
extent that the particle leaves the central vortex for one of its neighbours. In the end
a particle settles on a trajectory that does not visit regions of high Q, as expected
for a fluid parcel. While this effect is already seen in Fig. 9 (top right), it is more
dramatically pictured in the trajectory shown in Fig. 9 (bottom left), in which the
particle performs a long and complicated excursion wandering between different
vortices before it settles in a region of low Q. To illustrate the divergence of particle
and fluid trajectories, and the fact that particle and fluid finally arrive at an agree-
ment, in Fig. 9 (bottom right) we display the difference between the particle velocity
and the fluid velocity at the site of the particle against time for this case. Notice that
this difference seems negligible at time zero, and that it also convergences to zero
at long times, but during the interval in which the excursion takes place it fluctuates
wildly.

Even more interesting is the case of time-dependent flows: B �= 0 in our model.
As in a typical Hamiltonian system, associated with the original hyperbolic stag-
nation points, there are regions dominated by chaotic trajectories. Trajectories of
this kind, stroboscopically sampled at the frequency of the flow, are reproduced in
Fig. 10. Such trajectories visit a large region of the space, which includes the original
hyperbolic stagnation points and their vicinities where Q is large. Excluded from the
reach of such a chaotic trajectory remain areas where the dynamics is regular: KAM
tori. In our model these lie in the regions where Q < St−2. A neutrally buoyant
particle trying to follow a chaotic flow pathline would eventually reach the highly
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Fig. 9 (Top left) Contour plot illustrating magnitude of Q – lighter is higher Q – for the time-
independent model Eq. (10) (the flow is on a torus). (Top right) The separation of a neutrally
buoyant particle trajectory (thin line) from the flow (thick line) in regions of high Q allows the
particle to wander between cells. (Bottom left) After a complicated excursion, a particle (thin line)
eventually settles in a zone of low Q of the flow; a KAM torus (thick line). (Bottom right) The
velocity difference vx − ux between the particle and the flow against time

hyperbolic regions of the flow. This makes likely its separation and departure from
such a pathline, in search of another pathline to which to converge. However, conver-
gence will only be achieved if the pathline never crosses areas of high Q. Figure 10
demonstrates this phenomenon: a particle was released in the chaotic zone with a
small velocity mismatch. The particle followed the flow, until, coming upon a region
of sufficiently high Q, it was thrown out of that flow pathline onto a long excursion
that finally ended up in a regular region of the flow on a KAM torus. The regular
regions of the flow then constitute attractors of the dissipative dynamical system
Eq. (26) that describes the behaviour of a neutrally buoyant particle. The chaotic
trajectories in a Hamiltonian system are characterised by positive Lyapunov expo-
nents. The Lyapunov exponents are an average along the trajectory of the local rate
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Fig. 10 Poincaré sections of trajectories in the time-dependent flow of Eq. (10). From top left to
bottom right are shown (dots) four increasingly chaotic examples of the flow, and (crosses), the
trajectories of neutrally buoyant particles in the flows that in each case finally end up on a KAM
torus within the regular region of the flow

of convergence or divergence. Hence, for a trajectory to be chaotic, it is a necessary
condition that it visit regions of positive Q: an upper bound to Q is an upper bound
to the Lyapunov exponent.

Consider the implications of these results for two-dimensional turbulent flows,
in which Q defines three regions: in the vortex centres it is strongly negative; in
the circulation cells that surround them, strongly positive, while in the background
between vortices it fluctuates close to zero (see, e.g., [45–49]). As a result of the
dynamics, an initially uniform distribution of neutrally buoyant particles with finite
size evolves in time towards an asymptotic distribution concentrated in the inner part
of vortices where Q < 0, and with voids in the areas crossed by fluid trajectories
that visit regions where Q > St−2, as we illustrate in Fig. 11.
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Fig. 11 Small neutrally buoyant tracer particles converge to the centres of vortices in a two-
dimensional turbulent flow simulation; distribution at times (top left to bottom right) t = 1, 2,
3, 4, and 6 of particles uniformly distributed in the flow at time t = 1 [41]

Thus even with a small rigid neutrally buoyant spherical tracer particle in
an incompressible two-dimensional fluid flow the tracer trajectories can separate
from the fluid trajectories in those regions where the flow has hyperbolic stagna-
tion points. For flows with chaotic pathlines, analysis shows that the tracer will
only evolve on trajectories having Lyapunov exponents bounded by the value
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of the Stokes drag coefficient. Therefore, by making the value of this coeffi-
cient small enough, one can force the tracer to settle on either the regular KAM-
tori dominated regions or to selectively visit the chaotic regions with small Lya-
punov exponents. As well as its interest from the viewpoint of dynamical sys-
tems, this result is important to the analysis of observations and experiments
with neutrally buoyant particles both in the laboratory and in the atmosphere and
oceans.

The heuristic criterion for the departure of trajectories of neutrally buoyant par-
ticles trajectories from those of the fluid elements has been complemented by more
rigorous analysis. For example, the stability of the fluid flow manifold which is
invariant under the neutrally buoyant particle dynamics was studied in the more
general context of the perturbed invariant manifold of the non-neutral particles
[50, 51]. For neutrally buoyant particles, this analysis parallels a previous inter-
pretation of the fluid invariant manifold as a “bailout embedding” and the depar-
ture of trajectories as a “blowout bifurcation” taking place as the Stokes num-
ber is varied [52]. In both cases, it has been found that the heuristic criterion
based on the Okubo-Weiss parameter underestimates the areas of departure. Finally
noise or fluctuating forces enhance the phenomenon, as has been rigorously proved
in [53].

4.2 3D Flows and Bailout Embeddings

For incompressible two-dimensional flows, since the Jacobian matrix is traceless,
the two eigenvalues must add up to zero, which implies that they are either both
purely imaginary or both purely real, equal in absolute value and opposite in sign.
The result is that the particles can abandon the fluid trajectories in the neighbour-
hood of the saddle points and other unstable orbits, where the Jacobian eigenvalues
are real, and eventually overcome the Stokes drag, to finally end up in a regular
region of the flow on a KAM torus dominated by the imaginary eigenvalues. From
a more physical point of view, this effect implies that the particles tend to stay away
from the regions of strongest strain.

In contrast to the two-dimensional case, in time-dependent 3D flows the incom-
pressibility condition only implies that the sum of the three independent eigenvalues
must be zero. This less restrictive condition allows for many more combinations.
Triplets of real eigenvalues, two positive and one negative or vice versa, as well as
one real eigenvalue of either sign together with a complex-conjugate pair whose real
part is of the opposite sign, are possible. Accordingly, chaotic trajectories may have
one or two positive Lyapunov numbers, and a richer range of dynamical situations
may be expected.

Note that the dynamical system governing the behaviour of neutrally buoyant
particles is composed of a lower-dimensional dynamics within a “larger”, higher-
dimensional dynamics. Equation (18) can be seen as an equation for the variable
q = (v − u) which in turn defines the equation of motion (ṙ = u) of a fluid
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element whenever the solution of the former is zero. In this sense we may say that
the fluid parcel dynamics is embedded in the particle dynamics. In reference to the
fact that some of the embedding trajectories abandon some of those of the embedded
dynamics, the generalisation of this process is dubbed a bailout embedding [52].

Consider neutrally buoyant particles immersed in a flow in which each compo-
nent of the velocity vector field is sinusoidally modulated with a relative phase shift
of 2π/3 and where x, y, and z are to be considered (mod2π )

dx

dt
= (1 + sin 2π t) · (A sin z + C cos y), (27)

dy

dt
=
(

1 + sin 2π

(

t + 1

3

))

· (B sin x + A cos z),

dz

dt
=
(

1 + sin 2π

(

t + 2

3

))

· (C sin y + B cos x).

This is a modified version of the ABC flow [54]. This flow shows structures con-
sisting of a complex array of KAM sheets and tubes surrounded by chaotic volumes
[55]. Neutrally buoyant particles show a tendency to accumulate inside KAM tubes
as depicted in Fig. 12, where ten particles, initially distributed at random in the cubic
cell, are shown to end up in the interior of two of the tubes.

Fig. 12 Stroboscopic sampling (with period T=1) of the position of 10 particles initially distributed
at random in a flow described by Eq. (27) with A = 2, B = 0.4, C = 1.2. The dots represent the
positions of these particles at the strobing periods 1,000–2,000
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5 Advection of Finite-Size Particles in Open Flows

Here we concentrate on the question of how the global dynamics of advection
changes in two-dimensional open flows due to inertia. As discussed in Sect. 2, one
big difference between finite-size and non-inertial particles is that the dynamics of
the former is dissipative, which opens the possibility of the existence of attractors.
In the flow model of the von Kármán vortex street of Sect. 3.3, it has been found
that attractors are possible in the bubble regime 2/3 < R < 2. Light particles might
thus become trapped in the wake forever. For R = 1.33, St−1 = 30 there are, for
instance, three coexisting attractors [56–58]: two fixed points around the cylinder’s
surface and one at x = ∞.

To gain insight into what happens to ensembles of bubbles, the residence time
in a region around the cylinder is determined. The initial velocities were set to be
equal to the flow velocity. Figure 13 shows the result, where grey, white and black
depict increasingly long residence times. Dark regions mark permanently trapped
particles. This region corresponds thus to the basin of attraction of the two finite
attractors, which is in fact a projection of the basin structure in the full phase space
on the plane of the flow. At other inertia parameters there also exist chaotic saddles
which ensure that the approach toward the attractors, including the escape from the
wake (the approach toward the attractor at x = ∞) is a transient chaotic process.

A systematic investigation of the escape rate κ(St) from the hyperbolic parts of
this saddle shows (Fig. 14) that the escape rate is below the escape rate of fluid
parcels or passive tracers in the full range St−1 > 12. This indicates that bubbles
spend much more time in the wake than fluid particles. In the interval 14 < St−1 <

45 the escape rate vanishes indicating the presence of attractors. For St−1 in between
33 and 45 these attractors are chaotic. Beyond 45 the escape rate is positive, and it
approaches for large St−1 the value of ideal tracers.

Fig. 13 Finite-size particles
in the von Kármán flow.
Residence time for bubbles of
parameter St−1 = 30,
R = 1.33 (g = 0) at t = 0.3
mod 1. Basins of attraction of
two chaotic attractors appear
shaded dark in the plane of
the fluid. From [57]
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Fig. 14 Escape rate as a
function of the Stokes
number in the bubble regime
(R = 1.7). The horizontal line
is the escape rate for passive
tracers. From [57]

Fig. 15 Escape rate as a
function of the Stokes
number in the aerosol regime
(R = 0.5). The horizontal line
is the escape rate for passive
tracers. From [57]

The tendency is opposite for aerosol particles. The escape rate is above the escape
rate of fluid particles for any value of St, i.e. heavy particles spend much less time
in the wake than fluid particles (Fig. 15).

There is a qualitative argument explaining why bubbles tend to form attractors.
The particles are typically subject to local vortices. The centrifugal force for a par-
ticle comoving with a vortex is proportional to the density difference ρp − ρf . For
heavy particles this force pushes particles outward, but for light ones it attracts par-
ticles toward the vortex centre. The presence of this centripetal force is an important
reason for the existence of bubble attractors. The mechanism is similar to an obser-
vation of Maxey [12] according to which aerosols (bubbles) settle in the presence of
gravity faster (slower) in turbulent flows than in a fluid at rest. The explanation of
this phenomenon is the centrifugal (centripetal) effect of the turbulent vortices.

As a consequence of the dependence of the dynamics on particle parameters,
when starting from a mixture of particles of the same density but of different size,
segregation can be observed in chaotic flows consisting of a sequence of obstacles.
As an example of this type of flow, we consider an infinite chain of cylinders situated
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Fig. 16 Separation of bubbles in a chain of cylinders. The distribution of particles with R = 1.4
and St−1 = 20 St−1 = 120 coloured red and blue, respectively, after 10 time units. The initial
location is a small square with uniformly mixed particles in front of the cylinder located at the
origin. From [57]

at a distance of 8 cylinder radii from each other. The initial droplet of particles
contains a uniform mixture of particles of St−1 = 20 (red) and St−1 = 120 (blue),
and is injected into the flow in front of the cylinder centred at the origin. After
passing several cylinders, the droplet exhibits a clear separation as shown in Fig. 16.
The larger light particles (St−1 = 20) escape more slowly due to the centripetal
effect of the vortices. The flow in the cylinder chain acts therefore as a chaotic
chromatograph [57].

A work worthy of note is that of Haller and coworkers [50, 59]. They show that
for small particle sizes, i.e., for small Stokes numbers (St � 1), the dynamics of
a finite-size particle can be approximated by the dynamics on a low-dimensional
inertial manifold, which can be calculated explicitly from a given velocity field.
Following an approach of Maxey [12], they show that after a short transient time the
equation of motion of such small inertial particles can well be approximated by the
equation, termed inertial equation in [50]

ṙ(t) = u(r(t),t) + Wn + St

(
3

2
R − 1

)
D

Dt
u(r(t),t). (28)

This can formally be obtained by expanding Eq.(5) around its St = 0 solution:
ṙ(t) = u + Wn up to first order in St. The advantage of this equation becomes clear
when tracing particles backwards in time.

Finding a localised source of particle release is often of central relevance.
Such a source-inversion problem appears, for example, in locating a source of air-
transported contaminant particles. The approach based on the time-reversed integra-
tion of Eq. (5) leads to an unavoidable numerical instability due to an exponential
growth of the type exp (t/St). In contrast, the inertial equation (28) is free from this
instability. It can be solved easily in reverse time, too, and this procedure provides
with good accuracy the initial spatial coordinates of inertial particles. This has been
clearly demonstrated in the example of bubbles in the von Kármán flow [50], and
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in other realistic cases like e.g., anthrax in the wind field of an urban street canyon
[60] and aerosols in the flow of a hurricane [61].

In spite of the repelling centrifugal force for heavy particles, Vilela and Motter
showed [62] that aerosols can also be trapped by open flows under certain circum-
stances. Such aerosol attractors can exist due to a special interplay of two or more
vortices.

In the case of neutrally buoyant particles, R = 2/3, in an open chaotic flow, the
effect of inertia is to cause a dispersion of particles around the fractal structure of the
unstable chaotic set which exists for perfect tracers [63]. Since the introduction of
inertia enlarges the phase space to a 4-dimensional manifold (for 2D flows), it is no
surprise that the properties of the motion on the 2-dimensional projection to the con-
figuration space are different from its non-inertial counterpart. The important point
is that, for small Stokes numbers, the distribution of long-lived inertial particles can
still be understood in terms of the simple chaotic set of the non-inertial dynamics. In
[63], an expression is derived for the dispersion of particles around the inertia-less
chaotic set, which agrees well with numerical simulations. The main result of this
work is that inertia causes the fractal structure of the chaotic set to be lost in the
configuration space, so that below a certain scale determined by the Stokes number,
the spatial distribution becomes smooth. In the slow manifold approach of Haller
and coworkers, the slow dynamics coincides with that of infinitesimally small ideal
tracers; for W = 0, they find that ṙ(t) = u, as can also be seen from (28). There-
fore the particle dynamics should synchronise with Lagrangian tracer motion. It has
been shown [51], however, that the slow manifold has domains that repel nearby
trajectories, which explains the numerical findings of [63].

6 Coagulation and Fragmentation of Finite-Size Particles

So far we have only discussed the motion of passive finite-size particles which are
carried by the flow but do not interact with each other. But there is an increasing
interest in the investigation of the dynamics of active finite-size particles. The active
processes taken into account can be of different natures depending on the context.

In ecology these active finite-size particles, usually aerosols heavier than the
fluid, can be plankton species in a limnic or marine environment where plankton
populations change their number due to growth and death. Additionally competi-
tion and predator-prey interactions influence their dynamics. Particles of different
sizes gather along different attractors, as explained in the previous Sections, and
therefore different species are expected to occupy different niches, which promotes
the coexistence of competitors.

In chemical reactions the active finite-size particles are often bubbles (lighter
than the fluid) containing catalysts which mediate particular chemical reactions.

The example which is discussed here in more detail concerns the process of coag-
ulation and fragmentation of finite-size particles in the presence of gravity, which
plays an important role in cloud physics [64], marine snow and sediment dynamics
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[65, 66], engineering [67], planet formation [68] as well as wastewater treatment
[69]. In all the cases mentioned above particles are assumed to interact very rarely,
i.e., a kind of “dilute gas” assumption is used.

Coagulation and fragmentation are two processes which influence the size of
the particles. Coagulation can happen when two particles collide and form a larger
coagulate due to some adhesive forces [64]. Fragmentation is the break-up of a large
aggregate into a few smaller ones due to shear forces in the fluid. The dynamics
of a system including coagulation and fragmentation is more complicated than the
pure advection of finite-size particles. The difficulty lies in the different sizes of the
coagulates being advected by the fluid. Because of the dilute approximation, we can
assume that the motion of all particles follows the Maxey-Riley equation (5). Coag-
ulates of different sizes correspond to different parameters, namely different Stokes
number St and settling velocity W in these equations. Instead of one dynamical
system one has to deal with a set of dynamical systems, each of them corresponding
to a certain coagulate size. Moreover, the number of coagulates in each dynamical
system is changing continuously due to coagulation and fragmentation.

Coagulates of different size converge to different attractors [70] which can be
either fixed points, periodic motions, quasiperiodic motions on tori or chaotic attrac-
tors (cf. Fig. 17). Among the latter we find a variety of different forms from very
localised ones up to space filling attractors where coagulates are distributed over
the whole configuration space. As a consequence coagulates of different size are
located in different parts of the configuration space in the long-term limit. Hence, a
system containing coagulates of different sizes is characterised by an overlay of
different attractors possessing possibly different dynamical properties. However,
since coagulation and fragmentation happen usually on much smaller time scales
than convergence to the attractor, the overall dynamics is in general transient and
only a blurred structure of the attractors will be observable.

The same arguments apply to systems where the finite-size particles are bubbles
instead of aerosols. Bubbles and aerosols of the same size will occupy different
regions in configuration space and exhibit a different kind of dynamics. Therefore,
the dynamics of bubbles and aerosols as well as their changes (bifurcations) with

Fig. 17 Attractors for 3 different size classes in a convection flow (9) (cf. Sect. 3.2 for the flow
parameters). (a) St−1 = 7.0, (b) St−1 = 2.778, (c) St−1 = 2.253 and W = 0.4/A in all cases
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respect to variations of their size are completely different even in the case where
their sizes are identical [70]. Finally it is important to note that the form of the
attractors depends crucially on the flow [71, 62, 72].

Let us assume that there is a smallest particle in the system which cannot be
fragmented. We call it primary particle with radius a1, mass m1, Stokes number
St1 and settling velocity W1. To distinguish the different sizes of the coagulates
it is convenient to introduce a size class index α corresponding to the number of
primary particles that make up the coagulate. The radius of the coagulate is then
aα = α1/3a1, its Stokes number can be expressed as Stα = α2/3St1, and its settling
velocity is Wα = α2/3W1; here we see that W/St is independent of α, as discussed
at the end of Sect. 2.1. To derive these relations we assume that the coagulates are
spherical particles with radius aα . This assumption applies well to raindrops, while
it is a crude approximation for marine aggregates. Marine aggregates are compos-
ites of an inorganic kernel like silt or clay with organisms like algae and bacteria
attached to it which make up a fractal structure for the whole aggregate. Hence the
shape of marine aggregates is more a fractal object than a spherical one.

Coagulation results from a collision of two particles of radii ai and aj forming
a coagulate of radius a3

new = a3
i + a3

j owing to mass conservation. This implies
that the size class index of the new coagulate follows from αnew = αi + αj which
enters Stnew and Wnew. The velocity of the newly formed coagulate is determined
by momentum conservation.

The mechanisms of fragmentation are more complex. While raindrops break
apart when they reach a certain maximum size, marine aggregates split up owing
to shear forces in the fluid. In the latter case there exists a critical shear force which
has to be larger than the intrinsic binding forces of the coagulate to lead to fragmen-
tation. The strength of these binding forces can be measured in terms of a parameter
called coagulate strength. For large enough shear forces which overcome the critical
shear force a coagulate splits into two smaller ones (determined by a splitting rule,
see below). Their velocities are equal owing to momentum conservation and their
location is assumed to be directly neighbouring to each other in a random orienta-
tion. If the binding force of one of the new smaller coagulates is again smaller than
the critical shear force, then an additional break-up takes place. This way more than
two new coagulates can result from a single fragmentation event.

Implementing coagulation and fragmentation in the way described above the
dynamics of the system can be simulated for different fluid flows. For all subsequent
figures concerning coagulation and fragmentation the convection flow explained in
Sect. 3.2 is used. Similar results can be obtained for the sine shear flow [72]. In any
case one obtains a steady size distribution of coagulates where coagulation and frag-
mentation balance each other. The shape of the asymptotic size distribution depends
on several factors.

Firstly, the size distribution depends on the fluid flow. Secondly, the shape of the
size distribution is crucially dependent on the mechanism of fragmentation. While
the realization of coagulation is rather straightforward and does not influence the
shape of the size distribution, fragmentation needs a more detailed knowledge about
the break-up processes to be taken into account. Two different properties of the
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fragmentation process are important to consider: (i) what is the critical shear force
(splitting condition), how it depends on the size of the coagulate and on the intrinsic
binding strength or coagulate strength and, (ii) what is the size distribution of the
two fragments created (splitting rule).

To quantify differences in the size distributions depending on various parameters
characterising either the flow or the active processes it is convenient to define the
average size class index 〈α(t)〉 =∑α αNα(t)/N(t), where Nα(t) denotes the number
of coagulates in size class α, while N(t) is the total number of coagulates in the
system. Note that the total number of coagulates always changes in time owing
to coagulation and fragmentation. As time evolves 〈α(t)〉 is found to always reach a
limiting value α∞ though still fluctuating. This implies that a steady size distribution
sets in, which is unique, i. e., one finds the same distribution for almost all initial
conditions.

Let us now discuss the dependence of the size distribution on the details of
the fragmentation process. Unfortunately there are only a few experimental studies
devoted to the fragmentation process [73, 74]. Due to this limited knowledge about
the details of fragmentation an inverse modelling process has to be considered of
making several assumptions about fragmentation and asking which of those yield
size distributions which are qualitatively in agreement with observations. In this
way one is able to find indications for the most probable fragmentation mechanism.

Fragmentation is modelled by two different mechanisms which occur simulta-
neously: On the one hand shear forces in the fluid lead to shear fragmentation as
is typical for marine aggregates and, on the other hand, size limiting fragmentation
splits all coagulates of a predefined maximum size as is typical for rain drops. The
latter break-up process is assumed to be present in shear fragmentation as well. It
is known that larger coagulates are more fragile and, hence, fragment more easily.
In shear fragmentation the following ansatz for the critical velocity difference Δuc

across a coagulate of size aα is made:

Δuc

aα
∼ γα−1/3 (29)

where γ is the coagulate strength: a change of this parameter corresponds to consid-
ering different types of coagulates. This ansatz is also supported by Taylor [75] and
Delichatsios [76] who derived an expression for the critical velocity gradient for the
break-up of spherical liquid drops depending on surface tension and viscosity of the
drop.

Using Eq. (29) the average size class index is essentially determined by the
coagulate strength γ measuring the intrinsic binding strength of the coagulate. With
increasing γ the limiting average size class index α∞ has been found to grow in
simulations [72, 77] as

α∞ ∼ γ 1/3 (30)



80 J.H.E. Cartwright et al.

Fig. 18 Asymptotic average
size class index α∞ vs.
coagulate strength γ for
St−1
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until it reaches (at larger values of γ ) a constant finite value (Fig. 18). In the latter
interval of γ fragmentation is exclusively dominated by size limiting fragmentation
since the binding forces are too strong to allow for shear fragmentation.

In a certain intermediate range of γ where shear fragmentation dominates, all
size distributions collapse onto a master curve as shown in Fig. 19 if the steady state
size distribution is represented in a normalised form according to Nα/max (Nα) vs.
aα/α∞.

As already mentioned the splitting rule determining the size of the two frag-
ments after breaking apart is another important detail of the fragmentation process
which can possess several forms. Three different splitting rules have been taken
into account in numerical experiments to investigate their impact on the steady size
distribution of coagulates: Uniform splitting describes a break-up where the size
of the first fragment is chosen randomly from a uniform distribution between the
smallest size class index 1 and the size class index of the coagulate before splitting
αold. For large scale splitting the two fragments are of almost equal size, which
is expressed mathematically by α1 = αold/2 − |ξ | where ξ is a random number
(rounded towards the nearest integer) from a normal distribution with zero mean
and standard deviation 1, that is cut off at ±(αold − 1). Erosion corresponds to a
break-up where the size of the first fragment is much smaller than the other one, so
that α1 = |ξ | with ξ defined as for large scale splitting.

Numerical simulations show that the shape of the steady size distribution depends
crucially on the applied splitting rule. While for erosion and uniform splitting the
smallest size class contains most of the coagulates, large scale splitting yields a size
distribution with a pronounced maximum at rather small size classes and an expo-
nential decay towards larger size classes (Fig. 20). Particularly this exponential tail
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Fig. 20 Size distributions for different splitting rules (a) uniform splitting, (b) large scale splitting,
(c) erosion. The parameters are the same as in Fig. 19, γ = 80

corresponds rather well to observations of size distributions of marine aggregates
in tidal areas [78]. This can be interpreted as a strong hint that large scale splitting
might be the dominant fragmentation rule for marine aggregates in coastal waters.

The shape of the size distribution is also dependent on the velocity field of the
flow. As long as the attractors for all occurring size classes are space-filling, there
are no large qualitative differences between the limiting size distributions. Quantita-
tively, the differences are due to the shear induced by the flow field. However, if the
attractors appearing for different flows are not all space filling but differ essentially
with respect to their extension in the configuration space (localised vs. space filling)
or dynamically (periodic and quasiperiodic vs. chaotic) then large differences in the
steady state size distributions may be found.

7 Future Directions

The ubiquity and relevance of suspended particles in time-dependent flows makes it
very important to understand properly the dynamics of finite-size particle advection
in chaotic flows. This area is in active development, and the subject is the source
of many tantalising questions to scientists. We list below what we think are some
promising directions of this field.

Active inertial flows. The existing theory of active flows (that is, the dynamics of
chemical reactions or other active processes taking place in a flow) is cur-
rently formulated mainly for passive tracers [79]. However, this theory only
assumes the existence of fractal spatial distribution of the particles in the
flow, and exponential contraction towards these fractal filaments. Generally,
in case of inertial particles, as discussed extensively in this paper, the fractal
structures are present in a phase space which is higher dimensional than the
configuration space. If the projection of the phase space to the configuration
space shows a fractal distribution of particles, we can expect that the theory
developed for passive tracers holds for inertial particles as well. A major
difference, however, is that particles of different size or inertia are expected
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to occupy slightly different fractal sets. For example, in the case of species
coexistence, a recent work shows that inertia can have a dramatic effect on
the population dynamics [80], indicating that it is very important in gen-
eral active processes. The coagulation and fragmentation process of Sect. 6
is another example of an active process for which the particles’ inertia is
essential.

Non-spherical particles. Up to now most of the work has been devoted to particles
of spherical shape; Eq. (2) is only valid for spherical particles. This approxi-
mation works well in case of the formation of raindrops, but is only a rather
crude approximation in many other applications like e.g. marine aggregates,
which have a fractal-like structure. It can be expected that the non-spherical
shape of the particles has a large influence on the dynamics of the parti-
cles [81]. As an example the aggregation theory of dust particles in planet
formation has been discussed by Wilkinson et al. [68]. While fractal-like
particles have been investigated in the context of a mean field approach to
describe aggregation and fragmentation [82, 83], the consideration of such
non-spherical particles in chaotic flows is a topic of current research.

Hydrodynamical interactions between particles. By moving in the flow, particles
modify the velocity field in their vicinity, and this change may in its turn
affect the motion of another nearby particle. In this way, a hydrodynamical
interaction between particles is created which amounts to an inter-particle
force. This effect is usually neglected, but may become very important in
high particle concentrations. A particularly important question in this con-
text is how the fractal particle distributions created by chaotic advection are
affected by the inter-particle interactions [84].

Non-rigid particles. The Maxey-Riley equation assumes a rigid particle, but there
are many important cases where the “particle” is non-rigid. An example is
raindrops, or any other liquid droplets within a fluid flow [85]. The fact that
their shape is variable and depends in particular on the strain makes their
treatment challenging, but important.

Neglected terms in the Maxey-Riley equations. In numerical or analytical investi-
gations of finite-size particles in chaotic flows, the history term and the
Faxén terms of the Maxey-Riley equation are almost universally neglected by
researchers. It is important to have a more rigorous treatment of these terms
[86], and to know more precisely under what conditions one can neglect
them, and if there are particular flows for which these terms can be important.

We finish with a brief discussion on the case of particles advected by turbulent
flows. We have focused throughout this work on the case of non-turbulent (though
chaotic) flows. There is a vast literature on effects of inertia in fully developed
turbulence, an important subject for many areas. Today it is possible to investi-
gate the particle properties in turbulence at high spatial and temporal resolution.
By the appearance of advanced experimental techniques [87, 88] a direct compar-
ison of experiments and numerical simulations is available. The smallest scales in
turbulence are given by the Kolmogorov length η = (ν3/ε)1/4 and the Kolmogorov
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time τη = (ν/ε)1/2, where ε denotes the energy dissipation rate [88]. It is
natural to define a Stokes number Stη as the ratio of the Stokesian relaxation time
τ = 2a2/(9Rν) following from Eq. (2) for particles of size a to τη: Stη = τ/τη.
Note that this Stokes number differs from the one used throughout the paper which
is St = τU/L (as can be seen from (6)), i.e., the ratio of τ to the large scale
hydrodynamical time. The particle dynamics in turbulence depends on the scale
of observation.

On small scales, below the Kolmogorov lengths (in the so-called dissipative
range), the flow is smooth, and viscosity dominates. The overall situation is similar
to what has been discussed in the bulk of the paper: particles tend to accumulate on
chaotic attractors (projected to the space of the flow), and show fractal patterns. The
characteristic dimension (e.g., the Kaplan-Yorke dimension [17]) starts to deviate
(quadratically) from the dimension n of the flow as Stη takes on small but positive
values [89]. The dimension then reaches a minimum value at a Stokes number Stη1
of order one, corresponding to a strongest clustering, also called preferential concen-
tration, with a clean fractal structure. A further increase of the Stokes number leads
to an increase of dimension, which reaches again the value of n at some Stη2 > Stη1,
still of order one. Beyond this Stokes number, the attractor dimension is larger than n
in the full phase space, and its projection on the fluid is space-filling. This scenario
appears to be independent of the Reynolds number of the flow [90] but depends
smoothly on the density ratio R [91]. An important observation is that the velocity of
the particles as a function of the spatial coordinate might be multivalued. Locations
where the multivaluedness starts to develop are called caustics [89, 92, 93] and their
existence has serious consequences for collision rates of finite-size particles.

Beyond the Kolmogorov length (in the inertial range), the particle distribution
is no longer scale invariant, but it is characterised by voids spanning all scales.
Heavy particles have been found to cluster where the acceleration is large, i.e., where
pressure gradients dominate [89]. Light particles prefer to stay in regions of the
flow characterised by rotation [91]. In the inertial range, preferential concentration
appears thus to coincide with regions of certain Eulerian characteristics.

The research of the Lagrangian properties of particles in turbulence is rapidly
growing (see the review of [88]), and interesting new insights are likely to emerge.
Of particular interest is the behaviour of inertial particles in non-ideal (e.g., not fully
developed) turbulence. When a large scale flow is superimposed on ideal turbulence,
we expect that the particle dynamics on this scale becomes again similar in nature
to that on small scales, and the ideas worked out in the bulk of the paper are then
directly applicable.
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