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Abstract

As important environmental features, mixing properties of inland water bodies in unsteady flow conditions are investigated. Time-
dependent motion, often resulting in chaotic behavior, requires the Lagrangian description of the transport. As a simple example,
unsteady hydrodynamics driven by periodical wind forcing in a simplified shallow lake geometry is considered to explore the main cha-
otic properties. In the modelled flow field methods identifying strong and weak shearing sub-regions are proposed and applied as mixing
indicators. These include the determination and inter-comparison of the finite size Lyapunov exponents (FSLE), the residence time, and
the implementation of the so-called leaking method. Coherent structures as stable and unstable manifolds are also identified, playing the
role of Lagrangian barriers that hinder local transversal material transfer, and avenues that significantly channel transport. The primary

effect of turbulent diffusion on the FSLE fields is also demonstrated.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In shallow environmental flows horizontal mixing is of
particular importance. Its understanding and accurate mod-
eling are essential for applied sciences, such as estimating
water exchange mechanisms, interpreting plankton move-
ment or planning and operating pollutant outfalls. Mixing
in water takes place due to two main processes: diffusion
and advection. The role of diffusion alone is usually minor
in the efficiency of mixing, but its combined effect with advec-
tion or even more, the complexity of advection in itself can
also result in large-scale spreading. In time-dependent veloc-
ity fields the basic mechanism is chaotic advection, which is
best handled as inherently Lagrangian transport as shown
by Aref [2]. With methods originating in chaos theory we
are able to locate spatial structures which govern the flow
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and areas where the most effective mixing occurs. Such struc-
tures as hyperbolic (also called saddle) points and manifolds
(see Fig. 1) have long been used for classifying the evolution
of trajectories in abstract dynamical systems (for an intro-
duction see e.g. [20]). Their application in the context of fluid
dynamics, in turn offers a new tool with clear physical mean-
ing: identifying vortex boundaries, barriers and avenues of
transport, or lines of strong stretching [5,8,16]. Especially,
chaotic dynamics are characterized by complex intersection
of stretching and contracting manifolds around the hyper-
bolic points. Mixing is typically strong in these regions: tra-
jectories of initially close particles are quickly separated
along the stretching directions.

Hyperbolic points are the Lagrangian analogs of Eulerian
stagnation points. As is well known, a stagnation point is the
intersection of streamlines at a certain instant of time
(Fig. 1A). If the flow field were frozen, the fluid would be
motionless at such points. As the definition implies, the stag-
nation point is an instantaneous property of the flow. A
hyperbolic point is, on the contrary, a point moving with
the fluid, along a periodic orbit in temporally periodic flows.
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Fig. 1. Schematic illustration of a stagnation point (gray square), which is
an instantaneous Eulerian property of the flow (A) and a hyperbolic point
(gray dot), also called saddle point, a Lagrangian property carrying
information about the long-time properties of the advection dynamics (B).
In (A) and (B) the solid lines represent streamlines and the stable and
unstable manifolds (the contracting and stretching curves), respectively.
The dashed line corresponds to a typical particle trajectory, moving off but
close to the manifolds. Such particles spend long time around the
hyperbolic point, but eventually escape it. This shows that the periodic
orbits corresponding to hyperbolic point are unstable.

At any instant of time there is a curve running towards the
hyperbolic point. This curve is the set of all points which,
when followed at integer multiples of the period of the flow,
will hit the hyperbolic point in the future. This curve can be
called the curve of contraction, or, in terms of dynamical sys-
tem theory, the stable manifold [20] (see Fig. 1B). Similarly,
another curve can be defined, the stretching curve or unstable
manifold, along which points leave an infinitesimally small
neighborhood of the hyperbolic point. The unstable mani-
fold can also be considered as the stable manifold in the
time-reversed Lagrangian dynamics. Near hyperbolic
points, the rate of separation of nearby particles is exponen-
tial. The manifolds of the hyperbolic point reflect the entire
history of the fluid around the hyperbolic point. Stagnation
and hyperbolic points are thus basically different, although
both are surrounded by a cross-like pattern, as seen in
Fig. 1. (They coincide in stationary flows only.) Often they
happen to be close to each other, as we shall illustrate in
the present paper.

In our work we compare different Lagrangian methods,
with special emphasis on the finite size Lyapunov-exponent
(FSLE) method, the residence time distribution and the
leaking method, which have not been applied earlier in
inland water context. We take a simple wind-forced shal-
low basin model, analyze the mixing properties and, in par-
ticular, the locations with strong chaotic behavior
responsible for efficient mixing. All this reveals new aspects
in understanding and interpreting mixing processes in shal-
low wind-forced lakes, providing additional tools to the
water resources management in such an environment.

2. The hydrodynamical model

In order to investigate the chaotic features in a simple,
but realistic case, a shallow, wind-forced sample lake was

chosen with dimensions close to the ones typical for shal-
low inland waters. Representing, e.g., small reed-enclosed
inner ponds of shallow lakes (as can be found in the Ever-
glades, or in Lake Neusiedl in Central Europe) while keep-
ing the shape as simple as possible, a horizontally
2 km x 2 km square-shaped lake was set up. Apart from
the nearshore zone, the bottom of such bays usually slopes
gently toward the middle, which, nevertheless, can be the
reason of significant topographic gyres in the circulation
pattern. Thus the depth of the lake was set to 2.5m in
the middle and 2 m all along the shoreline, with linear
depth transition for simplicity (Fig. 2).

The lake is forced by a wind speed with 10 m/s North
and East components, and the direction is abruptly chan-
ged at every 4 h from this NE to a NW direction and vice
versa, similarly to Kranenburg’s analytical [11], and
Liang’s numerical models [13,14], where chaos theory for
shallow water bodies has been applied. All this results in
a highly unsteady periodic flow field (of period 7= 28 h)
after the simulation has run sufficiently long. Trajectory
computations are started at the first windturn to the NE
direction once the flow solution has became periodic. In
the paper, model time ¢ always refers to the trajectory com-
putations. As was shown by field measurements and veri-
fied by detailed turbulence modeling [9], in such a spatial
extension the wind and the surface wind shear stress as
the external forcing field presents a systematic irregular dis-
tribution governed by the development of the so-called
internal boundary layer over the water surface. The near-
surface wind and the resulting shear stress field was esti-
mated by considering the development of this layer. Its
dependence on the fetch is implemented by simple semi-
empirical formulae, justified both by field data and numer-
ical modeling.

As a combined effect, shallow lakes with such depths
and wind shear stresses are characterized by strong hori-
zontal circulation patterns [6], thus even a 2D depth-inte-
grated approach can reasonably capture the essentials of
horizontal water mass advection, and depth-averaged flow
velocities may be applied to describe water exchange mech-
anisms. In order to do so, the numerical solution was
obtained by a standard two-dimensional, depth-integrated
shallow water model. We assumed a uniform Manning bed
roughness n = 0.025 s/m"? and in view of the moderate
extent, the effect of the Earth’s rotation is neglected. The
governing equations are in terms of the conservative vari-
ables (depth and volume flux components), and these vari-
ables are arranged on a uniform, Cartesian grid of 40 m cell
size according to the Arakawa C layout [1]. No normal
flow is allowed along the shoreline and a perfect-slip
boundary condition is imposed for the tangential flux com-
ponent. To achieve second-order accuracy in space, spatial
derivatives are approximated by central differences, except
in the advective terms which are upwinded. The solution is
advanced in time using an explicit Euler-type method
whose timestep is limited by the Courant stability condi-
tion [12].
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Fig. 2. The bathymetry contours and the velocity field (arrows) of the model-lake at =0 (A) and ¢ = 1/2T =4h (B). Longest arrows indicate flow
velocity close to 10 cm/s. The horizontal and vertical axis corresponds to the x and y axis, respectively.

3. Lagrangian methods and traditional approaches for chaos
analysis

The Eulerian velocity components are provided on the
aforementioned grid at discrete time steps of 600 s. Particle
positions are calculated using velocity fields with East and
North components u(x,y,?), v(x,y,t) linearly interpolated
between time steps #; and ¢, | at intermediate time level ¢
to obtain the Lagrangian particle paths. The advection
equations

dx dy
dr u(x7y7 t)’ E = U(x7y7 t)

were solved by a fourth-order Runge—Kutta scheme using
bilinear spatial interpolation. The solution of these equa-
tions in time-dependent flows is typically chaotic. Fig. 3
demonstrates typical trajectories.

In panel A a chaotic trajectory is exhibited. This particle
gets into the vicinity of particles of different origin, there-
fore effective mixing between diverse water bodies takes
place along the entire trajectory. Originally compact fluid
parcels become here very strongly stretched and folded.
The region visited by the trajectory in panel B is smaller,
the trajectory itself is non-chaotic. This particle is followed
by the surrounding tracers, and mixing is only able to occur
due to diffusion. Such a region corresponds to badly mixed
dead zones where fluid parcels are weakly distorted only,
and compact patches remain compact as time goes on.
Panel B also contains a special trajectory, a closed unstable
periodic orbit. The orbit becomes closed after a single per-
iod of the flow; it is a period-one orbit. Points of this orbit
are hyperbolic points. (Stable periodic orbits can also exist
in the lake; they are typically the midpoints of the dead
zones.) It is instructive to see a comparison of the instanta-

neous Lagrangian pattern around the hyperbolic point and
the Eulerian pattern around the corresponding stagnation
point of the flow (Fig. 4).

4. Leaking advection dynamics

A novel way of visualizing mixing properties is pro-
vided by the method of “leaking’ introduced by Schnei-
der et al. [17] (see also [18,19,22]). This method is based
on monitoring particles which do not enter a pre-selected
area, the leak, over very long times. If the advection
dynamics is chaotic, the monitored particles trace out
fractal patterns (see Fig. 5). The starting position of
these particles indicates the so-called stable manifold,
from where they reach hyperbolic points. Their end posi-
tions locate the unstable manifolds, along which the
hyperbolic points are left. The midpoint of these trajecto-
ries must be close (cf. Fig. 1B) to the hyperbolic points
(see also [20]). The main message of Fig. 5 is that there
is an infinity of hyperbolic orbits outside the leak (the
chaotic saddle, in dynamical systems terminology). One
of them is, of course, the hyperbolic orbit of Figs. 3B
and 4B, but there are infinitely many more. Most of
the corresponding trajectories become, however, closed
after more than one period only. The set of hyperbolic
points forms a fractal set, and so do their manifolds.

Note that the precise pattern depends on the size and
location of the leak. The smaller the leak, the denser the
set of hyperbolic points and its dimension approaches
two. This indicates that in the original, unleaked system
the hyperbolic points are space filling. Simultaneously,
the manifolds also shade a fluid area. The manifolds
of the leaked problem provide thus a subset of the full
stable or unstable foliation of the closed system.
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Fig. 3. Particle trajectories started at time zero from x =900 m, y = 760 m (panel A) and x = 1405 m, y = 960 m (panel B), simulated over 15 periods
(120 h). Initial and end positions are marked by a gray triangle and diamond, respectively. The qualitatively different trajectories indicate strongly and
weakly mixing regions of the lake. In panel B an unstable periodic orbit (closed curve, appears on the figure as a short dash at x = 1017 m, y = 566 m) is

also indicated.
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Fig. 4. Streamlines around a stagnation point (gray square) of the hydrodynamical model presented in Section 2 (A), and a nearby hyperbolic point (gray
dot) (B) along with its stable and unstable manifolds (the way to determine these manifolds will be shown later). The pictures are valid at integer multiples
of the period T of the flow. The coordinates (in m) of the stagnation and hyperbolic points are (1070,504) and (1017,566), respectively.

It is worth complementing the leaking picture by show-
ing those particles, which go out of the rectangle. In prin-
ciple, all points outside the stable manifold leave the
rectangle after sufficiently long times. One gets, however,
additional information if target regions are defined outside
and the initial locations are colored according to the first
arrival to these regions. To mimic a problem relevant in
environmental pollution prevention, we choose these

regions as bands (of width 100 m) along the four shores
of the lake. The result is shown in Fig. 6' and indicates that
hazards released in the rectangle at time zero are most dan-
gerous for the southern shore, which may be alarming in
case popular beaches happen to be there. The eastern and

! For interpretation of color in Figs. 6, 7 and 9-16, the reader is referred
to see the web version of this article.
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Fig. 5. Stable manifold (A), the set of all hyperbolic points (B) and the unstable manifold (C) of the leaked advection dynamics. The leak is the complement set
of the rectangle 200 < x < 1800 m, 200 < y < 1700 m, a region along the shores of the lake. The figures are based on uniformly distributing 150,000 initial
points over the aforementioned rectangle and keeping only those trajectories originating from these points which do not enter the leak over 52 periods. The
points in panels A, B and C are obtained as the initial point at 7 = 0, the midpoint at time # =267 = 208 h, and the endpoint at = 527 = 516 h of these
trajectories, respectively. The dashed line in panel A represents the inner boundary of the leak (the outer boundary is the shoreline).
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Fig. 6. Initial condition of points of the rectangle which reach target
regions inside the leak during 30 periods (10 days). The leak is the same as
in Fig. 5. Target regions: 100 m wide bands along the west, north, east and
south shore marked as light gray (blue), black (red), gray (green) and dark
gray (yellow), respectively. Points ending outside these bands in the leak,
or remaining inside the rectangle, are marked with white. White regions
and regions in which all four colors accumulate correspond to the stable
manifold of Fig. 5SA, since this object corresponds to the never escaping
initial conditions.

western shores are somewhat less polluted, while the north-
ern shore remains practically intact. Perhaps the most
striking feature is the highly interwoven boundary between
different colors. A well-known analog of this in dissipative
systems is the phenomenon of fractal basin boundaries [20].

A related fingerprint of the advection dynamics can be
obtained by choosing a small hole in the (unleaked) flow
and identifying those points of the fluid surface which enter
this hole over a long period of time (Fig. 7). The set of these
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Fig. 7. Initial positions in light gray (red) and end positions in black (blue)
of particles which traverse the hole 1025 < x < 1040 m, 560 < y < 590 m
(white rectangle) at any time within eight periods (10 days), started at time
zero (t=0) from region 50 < x < 1950m, 50 <y <1950 m (dashed
rectangle). These curves are also fractal-like, and indicate the chaoticity
of the advection dynamics.

points can be called the collecting zone of the hole (a kind
of stable manifold). Similarly, the points flowing out of the
hole trace out another set, the target zone (which is the col-
lecting zone of the time-reversed advection dynamics). The
complicatedly folded structure of both zones is a clear
manifestation of chaos in the problem.

5. Finite size Lyapunov exponents
The leaking method is unable to provide a quantitative

measure of the strength of particle separation. The tradi-
tional way to characterize this feature is the determination
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of the standard Lyapunov exponent of chaotic advection
(see e.g. [20]). This is defined as the average exponential
rate of separation of initially nearby fluid parcels, averaged
over long times. The concept of finite size Lyapunov expo-
nent (FSLE) has been developed as a generalisation of the
average Lyapunov exponent by Aurell et al. [3] (see also
[5]) in order to study non-asymptotic dispersion processes
in the absence of any leak. This quantity has been used
for detecting and visualizing Lagrangian structures (trans-
port barriers and vortex boundaries) and analyzing disper-
sion processes both in the atmosphere [10] and in the ocean
[16].

The FSLE technique consists of using a set of tracers
with an initially small separation, dy. These tracers are then
simultaneously advected by integrating the velocity field.
For a chaotic system the separation is known to grow
exponentially in time. The FSLE at position x and time ¢
is computed from the time 7 the particle needs to reach sep-
aration Jd; from a moving reference particle as

1,96
A, 1, 8, 0¢) E;lné—;. (1)

Fig. 8 illustrates diagrammatically the meaning of
FSLE. Large FSLE values mark regions in which the par-
ticle is faced with strong stretching in its future. As is well
known [20], it is the extremely (exponentially) strong
stretching and the unavoidable folding occurring in the
flow which is a basic feature of chaotic dynamics. The
FSLE marks thus the local strength of exponential separa-
tion and, therefore, of chaos.

The FSLE distribution was calculated by tracking
150,000 particles released in the nodes of a regular grid
of 5m resolution. To reduce the grid-induced anisotropy
in the FSLE results, the calculations were carried out with
the four diagonally adjacent particles. Their average dis-
tance was taken as the separation which should reach the
final distance Jr. An example of the FSLE distribution is
shown in Fig. 9.

Filamental structures in Fig. 9 mark large values of the
FSLE. They correspond to the stable manifold since parti-

t=0

X

Fig. 8. Schematic diagram of the computation of FSLE. 7 is the time
needed for two particles (indicated by a dot and square) with initial
separation dy to reach the final separation Jp. The FSLE is the value 4
evaluated via Eq. (1).

cle pairs from these regions must have come close to the
hyperbolic points during the simulation. As mentioned ear-
lier, the full set of stable manifolds, which is called the sta-
ble foliation, traces out a two-dimensional area, but the
figure illustrates that manifolds with high values of the
FSLE appear to be fractals of dimension less than two.
In particular, hyperbolic points of period one (like e.g.
the point of Fig. 4B) carry particularly large values of
FSLE. It is remarkable that nearby points, if belonging
to different filaments, have drastically different (although
positive) FSLE values. This sensitive dependence on loca-
tion is also a determining feature of chaos.

Structures of poor mixing (regions with low FSLE val-
ues) can be identified as dark regions (FSLE close to zero).
Tori, similar to the one traced out in Fig. 3B, are for
instance the bean shaped regions around the middle of
the picture.

The amount of detail in the rather convoluted chaotic
fields is affected by the grid density of the flow solution.
To investigate this dependence, we have repeated the flow
simulations on a finer grid (25 m grid size instead of
40 m). The effect of increased resolution is nearly undistin-
guishable on the contoured flow field. The filaments of the
FSLE field computed from the densely resolved flow field
are somewhat thinner, sharper and more twisted, but the
overall structure of the FSLE field is not affected.

The FSLE distribution, like the results of the previously
described methods, depends on time ¢ when the particles
are inserted into the flow, as illustrated in Fig. 10. In fact,
the bean-shaped regions rotate in time (cf. Fig. 10) and the
total area shaded by the bean on the right corresponds to
that of the black coil of Fig. 3B.

10.4

10.3

500

500 1000 1500

Fig. 9. The FSLE distribution at time #=0 in the model lake in
50<x<1950m, 50<y<1950m obtained with J=5-v2m,
3t = 250 - /2 m. The grid spacing of the monitored particles (150,000) is
5m in both directions. The color bar indicates the FSLE values in [h~'].
The hyperbolic point of Fig. 4B is marked here and in the following figures
by a gray dot. The arrow points to the torus mentioned in Fig. 3B.
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Fig. 10. The FSLE distribution in the model lake at times t =317, 1 =1T, 1=

To obtain more information about the areas of poor
mixing, we propose to use the 7 distribution (see Fig. 11).
The variable t denotes the time needed by a particle at
(x,?) to reach the averaged threshold distance d; (with dg
as initial separation). In our case, two types of poorly mix-
ing areas can be isolated: (i) white (dark red) particles
started at r =0 from this area stay together over the full
simulation period (25 days), (ii) light gray (yellow and
red) particles that stay together for a period longer than
15-25 days.

500 1000 1500

Fig. 11. The distribution of 7 in days at = 0. The initial condition of
particles is the same as in Fig. 9.

t=12T

500 1000 1500

T, 1=T.

Particle trajectories can be computed also backward in
time after reversing the velocity vectors. The resulting
backward FSLE distribution produces similar filamental
structures, as can be seen in Fig. 12. The filaments mark
the unstable foliation. The full unstable foliation is again
space filling, but those of high FSLE values are fractals.
In particular, the filaments appearing in gray (yellow)
and white (red) mark the unstable manifold of the hyper-
bolic point. The dark areas locate poorly mixed regions.

10.4

10.3

500

500 1000 1500

Fig. 12. The FSLE distribution in the backward advection dynamics in
[h~']at = 0. The initial condition is the same as in Fig. 9.
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Fig. 13. Combined plot of the forward and backward FSLEs in [h™!] at

t=0. The initial conditions of particles are the same as in Fig. 9.
Backward FSLEs are indicated with negative values.

The combination of the FSLE distribution of both the
forward and backward dynamics is shown in Fig. 13. At
a given point of the lake the FSLE of greater absolute value
is shown, and the forward (backward) computed FSLE
values are marked as positive (negative) numbers. The sev-
eral intersections of the stable and unstable manifolds con-
firm in this representation, too, the existence of a huge
number of hyperbolic points.

Fig. 14 indicates an interesting feature of the FSLE plots.
By a mere change of the color coding we can wash out minor
details and concentrate on the most striking patterns. We
introduce a threshold, and FSLE values smaller than this
threshold are shaded as if the FSLE were zero. As the thresh-
old increases, regions of small FSLEs are merged to a single
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domain and the shading enhances the most important man-
ifolds. This representation clearly selects the stable and
unstable manifolds (in white (red) and black (blue), respec-
tively) of the main period-one hyperbolic points. The
method works obviously in temporally aperiodic flows as
well. It provides then an alternative for determining the
finite-time stable and unstable manifolds of hyperbolic
points which is much easier to apply numerically than the
method developed by Haller, as can bee seen in [7,23,15].
Finally we compare the residence time plot obtained by
the leaking method with the FSLE distribution of the
unleaked problem (Fig. 15). Initial positions of quickly
escaping particles are indicated in black (blue) in
Fig. 15A. Regions from where particles have longer resi-
dence time (i.e. take longer to escape) are shaded gray
(green and yellow). Particles that remain within the pre-
selected rectangle throughout the observed period are
marked white (red). Since particles close to the unstable
manifold existing within the rectangle leave the box quickly
but particles close to the stable manifold stay in the pre-
selected region for a long time, arcas with long residence
time visualize the stable manifolds. They can also indicate
coherent structures like tori. Particles in such regions never
cross the boundary towards the leak and never escape. As a
consequence, the same bean-shaped regions appear in light
gray (red) in Fig. 15A as in the corresponding FSLE distri-
bution (Fig. 15B). In general, the patterns well inside the
boxes are the same, but those around the edges differ.
The reason is that particles around the edges quickly escape
and cannot, therefore, contribute to long residence times.

6. The effect of diffusion on FSLE

We devote this section to estimating the effect of turbu-
lent diffusion on the filamentary patterns of the advection
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Fig. 14. Enhancing the most pregnant manifolds, by applying threshold shading on the combined plot of the forward and backward FSLEs of Fig. 13.

The threshold values are 0.10 (A) and 0.2 h™! (B).
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dynamics. Assume that a dye is distributed in a band along
an unstable manifold. The width of this band will slowly
increase due to diffusion. The growth would go on without
any limitation if the flow were not present. The permanent
stretching along the unstable manifold is, however, accom-
panied with a contraction across the unstable manifold.
This contraction will slow down the diffusive spreading
and the two effects will eventually lead to a finite band-
width ¢ around the manifold. The precise time dependence
of the bandwidth has been derived by Tél et al. [21]. A
detailed analysis is beyond the scope of this paper, here
we just quote that the steady-state bandwidth is determined
by the diffusivity coefficient D and the average Lyapunov
exponent A as

5— \@ )

The existence of this quantity as a characteristic length is
obvious from dimensional considerations as well.

The average Lyapunov exponent is estimated from the
FSLE-s of Fig. 9 to be /= 0.3 h™'. With a turbulent diffu-
sivity of 0.1 m?/s we obtain ¢ approx 30 m. This implies
that the use of a grid size of 5 m was too fine in the presence
of such a diffusivity. A realistic picture mimicking the effect

1500
1000

500

500 1000 1500

of diffusion can therefore be obtained by averaging out the
FSLE values on the original grid over boxes of about six
times larger in linear size. The result is shown in
Fig. 16A. The picture is of course less detailed than in
Fig. 9, but the basic patterns remain the same, similarly
as showed for noisy dynamical systems by Ben-Mizrachi
et al. [4].

Interestingly, the investigation of how the FSLE results
depend on the choice of the initial and final separation
leads to a similar conclusion. First note that Eq. (1) sug-
gests that A(x,?,0¢,dr) depends essentially on the ratio J
per dy. Thus a decrease of d; corresponds to an increase
of dy, 1.e. to the choice of a coarser resolution. By taking
Or six times smaller than in the original case, we obtain
indeed a similar distribution, shown in Fig. 16B, as via
the direct averaging method motivated by presence of the
turbulent diffusivity in Fig. 16A.

7. Conclusions
Mixing properties of inland water bodies were studied in
an essentially Lagrangian framework. As chaos-induced

properties, coherent structures such as manifolds and
hyperbolic points were determined. In a simplified shallow

1000 ¥

500 |
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Fig. 15. Panel A: Residence time (in days) up to 18 days within the rectangle outside the leak. The leak is the complement set of the rectangle in Fig. 7.

Panel B: The FSLE distribution for the same area taken from Fig. 9.
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Fig. 16. Panel A: FSLE distribution in the presence of turbulent diffusion of D = 0.1 m?/s. The plot is technically obtained by averaging out Fig. 9 over a
grid of linear size of 30 m. Panel B: The FSLE distribution calculated with §; = 42 - v/2 m, six times smaller than in Fig. 9 for the same area.
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lake geometry unsteady hydrodynamics driven by periodi-
cal wind forcing was considered and the focus was on
exploring the main chaotic mixing properties. In the
numerically modeled depth-averaged flow field methods
identifying strong and weak shearing sub-regions and visu-
alizing various parameter fields as mixing indicators were
applied and compared to each other. This included the
determination and inter-comparison of the finite size
Lyapunov exponents (FSLE) and the residence time, play-
ing an important role in hydrobiology, as well as the imple-
mentation of the so-called leaking method. These fields
made then possible to find important process governing
elements such as stable and unstable manifolds which play
the role of Lagrangian barriers hindering local transversal
material transfer, and avenues that significantly channel
transport in the inherently unsteady advective flow field.
The primary effect of turbulent diffusion on the FSLE fields
was also demonstrated through properly changing the J;
per d ratio. Assigning a realistic value to the diffusion coef-
ficient the large-scale flow structures did not change signif-
icantly, only somewhat smeared the fine thin stripes in the
FSLE distribution.

As to a first practical relevance in environmental and
hydraulic engineering, the chaos related findings presented
here can facilitate to explain discrepancies found between
real-life behavior of pollutants and conventional mixing
theories. Furthermore, it underlines the importance of
applying Lagrangian techniques in mixing analyzes in gen-
eral, and in highly unsteady surface flows in particular.
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