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A laboratory flow past a groyne with complex hydrodynamics was investigated using surface Particle
Tracking Velocimetry (PTV) technique for detecting chaotic features in fluvial mixing processes. In the
reconstructed velocity field particles were deployed and tracked numerically in a Lagrangian way. Calcu-
lating some appropriate parameters (e.g. flushing times, finite-size Lyapunov exponent) originating from
chaos theory, we are able to give a more detailed picture on surface mixing driven by aperiodic flows than
traditional approaches, including the separation of sub-regions characterized by sharply different mixing
efficiency.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license

(http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

Groynes are cross-wise built river training works for narrowing
the river. The decrease of the cross-sectional area results in
enhancing velocity, hence sediment deposition is less effective at
the particular river reach. A very detailed study on the effects of
groynes can be found e.g. in [1]. Although the main reason for
building groynes is generally to maintain the navigation routes,
other implications are also essential.

Material exchange processes in the vicinity of groynes are
crucial for ecological habitats since the developed flow structure
and resultant mixing might be advantageous for the fish, plankton
species, and other organisms living in water. Since nutrients can be
accumulated in the recirculation area, this region is also ideal for
juvenile fish. That is why even ecological issues can be handled
by a proper shaping of groynes [2]. Pollutants can also stagnate
and be accumulated in the recirculation zone of groynes, which
can then result in ecological deterioration there. The examples
and problems provided above have been serious enough reasons
for investigating river reaches containing one or more groynes.
Research activities performed so far have focused mostly on the
effect of the different groyne geometries on the flow [3], on the
so-called exchange coefficient between the recirculation zone
and the main flow [4,5] and also on certain ecological aspects
related to the spatial distribution of phytoplankton in such an
environment [6].

A span-wise obstacle causes, in general, a complicated flow
field, as is also the case with groynes. High Reynolds number flows
between two fluid bodies of different velocity are described as tur-
bulent free shear flows (see e.g. [7]). Though Eulerian methods were
extensively applied to this class of flows, it is hard to find anything
about the Lagrangian description of the advection dynamics. In this
paper we introduce some methods for characterizing mixing in
river flows which are widely used already e.g. in oceanic [8] or in
atmospheric applications [9].

Under natural circumstances, the flow around a groyne is per-
sistent and non-stationary. The temporal dependence of the flow
field is typically aperiodic. The flows, as all fluvial phenomena, fall
under the category of open flows. In such cases, a fluid element will
not return to large observational regions once it has left that region
downstream. A third basic feature of the problem is due to the
presence of up- and downwellings. As is known, the surface
velocity field is thus not divergence free. The aim of this paper is
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to investigate mixing processes mainly due to chaotic advection in
groyne fields presenting such hydrodynamic features.

Chaotic advection has long been studied in both closed [10] and
open flows [11] but most of the examples have been for two-
dimensional, time periodic incompressible cases only. Less is
known about advection in flows with temporally aperiodic,
perhaps even chaotic, time dependence [12,13]. For a long time,
chaotic advection in free surface flows has only been investigated
under closed circumstances. It is only very recently [8,14] that such
a process has been analyzed in open flow environment. Our paper
attempts to provide a comprehensive study on the mixing dynam-
ics in an experiment-based, aperiodic, open, free surface flow, with
practical relevance in civil and environmental engineering.

In fact, despite the high number of valuable published investi-
gations of fluvial mixing either in situ or in laboratory conditions,
even if tracers and their various image processing-based analyses
were used, they did not focus on revealing chaos and fractality in
the phenomenon. These features are certainly not vital in river
reaches with simple channel geometry where even the conven-
tional Fickian approach can be applied, but in groyne zones they
are definitely expected to bring novel insight and explanation to,
e.g. the development mechanism of patchy or filamental features
in tracer distribution, and consequently also in pollutant flushing
or capturing characteristics. All this is of significant importance
in aquatic environmental engineering at places where the protec-
tion of the quality of river water resources is a regular task. We
are interested in mixing mainly on the surface, as a first approach,
playing an important role in the case of floating type of pollutants
of low enough density, often seen in nature due to, for example,
non-treated outfalls and accidental spills. As surface processes
are relatively easy to observe, they can be a reasonable target for
implementing a novel approach. It might be interesting to note
that the usefulness of this novel approach in the context of e.g.
chemical and food industry was realized long ago. [15,16]

Our investigations are motivated by a recent field campaign in
River Danube [17] in which GPS-equipped surface buoys, an essen-
tially Lagrangian tool, were used to explore the dynamics of fluid
elements in the vicinity of groynes. (A similar investigation was
carried out by Sukhodolov et al. [18] in River Spree using surface
tea candles in a nighttime video recording.) The trajectories and
simultaneous positions of buoys drifted on the surface (for an
example, see Fig. 1a) indicate rather strong deviations in spite of
initially nearly identical locations, a qualitative indication of the
Fig. 1. Trajectories of three buoys followed for a time span of 26 min in the field of two
head (left panel). Plot of the distance between the red and yellow buoys vs. time in a lo
with a rate of 0.004 1/s (right panel). (For interpretation of the references to colour in t
chaoticity of the drifting process. A more detailed analysis of the
data [17] also showed that by applying methods from chaos theory
would substantially improve our ability to understand the behav-
ior of pollutants in the spatially complex flow field at groynes.
An example of this is given in Fig. 1b, where the distance between
two of the three buoys is plotted as a function of time. The graph
clearly indicates that the separation is exponential over a time
interval of about 300 s. The rate of the exponential growth (turned
out to be k = 0.004 1/s) is called the Lyapunov exponent and is
known to be a quantitative measure of chaos [19]. The amount
of obtainable field data is, however, limited by the low number
of available buoys, rather expensive in themselves. A detailed
Lagrangian analysis is thus not possible to perform based on field
campaigns to date. That is why we decided for another setup.

A reasonable way to study the essence of the problem is to turn
to laboratory scale and perform well controlled laboratory mea-
surements. One has, of course, to keep in mind that a complete
reproduction of the flow behavior found in the river is a hopeless
task due to well known scale effects, nevertheless, preserving some
key space-time flow features can result in spreading similar in
character to that at the river scale. In such a laboratory flow it is
then easy to substantially enhance the number of floating particles,
and the trajectory of their drift motion as well as the drift velocity
field itself can be reconstructed by an up-to-date method, e.g. Par-
ticle Tracking Velocimetry (PTV) [20]. As a simple setup, a single
groyne scheme, a rectangular block orthogonal to the bank in a
rectangular channel was implemented. Here a clear flow separa-
tion, a shear layer with vortex evolution, as well as, a large recircu-
lation zone are present, all interacting with each other, and
expected to reveal chaos in surface advection processes. At the first
sight, this experimental approach seems to offer a straightforward
opportunity to investigate the Lagrangian features of the flow
purely based on laboratory particle tracking. However, the
weakness of the technique in identifying uninterrupted particle
trajectories long enough for obtaining chaos features led us to track
numerical particles in the PTV-reconstructed unsteady velocity
field. As will be demonstrated in the paper, the primary goal to
achieve is to prove the presence and robustness of complex mixing
patterns by using tools available in chaos analyses, occasionally by
adapting them to the given conditions. Tools and methods, after
verification, will have the potential to be used in investigating
more complex and realistic cases, such as various groyne shapes
and groyne fields in diverse channel geometries.
groynes in River Danube initially released close to each other upstream of a groyne
g-linear representation. The marked linear section indicates exponential separation
his figure legend, the reader is referred to the web version of this article.)
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The paper is organized as follows: in Section 2 we introduce our
PTV-based laboratory measurements and the reconstruction of the
velocity field. In Section 3 we present the scheme for numerical
tracer advection based on the sequence of reconstructed velocity
fields. Our results for the chaotic advection in the inherently
unsteady shear zone are summarized in Section 4, including some
general observations of the flushing time and escape rates,
moreover, an analysis of the finite size Lyapunov exponent field.
Lagrangian coherent structures, chaotic saddles and fractality are
also discussed. The results are interpreted in terms of the theory
of transient chaos and of random maps. Section 5 is devoted to
the analysis of the recirculation zone. Finally, in Section 6 we
summarize our conclusions.

2. Laboratory experiment to reconstruct the velocity field

The detailed analysis of a flow requires a large number of
Lagrangian particles. The actual position of the particles at every
time step has to be known in order to reconstruct the underlying
velocity field. Such a large number of floating particles can be
controlled in laboratory experiments, using PTV measurement
technique, see e.g. [3].

The measurements were taken in a straight, rectangular open
channel, which was 1 m wide and had a length of 8 m. A weir
was built in at the outflow to control water depth (7 cm at the out-
let section). The study area was selected in a 2.25 m long reach in
the middle part of the channel, where a single groyne of size 30 cm
times 5 cm with vertical edges for simplicity was placed as
illustrated in Fig. 2. The typical stream-wise flow velocity upstream
of the groyne was measured to be 0.05 m/s, which accelerated up
to 0.1 m/s in the main stream passing the groyne. This velocity
provides a Reynolds-number on the order of 7000 signifying turbu-
lent flow; the Froude number is about 0.12.

In the measurements thousands of small, white polyethylene
disks were released by manual seeding in this area. These markers
had a diameter and thickness of 9 and 3 mm, respectively, and a
density of q = 0.97 kg/dm3. The number of floats, the location and
the way of their deployment was chosen to provide an optimum
number of particles in the test section: high enough to have a sat-
isfactory coverage of the most important flow structures, but low
enough to avoid significant particle interaction. After the floaters
were spread in the flow – homogenously in the recirculation zone
as well as upstream and downstream of the groyne in the main
stream – the motion of the particles was recorded for around one
minute by a CCD camera providing grayscale pictures of
1390 � 1040 pixel resolution at 30 Hz frequency. We count time
from the instant of the first picture taken by the CCD camera.

Such recorded images are then in general processed with the PTV
analysis algorithm in five major steps, according to [21]: (i) image
pre-processing, (ii) particle detection, (iii) particle displacement
Fig. 2. Top view of the laboratory setup with the groyne and the marker particles for Par
channel including the cells out of which the tracer particles are released in the numeric
determination, (iv) error filtering and (v) post-processing. Image
pre-processing is to eliminate deceptive background elements on
the images, e.g. bright pixels which might be identified as particles
by the algorithms. Since in our case the background channel was
black and therefore no false illuminating elements appeared, step
(i) could be skipped. In step (ii) the so-called particle mask
correlation method was used. After the setting of some geometric
and intensity parameters, which were determined empirically for
obtaining the best identification results, a reference particle mask
was chosen. The used mask is then compared with every pixel on
the image, and a cross-correlation map is calculated. A peak in this
correlation map corresponds to the particle position. Using the
Gaussian feature of the particle brightness, the intensity distribution
of the centroid can be determined with sub-pixel accuracy. In the
next step (iii) the used algorithm determines the particle displace-
ments from the distribution pattern of the neighboring particles in
the next time frame. Incorrect vectors may appear during the calcu-
lation because of, e.g. disappearing of particles. In step (iv) these
erroneous vectors are filtered out. The used algorithm exploits the
temporal similarity of the velocity vectors. Finally, since the
obtained velocity field is spatially scattered, in step (v) we interpo-
late to an equidistant grid containing 200 and 100 nodes in the x
and y direction, respectively, which corresponds to a spacing of
about 1 cm. We note that the MATLAB scripts published in [21] were
used for the PTV data processing.

To illustrate the compatibility of the measured and of the inter-
polated velocity fields we evaluated different measures. In the two
panels of Fig. 3 the results of a point-wise comparison are shown
for the whole measurement area. The left panel is the histogram
of the angle differences between measured and interpolated veloc-
ities in intervals of 1�. The interval 0–1� is in fact the most likely
one. It is also convincing to see the plot of the length of the inter-
polated velocities vs. that of the PTV-measured ones (right panel).
The values scatter around a straight line of a slope very close to 1
with a large R2 correlation coefficient. (The figures presented here
belong to the starting time instant t = 0 s of the observation, we
have checked, however, that they remain practically unchanged
at later times.)

Moreover, the time-averaged velocity profiles were also com-
pared with the experimental and numerical data of [22] along
some particularly important transects around the groyne. A
detailed presentation of the results is beyond the scope of this
paper, but it is worth noting that satisfactory agreement was
found.

Since the velocity data are extracted from those of plastic disks
of 9 mm diameter, nearly identical to the grid spacing (1 cm), the
result can only be interpreted as a flow field smoothed out on this
scale. Small scale structures smaller than around 5 mm in radius
are, thus, not resolved. The Lagrangian results are therefore not
reliable on scales smaller than this. Interestingly, patterns much
ticle Tracking Velocimetry (left panel). Schematic view of the groyne position in the
al simulations (right).



Fig. 3. Comparing the PTV-based and the interpolated velocity fields. Left panel: histogram of angle differences between the PTV measured and the interpolated flow field.
Right panel: comparison of the velocity magnitudes.

Fig. 4. PTV recorded particle paths over 2 s (left) and the Eulerian x-wise velocity component u over 24 s at the center point of cell B3 indicated in the right panel of Fig. 2
(x = 0.45 m, y = 0.825 m). A clear aperiodic behavior can be observed with an average period 3 s between the velocity peaks.

Fig. 5. A typical snapshot of the divergence of the reconstructed surface velocity
field. The red and blue patches indicate instantaneous upwelling and downwelling
regions, respectively (t = 1.3 s after the start of recording). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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smaller than 5 mm do not appear in some of the figures (e.g. in
Figs. 7a, 8c and d and in all panels of Fig. 10) illustrating a kind
of consistency of the results. Where patterns on smaller scale
appear like in Figs. 7b and 8a and b, these should be interpreted
as mathematically created sub-grid features, only.
In the left panel of Fig. 4 one can identify (from bottom to top)
the main Eulerian flow structures developing in the vicinity of an
emergent groyne: vortices shedding from the groyne head lead
to exchange processes in the shear layer present between the slow,
essentially two-dimensional (2D) horizontal gyre in the recircula-
tion zone behind the groyne and the main stream.

In addition to the velocity irregularities, the unsteadiness of the
flow can also be observed: during this short recording time interval
several particle trajectories crossed each other, a phenomenon that
would have been impossible in a stationary flow. In the right panel
the time series of velocity component u is shown in the centre
point of cell B3, as reconstructed by PTV. It clearly indicates that
the investigated flow is aperiodic.

Free surface flows provide a particular mechanism for attracting
and repelling motion: upwelling and downwelling. These features,
common in fluvial environments, convey material to and from the
surface, therefore the surface flow velocity vector field in general is
not divergence free as is seen in Fig. 5.
3. Trajectory simulations

A C++ code was developed to track particles numerically in the
interpolated velocity field by a high accuracy Runge–Kutta method
(RK) with Dt = 1/30 s, corresponding to the PTV camera frequency
using bilinear planar interpolation. Numerical tracer particles were
placed initially around the groyne in ten 0.1 m � 0.1 m cells (see
Fig. 2) with 0.1 mm spacing. This implies a maximum number of
ten million trajectory simulations, providing an appropriate
amount to characterize the main Lagrangian features of the flow.



Fig. 6. Deformation of a square shaped surface dye droplet filling out cell A3 (black) at t = 0 s (a), 6 s (b), 12 s (c) and 18 s (d).

Fig. 7. Flushing times. Distribution of the flushing times measured in units of 3 s (of the time interval over which a fluid element in the main stream passes the length of the
groyne) plotted over the cells of Fig. 2 with the values marked according to the color bar (left panel). Cross-sectional profile of this distribution at x = 0.465 m (within cell B3)
(right panel). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The solved equation was dx/dt = v(x, t), where the vector function v
was approximated from the interpolated velocity field.

As a first acquaintance with the long term advection dynamics,
let us monitor the fate of a surface floating dye droplet in the
reconstructed flow field. We initiated N = 106 tracer particles uni-
formly distributed over cell A3 somewhat upstream of the groyne
(Fig. 6a), and marked the positions of all the particles at fixed sub-
sequent time instants. The droplet quickly becomes stretched and
folded (Fig. 6b and c), and eventually forms a fine filamentary
structure (Fig. 6d), while a part of it is flowing out of the range
of observation.
4. Chaos characteristics

The strong deformation of the droplet is a clear indication of the
chaoticity of the dynamics. Since, the flow becomes very complex
in the study area, the particles undergo chaotic motion while
flowing through (as it is typical in open flows). To characterize
advection, we use methods worked out in the theory of transient
chaos [23]. Novel features arising from the aperiodic time-
dependence of the flow will be explained where necessary.
4.1. Flushing times

The time that a particle spends before reaching a suitably pre-
scribed downstream border cross-section determines the flushing
time of this particle. The flushing time distribution from a given
region provides a measure of the irregularity of the tracer dynam-
ics. To see this, we tracked trajectories until they reached the coor-
dinate x = 1.7 m (corresponding to a downstream distance of
Dx = 1.2 m, about 4 times the groyne length). Whenever this hap-
pened, the elapsed time was assigned to the initial position of
the particle.

In a chaotic system the spatial distribution of the flushing time
is filamentary because of the sensitivity to the initial conditions.
Indeed, particles presenting short or long time to reach the border



Fig. 8. Dependence of the dimensionless flushing time distribution in cell B3 near the groyne head on the starting time: t = 0 s (a), 3 s (b), 6 s (c), and 9 s (d).
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cross-section might be very close to each other at the beginning of
the observation.

A filamentary structure is indeed well visible in Fig. 7a. Regions
marked with blue indicate short flushing time. Particles started
from such places reach the border line very quickly. However, it
is also remarkable that thin red filaments are enclosed in the well
flushed areas. These structures correspond to a kind of stable man-
ifold (for more details on the manifold and on its origin, the chaotic
saddle, see Section 4.5), because these points stay for the longest
time in the study area.

The dimensionless presentation (the time unit based on the
groyne length L = 30 cm and on the typical flow velocity
U = 10 cm/s is in the experiment L/U = 3 s) used in Fig. 7a enables
us to project data for the original setup indicated in Fig. 1. As the
largest lifetimes are about 20 dimensionless units, a similar case
for River Danube, where the groyne length is about L = 100 m,
the average flow speed is U = 1 m/s, and the natural time unit is
L/U = 100 s, corresponds to largest lifetimes about 2000 s, i.e.
33 min in a range of 4 groyne length (�400 m) downstream of
the groyne.

A Lagrangian interface line that separates the shear zone and
the recirculation zone downstream of the groyne is also clearly
visible as the boundary of the white region in cells C2–D1. White
color marks areas from where the released particles do not reach
the border line in the simulation period of 66.6 s. In Fig. 7b we
present a typical y-wise cross-sectional profile of the flushing time
distribution. This further confirms the fractal-like feature, and is
analogous to the delay-time function of chaotic scattering
processes [11,23].

Fig. 8 provides flushing time distributions with different
starting time instants. In periodic flows the same pattern would
be repeated with the period of the flow. In this aperiodic case,
however, the pattern keeps changing with time, in principle
forever. A theoretical background of chaotic advection in sustained
aperiodic flows is provided by the theory of random maps worked
out in [24]. It was successfully applied to the interpretation of
the results of a closed free surface flow experiment [25], and
extended to open flows [12,13,23]. A central statement of the
theory is that patterns remains fractal forever, although the actual
shape changes all the time. Another important feature of chaos is
the rapid (exponential in time) separation of originally nearby
trajectories (as also indicated by the buoy tracks of Fig. 1a and
the data of Fig. 1b). The so-called average Lyapunov exponent is
a global measure of this strong tendency for separation [19,26],
i.e. for efficient mixing, in our hydrodynamic context. An
interesting feature of sustained aperiodic flows is that chaos
characteristics, e.g. the average Lyapunov exponent and corre-
sponding fractal dimensions, are well defined and independent of
time [23].

The results apply to flows that can be approximated as random
perturbations of periodic ones (an assumption supported by Fig. 4
in our case). The key observation behind the statements is that all
the members of an ensemble of tracer particles are subject to the
same local random perturbation at any time instant.



Fig. 9. The number of survivors in (x < 1.7 m) of an ensemble of N = 106 particles
released in cell D3, D2, and D1 of Fig. 2. Thin continuous lines represent the fits of
slope j. The release from the recirculation zone D1 provides a rather straight graph
with small slope, therefore we do not mark any fit there. The escape rate (the
average slope after the delay time t0 = 22 s, i.e. for t > 22 s) is largest close to the
main stream (D3).
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The fact that the flushing time distribution remains fractal in
time is also illustrated by Fig. 8. Note, that the different resolution
of the spatial structures observed at different initial times is due to
the decaying number of polyethylene disks from which the veloc-
ity vector field in the channel was reconstructed.

We emphasize that global flushing times from large regions
(e.g. from cell D2) can easily be extracted from data of Fig. 7 left
panel. By merely evaluating the arithmetical mean of the flushing
times within a cell we obtain the results of Table 1 showing a
remarkable difference of the global escape times between the
shear zone and upstream regions. (Because the flushing times in
the recirculation zone is much larger than the period of observa-
tion, cells A1, C1, D1 are not represented in Table 1.) Focusing on
local flushing times instead of the global ones is decisive in our
approach: the filamental patterns due to chaos enforce us to use
a spatially refined scale description instead of a global one. This
refined scale description requires the application of the novel tools
to be outlined in Section 4.3–4.6.

4.2. Escape rates

In open flows a quantity characterizing the flushing process
from a given region is the escape rate. The number N(t) of survivors
after time t decays for long time as

NðtÞ � expð�jtÞ ð1Þ

where j is the escape rate. The reciprocal of j provides an estimate
to the average flushing time (lifetime) of particles in the region of
observation after the exponential decay sets in. Such a clear
exponential behavior should be present in random maps as well,
for sufficiently large particle ensembles. Since the particle number
is unavoidably finite in our simulations, the decay appears with rel-
atively large fluctuations. Nevertheless, an average exponential
decay of N(t) can be detected after a delay time t0 which is about
22 s, that is about 7 time units (see Fig. 9). The negative slope of
the ln N vs. t curve yields the escape rate. We investigated N(t) in
three different initial cells of Fig. 2 and found different escape
rates (Fig. 9). In cell D3, close to the main stream, on which we
concentrate now, the flushing is rather fast, and we find
jD3 = 0.235 1/s. Thus, the average flushing time after t0 is about
4 s, i.e. 1.3 dimensionless time units. (The same flushing time would
imply 130 s in the main stream of River Danube). The two other
initial cells, D2 and D1, are on the boundary of and inside the recir-
culation region, and hence are characterized by much smaller
escape rates. We find in cell D2 jD2 = 0.070 1/s, consequently a
flushing time approx. 15 s, that is 5 dimensionless units after
t0. The total flushing times t0 + 1/j in cells D2 and D3 turn out to
be good approximations to the global ones obtained as the means
of the local flushing times in those cells (see Table 1). In cell D1,
however, jD1 = 0.001 1/s (flushing time 1000 s, 330 dimensionless
units after t0), indicating indeed that typical flushing times are
much longer there than the period of observation.

There are, however, large fluctuations around the fitted
exponential decays. We note that in theoretical random maps the
fluctuations disappear for very large particle numbers [13,23].

4.3. Finite size Lyapunov exponents

The particle separation is characterized traditionally by the
average Lyapunov exponent, which is defined as the average expo-
Table 1
Global flushing times characterizing the cells around the groyne edge (see Fig. 2 right pan

Cell A2 A3

Dimensionless global flushing time [–] 8.0 5.7
nential rate of separation of particles initially close to each other
(see e.g. [26]). Aurell et al. introduced the concept of the finite size
Lyapunov exponent (FSLE) as a generalization of this quantity
[27,28]: at some time t particles are initiated around a point x on
an equidistant grid with spacing d0, then they are tracked up to
time s, when the largest separation of their original edge neighbors
reaches a specified threshold value dl. The FSLE is defined with the
following formula:

kðx; t; d0; dlÞ ¼ 1=s lnðd1=d0Þ: ð2Þ

This number is the larger the shorter the time is over which the
initial small distance between two nearby particles expands to the
predefined threshold distance. The FSLE can thus be considered to
be a local measure of the mixing strength.

We determined the spatial distribution of the FSLE values
assigned to the initial position of particle pairs at four different
starting time instants. The results in Fig. 10 show strong filamen-
tary structures, in all cases.

The overall pattern is similar to that of the flushing time distri-
bution in the same cell (B3, see Fig. 8). Filaments marking larger
FSLE values determine places where stronger particle separation
occurs. Two significant ridges appear near the head of the groyne.
Particles started on these (reddish) filaments are separated from
their neighbors very fast. This indicates that (time-dependent)
hyperbolic points are located somewhere in the flow. It is
interesting to see also regions from where particles stay generally
together in-between the well mixing filaments. Such regions are
marked by white color. In these regions particle pairs either flow
out of the region of observation before reaching the threshold dis-
tance or do not reach the threshold during the entire observation
period of 66.6 s. The former is typical in this presented case, i.e.
pairs do not separate more than 40 times their original distance
over a typical flushing time which is at such places 12 time units.
To see the drastic difference of the mixing strength to those within
filaments, we mention that particles deviate from each other in the
el).

B3 C2 C3 D2 D3

8.7 13.3 9.0 10.3 9.7



Fig. 10. Temporal evolution of the finite size Lyapunov exponent field in cell B3. Particles started from white regions stayed close together during the observational period
(that is their FSLE is close to zero). Starting times are t = 0 s (a), 3 s (b), 6 s (c) and 9 s (d).

Table 2
The cell-averaged finite size Lyapunov exponent corresponding to
different starting times in cell B3, the spatial distribution of which
is shown in Fig. 10.

Initial time [s] Average of FSLE [s�1]

0 0.446
3 0.374
6 0.334
9 0.525

12 0.476

Fig. 11. Distribution of FSLE values in cells A3–D3 and flushing times only beyond
the threshold value of 50 s are shown (black) and FSLE values only beyond the
threshold value of 0.5 s�1 are colored.
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reddish region (where the FSLE value is 6 in dimensionless units) to
more than 105 times their original distance over just 2 time units
(6 s).

The filamentary FSLE patterns change in time without any
repetition, in harmony with the random map theory. Their average
over the same cell (presented in Table 2) appears to fluctuate over
a mean value,

k ¼ 0:43 1=s;

that can be considered as an estimate of the average Lyapunov
exponent over the chaotic transients.
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4.4. Lagrangian coherent structures

The concept of Lagrangian coherent structures (LCSs) has been
elaborated [29–33] to characterize transport in flows of arbitrary
time dependence. It is therefore natural to briefly discuss these
structures in our aperiodic flow. LCSs are special material filaments
that prohibit fluid flux across themselves. They are thus also barri-
ers to transport. The basic idea has recently been developed to
investigate the strain, and the most repelling or attracting strain
lines. Haller in [31] obtained rigorous results on the characteriza-
tion of such material lines of aperiodic flows defined over finite
intervals. It was pointed out that the analog of stable manifolds
exists in the form of the most attracting strain lines. Intersections
between the most repelling and attracting strain lines form so
called hyperbolic cores, that are the analogs of hyperbolic orbits.
Due to the finite-time observation of aperiodic flows, the LCSs
are not unique, but they appear to be locally unique up to numer-
ical precision for sufficiently long time intervals [31].

We have seen that a convenient measure to characterize the
stretching dynamics is finite size Lyapunov exponents. It is
expected that hyperbolic Lagrangian coherent structures are well
Fig. 12. Locations with flushing time values larger than 50 s correspond to a stable man
converges (b, t = 6 s) to a time-dependent saddle (c, t = 18 s) later it is stretched (d, t = 27
(f, t = 45 s).
approximated with maxima (ridges) of the finite size Lyapunov
exponent fields [32].

In Fig. 11 we compare the ridges of FSLE with sets of large flush-
ing times (black lines). The latter is obviously an LCS, since infinite
flushing times can only belong to initial conditions hitting hyper-
bolic orbits, and initial conditions on the two sides of such lines
deviate from these orbits in different directions. Fig. 11 illustrates
that the curves of large flushing times (marked by black) coincide
approximately with ridges of the FSLE field (for a more detailed
recent theory, see [34]).

4.5. Chaotic saddle

The chaotic set underlying transient chaos is known to be a cha-
otic saddle (for an elementary presentation, see [26]). This is a non-
attracting set that contains an infinity of unstable (hyperbolic)
cycles. Since each cycle possesses a stable and an unstable mani-
fold, the full chaotic saddle also has such a manifold. They are
always fractal objects.

A more direct appearance of the manifolds, and of the saddle,
can be seen in the sequence of Fig. 12. We start monitoring the
ifold. This filamentary manifold (a, t = 0, the same as the black line in Fig. 12) first
s) and folded (e, t = 36 s) by the flow which results again in a fractal-like structure
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points belonging to the large flushing time values in panel a. The
convoluted, filamentary pattern becomes more compact (panel
b), and appears to converge to a localized object (panel c). In a first
approximation, this object might be interpreted as a (somewhat
fuzzy) hyperbolic point. The presentation of the velocity vector
field at this time instant shows, that this object is indeed close to
an instantaneous stagnation point of the Eulerian flow. Somewhat
later, the particles start to spread along a smooth line (as they
should along the unstable manifold of a single hyperbolic point).
Later on, however, as panels e and f indicate the set becomes more
Fig. 13. Locations with flushing times (in cell B3) larger than 33 s. This set is a
fractal of dimension D0 = 1.62.

Fig. 14. Deformation of a square-shaped surface dye droplet of N = 106 particles (black) st
at t = 12 s (b), 24 s (c), and 36 s (d).
and more folded. This can only be explained by excluding the
option of a single hyperbolic point. The localized object in panel
c should contain many hyperbolic cycles. This object should be part
of a (temporally ever changing) chaotic saddle. All filamentary
objects seen up to now are related to the fractal manifold of such
chaotic saddles.
4.6. Fractal dimensions

In order to determine the fractal dimension, the box counting
method (see e.g. [26]) was applied. Grids with different resolutions
between 10�1 and 10�4 m were laid on flushing time values larger
than a threshold. Then the log number of boxes containing at least
one point was plotted vs. the log of the box size. The slope of this
curve is the fractal (box counting) dimension. Experience showed
that the half length of the whole measurement period (33 s) is an
acceptable threshold, providing continuous filaments and a stable
fractal dimension. In Fig. 13 points characterized by flushing times
larger than this threshold are shown in cell B3. The calculated
fractal dimension of this pattern is D0 = 1.62.

It is worth mentioning that in a divergence free two-
dimensional open flow, the information dimension of the stable
manifold (corresponding to locations with large flushing time
values) would be expressible [23] as

D1 ¼ 2� j=k: ð3Þ

This expression is shown to hold in random flows, too [12,13].
Given that the information dimension is typically close to (but
smaller than) the fractal dimension, we would expect D1 � D0.
With the estimated j and k values (jB3 = 0.235 1/s and k = 0.43 1/
s) the quantity 2 � j/k is about 1.63. Such a good agreement has
been found with patterns taken at other initial times, too.
arted within cell D1 downstream of the groyne at t = 0 s (a). The shape of the droplet
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5. The recirculation zone

As mentioned in the Introduction, the knowledge of the mixing
properties in the recirculation zone behind the groyne is crucial for
ecological issues since both nutrients and pollutants might
accumulate in this area. Earlier studies aimed at unfolding the
dynamical structure of this zone and its impact on the (Eulerian)
exchange rate with the main stream (e.g. [35]). For multiple-
groyne setup it was found that, depending on the geometry, one
or two gyres are formed in the zone between groynes. In our sin-
gle-groyne case, however, the gyre pattern is different. In instanta-
neous velocity fields a complicated picture can be observed: some
smaller vortices freshly shed from the shear zone influence the
flushing processes as they carry particles away from and take oth-
ers back into the recirculation zone (see e.g. Fig. 4, left panel).
Though the mass transport between the main flow and the recircu-
lation zone is enhanced by the vortices developing in the shear
layer, the flushing time is still large in most of the recirculation
zone, implying slow dilution there.

In Fig. 14 we present how a surface dye droplet consisting of
106 numerical particles, released from the recirculation zone in
cell D1, is advected. The initial shape seen in panel a starts to
deform so, that two narrow filaments are stretched out from
the lower part towards the groyne head, whereas the upper
region of the dye moves towards the wall (panel b). In panel c
a thin filament is observable, along which some particles have
already left the recirculation zone, but most of them remain still
trapped in the gyre. In the last panel the shedding vortices have
already folded the escaping particle filaments many times, while
the particles released initially in the upper part of the droplet
start to fill the gyre.

In dynamical systems terms, the recirculation zone contains in
time-periodic flows a KAM torus, which plays the role of a separa-
trix, separating a region of never flushing fluid from the main
stream. The escape rate for this region is then exactly zero. The fact
that in our aperiodic flow flushing (even if very weak, see Fig. 9,
line marked as D1) takes place, shows that such an exact separatrix
does not exist. This is in harmony with the statement of the ran-
dom map theory [12] according to which no KAM tori can exist
Fig. 15. The confluence of Rivers Rába and Mosoni-Duna in Gy}or on 8/10/2010 (left) and f
(right).
in random flows. Aperiodic time dependence leads here to a strong
separation of the time scales characterizing the mean stream and
the recirculation zone.

6. Conclusions

Before summarizing the essence of our approach, we present a
situation different from the one related to groyne fields where
methods similar to the ones used in the paper could successfully
be applied.

Free shear layers dominate river junctions whenever the two
streams arrive there at different flow speeds. Due to the differences
in suspended solids content their structure and evolution often
become visible. Such a case is given in Fig. 15a showing the junc-
tion of two medium size rivers in Hungary. In fact, the sharp con-
trast in the water color is linked to the breaching of a red mud
deposit dam well in the upstream catchment part of one of the riv-
ers (occurred in October 2010, cf. in [36]). The mud spillage unfor-
tunately reached the river but was on its way effectively
neutralized by using large amounts of plaster powder. Such a gray-
ish plume reached then the junction region making the shear layer
exceptionally visible. What can be seen there is a Kelvin–Helm-
holtz type vortex evolution with strong two-dimensionality,
resulting in more and more stretched interface.

As a more recent event at the same site, a floating algae plume
released from an upstream sidearm made some additional flow
and resulting mixing patterns visible and worth for further study.
In Fig. 15b one can easily observe the effect of coherent three-
dimensional structures on the surface mixing. The eddies, though
inherently three-dimensional by nature tend toward two-dimen-
sionality in their turbulent features as reaching the surface. The
eddies as well as the resultant succession of upwelling and down-
welling zones make then the algae pattern very patchy and
strongly filamental, both requiring further analysis to obtain quan-
titative mixing parameters, most likely with fractal features in
them. All the methods presented in the bulk of the paper origi-
nated from the inherent fractal nature of mixing in free shear flows
and are, therefore, applicable to the above mentioned examples as
well.
ractal-like algae filaments drifted by the stream in the same confluence on 5/9/2013
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Our aim in the paper was to demonstrate the ubiquitous fractal
nature of mixing and its various implications on the behavior of
floating pollutants drifted on the surface. The quantified and
analyzed chaos characteristics all shed light on the basically same
phenomenon, making it easier to understand and interpret for
practical applications. In fact, for engineers dealing with river
water quality issues, affected from time to time by severe
pollution, a reasonable knowledge of the mixing features discussed
in the present paper can upgrade planning, prevention, as well as
remediation skills. At a later, more developed stage this knowledge
could be applied not only to evaluate existing groyne configura-
tions built exclusively for classical river training purposes, but also
to modulate the planning of new ones, reconciling the often con-
flicting aspects of e.g. fluvial navigation-related river training mea-
sures, environmental protection and even ecological habitat
conditions. In doing so,

� the novel details demonstrated on flushing time and escape rate
irregularities, going even down to filamental patterns are essen-
tial to see hydrodynamics-driven cleaning up,
� or on the opposite, occasionally unacceptably long stagnation,

distinguished all that for the main stream, the shear and the
recirculation zones.
� Lyapunov exponent distributions traditional in revealing chaos

in particle separation, a possible measure of mixing strength,
gave patterns similar to the one of flushing time, thus support-
ing the coexistence of exponential particle separation and of
extremely short flushing times, nearby.
� Further on, the revealed features and mechanisms were then put

in the general context of Lagrangian coherence structures, and
� also in a more detailed discussion of the vital role of chaotic

saddles.
� Finally, fractality found in the flushing time patterns were even

quantified, with its dimension defined by a simple theoretical
formula for characterizing the stable manifold (locating large
flushing time values).

They all mean novel scientific achievements having at the same
time strong relationship to immediate practical application. In fact,
being experienced with the uncertainty and sensitivity of the fate
of individual pollutants provides very up-to-date skills for practic-
ing engineers in fluvial water resources protection and
management.
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