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One-dimensional maps coupled to discrete valued variables are introduced. They are
designed to describe the motion in Lorenz and Hénon type systems on branched manifolds arising by
expanding the maps in powers of the inverse dissipation strength, or by coarse graining. The maps are
studied in detail along the crisis line where they exhibit complex behaviour with periodic and chaotic
attractors. The convergence to the Hénon map is investigated numerically and found to be
satisfactory for not too weak dissipations.

1. Introduction and summary

Our view concerning mechanical and other types of motion has drastically

changed owing to recent developments in the theory of dynamical systems [1-3]. It is
nowadays clear that the long-time behaviour of deterministic nonlinear systems with at
least one and a half degrees of freedom generically exhibits unpredictable, chaotic
motion in a certain region. Since this type of motion has stochastic features its complete
description requires statistical methods [1-3].

Following an idea of Poincaré [4] it is often convenient to consider a discrete

dynamics, a mapping generated by either the intersection points of the continuous
trajectories with a certain surface of the phase space (Poincaré map) or by taking
subsequent snapshots of the motion with a given periodicity (stroboscopic maps). The
form of the mapping follows uniquely from the continuous motion, the inverse is,
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322 Z. KAUFMANN et al,

however, not true, the sameé map can belong to several systems. General properties of
chaotic motions are most commonly studied by investigating maps exhibiting chaotic
behaviour [1-3, 5, 6].

Besides general common features, there are certain differences in the chaotic
behaviour of conservative (Hamiltonian) and dissipative systems. In the former case,
the fact whether a trajectory is chaotic depends strongly on its initial conditions.
Chaotic trajectories then wander in a region of phase space the volume of which is
nonzero [1,2, 7]. In dissipative systems practically all trajectories are attracted towards
a zero volume object, the attractor, of the phase space. Chaotic attractors, are strange
sets [1-3, 8] characterized by noninteger, or fractal dimensions [9]. In this paper we
shall be interested in dissipative systems which show up, besides mechanical
phenomena, in the theory of nonequilibrium systems exhibiting instabilities leading to
a new, turbulent macroscopic state.

In the simplest cases the associated Poincaré or stroboscopic map describes a
dynamics of two variables, and the chaotic attractor has a dimensionality between 1
and 2. We derive the most essential features of the map in two important classes of
systems, namely in systems where trajectories do not pass close to a singular point, and
in systems where they do pass close to a hyperbolic point. The first class contains
among many well-known examples the Rossler model [10] and the periodically kicked
harmonic oscillator, where even an exact derivation of the map is possible. The maps
generated in this class possess analytic forms and a smoothly position dependent area
contracting ratio, the Jacobian of the map, which can be considered to be constant near
the attractors. This type of maps will be called Hénon type one since Hénon’s famous
map [11, 12] belongs to this family. A standard example of the second class is the
Lorenz model [ 13], but the Rikitake dynamo [14] and another model of Rossler [15]
are also of this type. (For a discussion of general properties of the flow see [16]). The
corresponding maps, called Lorenz type maps, are characterized by a singular form
and a strongly position dependent Jacobian which vanishes or diverges along a certain
line of the plane. The singularities are described by power laws the exponent of which is
given by the ratios of the eigenvalues of the linearized equation of motion around the
hyperbolic fixed point [17-21].

The asymptotic behaviour in dissipative chaotic systems is described by means of
a stationary distribution concentrated on the chaotic attractor. Unfortunately, little is
known about the existence and the properties of such distributions for maps of the
plane. The situation simplifies considerably in the limiting case of an extremely small
Jacobian, which, however, occurs quite often as a consequence of a strong dissipation in
the continuous system or of rather long periods of shapshots or of turnover times.

In Hénon type cases the map typically reduces in this limit to a map of the
interval defined by a continuous single humped function. Parameter settings when the
maximum is mapped in two steps into an unstable fixed point, are of importance, since
the chaotic character of the motion may then be shown with mathematical rigor. An
essential condition for the existence of a unique stable stationary distribution in this
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situation is the negativity of the so-called Schwarzian derivative of the map [5, 6]. In
common cases this condition is fulfilled automatically.

If at the above-mentioned parameter setting the map generates chaotic
trajectories the case of fully developed chaos [22] is realized. This is, at the same time, a
crisis configuration [23] since an unstable orbit collides with the chaotic attractor.
Crisis is, however, not restricted to chaotic attractors. It is rather a configuration on a
capture/escape boundary [24].

Reduced Lorenz type maps obtained in the limit of vanishing Jacobian are more
complicated. Firstly, the dynamics which is still a map of the interval, turns out to have
a one-step memory since the state of the system depends also on the sign of the
preimage of the variable [21]. Secondly, if a certain internal symmetry is maintained,
the memory can be transformed out but the resulting 1D map is not obviously a single-
humped one, and its Schwarzian derivative can be also positive. Our numerical
simulations show that crisis situations in these cases do not necessarily imply chaos:
chaotic regions are interrupted by periodic windows when changing a parameter of the
map by keeping its maximum mapped in two steps into an unstable fixed point. In a
special case when the effect of a positive Schwarzian derivative has been amplified by
making the map discontinuous we were able to find even an asymptotic analytic
formula specifying the position of such periodic windows.

Furthermore, we investigated maps with strong but finite dissipation. A
perturbative expansion is worked out for the dynamics based on the method of [25]
designed originally to determine the shape of chaotic attractors. In a first order
calculation in Lorenz type maps we obtain a dynamics with a two-step memory
expressed through the presence of the sign of two subsequent preimages as additional
discrete variables. In symmetric systems this map can be reduced to a dynamics with a
single additional discrete variable. We show that such a dynamics characterizes also
the first order approximation of Hénon type maps. In higher order calculations the
dynamics will have more and more discrete variables and the attractor will be
approximated by a larger and larger number of branches. Finally, this attractor is hard
to be distinguished from the chaotic attractor appearing in the map of the plane but
using a finite resolution. In this sense unusual maps of an interval with several
additional discrete variables, which can also be considered as 1D maps with several
discontinuities, may be useful approximations of mappings of the plane. In higher
orders, however, to carry out the calculation requires rapidly increasing numerical
efforts. Instead, we have followed here an approach in the same spirit but technically
easier to handle. Namely, we have considered a discretized approximation of the
Henon map in which one of the recursions is replaced by a step function with several
steps, leaving the other recursion unchanged. The condition for crisis and the position
and structure of a few periodic cycles have been compared in approximate and exact
maps and a satisfactory agreement has been found at step numbers as low as 20-40,
illustrating that the discretized version can be a reasonable approximate dynamics.
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The paper is organized as follows. Sections 2 and 3 contain the derivation of
Hénon and Lorenz type maps, respectively. Section 4 is devoted to the study of reduced
symmetric Lorenz type maps in the limit of extremely strong dissipation. Emphasis is
laid on a discontinuous version in which periodic windows of the map in crises are
analytically specified. The characterization of certain satellite windows is given in the
Appendix. In Section 5 the perturbative method valid in the case of strong but finite
dissipation is applied for determining approximate dynamics. Finally in Section 6 we
study a discretized Hénon map and compare certain properties of it with those of the
exact Hénon map.

2. Hénon type maps

The relation between a flow and the associated discrete dynamics can be
conveniently studied in periodically kicked systems. For kick lengths negligible on the
time scale of the macroscopic motion, the succession of kicks is described by a periodic
Dirac delta term in the equation of motion. The effect of a kick is then a jump in the
momentum. If the evolution of the system is known between subsequent kicks, an exact
form follows for the stroboscopic map.

The map

We consider here the linearly damped one-dimensional harmonic oscillator
under the influence of periodic Dirac delta kicks the amplitude of which is position
dependent in a nonlinear way. Let T denote the period of the kicks and let Fx)
represent the velocity jump caused by a kick acting at an actual position coordinate x.
The form of f(x) is arbitrary. By means of the well-known solution of a damped
oscillator of eigenfrequency w, and friction coefficient 2y one obtains for the
stroboscopic map (see e.g. [1])

E
x’=xE(C+ lS) +v—3S,
w w

yevE(C—18) —xE s+ Jix) @.1)
= @ L X), )

where x, v denote position and velocity after the nth kick and the following

abbreviations have been used A
w=(w5—y*)"?,

C=cos oT, S=sinwT, E=exp(—yT). 2.2)

For a general f(x) (2.1) is a nonlinear map of the x, v plane. Its form simplifies
considerably by introducing another position type coordinate y defined by

1 S S
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This leads to ES
x'=2ECx+ gf(x)—Ezy,
y =x. 24)

Note that the Jacobian of this map is E2, in accordance with the fact that the amplitude
of the oscillator decreases in an interval of length T by a factor exp(—yT). After
introducing

f(x)=2ECx + %5 f(x), b=-E? (2.5)

(2.4) can be rewritten in the form

x'= f(x)+by,
y =x. (2.6)
We call the map (2.6) of Hénon type since for
f)=1-ax’ 2.7)

(in dimensionless units) Hénon’s map [11, 12] is recovered, which is known to be the
most general quadratic map of the plane with a constant Jacobian. For f(x)=1—a|x|
(2.6) is the Lozi map [26]. As illustrated by these examples, Hénon type maps often
describe chaotic (at least in a numerical sense) behaviour and possess for |b| < 1 chaotic
attractor in the x, y plane.

The fact that there are no singular points in the phase space of the kicked damped
harmonic oscillator turns out to be a crucial property. In all systems the trajectories of
which do not pass close to a singular point around the attractor the associated map of
the plane, describing the motion on or near the attractor, is expected to be Hénon’s map
since it must then be analytic in x and y. As an example we mention the Rossler model
at its standard parameter values [10, 27], the Poincaré map of which is really of the
form of (2.6), (2.7).

The limit of extremely strong dissipation

Strong dissipation means that the Jacobian of the map is tending toward zero. In
the limit b—0 (2.6) becomes a one-dimensional map

x'= f(x), (2.8)

since y is then a dummy variable. Such maps of the interval have been extensively
studied in the literature from both of the point of view of the bifurcation sequence [28,
29, 6], of universal features [ 30, 31] and of the properties of the chaotic state [5, 6, 22].
We shall use this type of maps as a point of reference when investigating more general
cases.
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3. Lorenz type maps

In cases when trajectories on or near the attractor pass close to saddle points the
corresponding Poincaré map drastically differs from (2.6). The reason is that a saddle
point has at least one invariant hypersurface on which it is attracting. Therefore,
trajectories approaching this hypersurface may stay for arbitrarily long time in the
vicinity of the saddle and cause singularities in the form of the Poincaré map
(Shilnikov’s method [32]). As a consequence, the Jacobian of the map will be strongly
position-dependent. The standard example of such systems is the Lorenz model [13]
where the origin is a hyperbolic point belonging to the Lorenz attractor. General
systems with this type of singularity on the attractor, and having no other singularities,
we shall call Lorenz type and the corresponding Poincaré map Lorenz type map.
Different approximate forms for this map have been deduced by using basically
Shilnikov’s method [17-21], among which that of [21] seems to be the most general
one. It is worth mentioning that systems with a saddle type focus point have also been
studied [33-36] and possess singular maps but different from Lorenz type.

The map

For sake of completeness we outline the derivation of the map and refer for the
details to [21].

A three-dimensional dynamical system is considered with variables X;,i=1,2,3
the time evolution of which is governed by autonomous ordinary differential
equations. Let the origin of the phase space X,, X,, X, be a hyperbolic point with a
two-dimensional stable manifold and a one-dimensional unstable manifold, W*(0) like
in the Lorenz model. For simplicity, the variables X are chosen to be the normal modes
of the linearized equations around the origin with eigenvalues 4;, so that X, belongs to
the unstable mode, i.e. 1, >0 but 4, <1;<0.

The Poincaré surface is chosen as the X ; = z=const plane where z is adjusted in
such a way that the unstable manifold of the hyperbolic point should intersect the
plane. In a certain reference frame on this plane the coordinates are denoted by x, y. We
use the convention that only intersections from above belong to the map. The points
D* and D~ will be of special importance, where D *(D ) represents the first intersection
point between the X ; =z plane and that branch of the unstable manifold W*(0) which
emanates into the positive (negative) X, direction (Fig. 1).

Since the plane X ; =z is generally outside the region where the motion can be
well approximated by the linearized equations around the hyperbolic fixed point, we
introduce an auxiliary surface defined by X;=Z, where Z is a sufficiently small
constant. The reference frame X, Yon this surface is chosen in such a way that the origin
X = Y=0 is the intersection point of the plane and the X, axis, and the X(Y) axis is
parallel with the X (X ) axis.
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Fig. 1. The unstable manifold W*(0) and a trajectory passing close to the hyperbolic point in Lorenz type
systems

Trajectories passing close to the hyperbolic point must start from the
neighbourhood of the stable manifold. The trajectory emanated from P =(x, y) crosses
the X ; =Z plane at a certain point (X, Y). More generally, the flow generates a map X
=X(x, y), Y=Y(x, y) between the two surfaces, where X {x, y) and Y(x, y) are smooth
functions of their variables since no singular point lies between the planes X, =z and
X3=Z. An appropriate choice for Z always guarantees that both coordinates X , Yof
the intersection with the auxilary plane will be small. The subsequent motion of the
point (X(x, y), Y(x, y), Z) is thus described by the solution of the linearized equations
around the origin.

As, after having left the hyperbolic point, the trajectory does not pass near any
singular point, the deviation between the next intersection P’ = (', y') with the Poincaré
surface and D*(D"), if X(x, y)>0 (if X(x, y)<0), is an analytic function of the
coordinates Y and Z (Fig. 1). For small values of X and Y it is sufficient to keep the first
terms of the Taylor expansion only, apart from exceptional cases when their
coefficients vanish. Finally, one finds [21] as a typical form of the map near X(x, y)=0

X' =(u+ay, | X(x, y)I’) sgn (X(x, ) + a1, Y(x, y)| X(x, )|,
Y =(+a, | X(x, y)*) sgn (X (x, y)) + a2, Y(x, y)| X(x, y)I°, (3.1)

where
B=1431/21,  6=|A,1/4y, (3.2)

sgn (X) denotes the sign of X, the coefficients a;; are constants, and u, v are the
coordinates of the point D*. For the sake of simplicity we assumed by writing down
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(3.1) that the equations of motion are invariant under the transformation X, —»— X,
X,-—X,, X3 X, which is a well-known property of the Lorenz model.

The form of the map (3.1) simplifies considerably if we consider the recursions
only in a small region around the origin of the Poincaré surface. The functions X(x, y)
and Y(x, y) are then given as linear combinations of x and y, and we may choose the
reference frame such that X(x, y) is proportional to x and Y(x,y) to y in the new
variables. After having appropriately rescaled the length scales used in both directions,
one arrives at

x =(—e+a|x|®)sgn (x)+cy|x|°,
¥ =(d+]x|#)sgn (x) +bylx|’, (3.3)
with an x-dependent Jacobian
J(x)=(ab—c)Blx|", (34

where = +0J— 1. In the following a, b, e>0, ab>c will be assumed.

The general form of the Poincaré map contains, of course, additional terms,
analytic or less singular as those given already by Eq. (3.3). In order to illustrate the
consequences of the singular feature of the map, however, it is sufficient to keep the
most singular part. Therefore, we consider in the following the map obtained by
extending the validity of equation (3.3) to the whole plane. More precisely, we regard
the map (3.3) as a model which is designed to simulate some essential features of Lorenz
type systems. In numerical simulations the map was found to possess a chaotic
attractor at several values of the parameters [21] (as an example see Fig. 2).

—1 0 Y

Fig. 2. The chaotic attractor of the map (3.3) obtained in a numerical simulation after 2000 steps. The
parameters are a=1.5, b=0.7, ¢=025,d=0,e=1, §=06,6=02 :
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The limit of extremely strong dissipation

The limiting case of an identically vanishing Jacobian is realized if the
parameters fulfil the relation c=ab. It follows then from (3.3) that any starting point
Jumps immediately on one of the straight lines x = ay F (e + ad) where the attractor is
situated. The sign +(—) is to be taken if the point (x, y) is on the lower (upper) braach.
Once, however, a point is on the lower (upper) branch, the x-coordinate of its preimage
has to be positive (negative). Thus, the sign before the parenthesis is identical with that
of the preimage of x.

Using this relation between x and y as well as (3.3) x’ can be expressed in trrms of
x. We obtain

x’=Sgn (x)(_e+afasgn(x)(|x|))’ (35)
where

b
fellxD)=1x|"+ E(IXIi(e+ad))IXI" (3.6)

and ¢ denotes the sign of the preimage of x. The y’ coordinate is then determined by x’
through

¥ —sgn (x)d=(x"+sgn (x)e)/a. (3.7)

The special two-step nature of the dynamics can be made clearer by rewriting
(3.5) as

x'=(—e+a|x|f)sgn(x)+ bx|x|°+ga|x|°,
o' =sgn (x), (3.8)

where g =b(e + ad). Considering (3.8) as a map of the interval, it can be specified by the
functions f.(x) given in (3.6) and by the rule that f,(f_) is to be taken if o sgn (x) is
positive (negative) (see [21] where also plots of f. are given). Without any internal
symmetry, a two-step dynamics cannot be simplified further.

Owing, however, to the symmetry property mentioned after (3.2), the form of the
map may be reduced. By introducing p= —ox as a new variable branches of f,
pairwise coincide. This procedure is similar in spirit to Lanford’s treatment of the
Lorenz model [37]. The recursion for p is then obtained as

P'=h(p)=e—alp|*—blp|***+gsgn(p)|p|°, (39

which is characterized by a single-valued continuous (but asymmetric) function, h.
The representation (3.9) is well suited for discussing the basic questions of the
existence of a unique stationary probability distribution with a density since this
problem has extensively been studied in the case of such continuous 1D maps.
Four cases should be distinguished: a) f <4, <1 (like in the standard Lorenz
model); b) <8, f>1;¢) f>6,6>1;d) B>, 6 < 1(Fig. 3). In case a) the map has a cusp,
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Fig. 3. Qualitatively different shapes of p'=h(p) (3.9) obtained at different choices of the exponents £ and 6.
The parameters a, b are adjusted in such a way that the maximum is mapped in two steps into the negative
fixed point; e=1, d=0 everywhere.

Case a): f=0.5, 6=1.5, a=1.560, b=0.6,

Case b): f=2 ,6=3 ,a=1839,b=05,

Casec): f=4 ,8=12,a=1430,b=05,

Case d): f=1.5, 6=0.5, a=1491, b=0.5.

(Numerically all cases seem to be chaotic at these values)

while in cases b), ¢) and d) it has a smooth maximum (at certain special choices of the
parameters two or three local maxima may be present). In the former case, if the map is
everywhere expanding, well-known theorems apply and the existence of the unique
probability density is ensured (see [5, 6] and references therein). In the latter cases the
map can produce chaotic iterations for typical initial conditions only at particular
control parameter values. The situation when the maximum point is mapped in two
steps to an unstable fixed point, i.e., when fully developed chaos can exist, has been
most extensively studied. Two basic conditions under which the existence of a unique
absolutely continuous invariant measure has been proved in this situation are that the
first derivative of the map is nonzero except at the maximum and that its Schwarzian
derivative is negative [5, 6]. Both can be valid in case b), but in cases ¢) and d) the first
and the second condition is violated near x =0, respectively.
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4. A discontinuous limiting case of Lorenz type maps

Our aim is here to investigate in some detail the characteristic features of maps
belonging to case d. In the limit of strong dissipation — as it was pointed out in the
previous section — the one-dimensional map p’ = h(p) as given by (3.9) has a positive
Schwarzian derivate around p=0. In order to study the consequences of this property
we turn to the extreme case of § =0 where the rapidly changing part of h(p) around p=0
is replaced by a jump. After setting e = 1 and choosing, as a typical value, =2, the map
still has three independent parameters: a defining the quadratic part, b giving the
modulus of the slope at p=0, and g characterizing the jump there. For a sufficiently
large value of b the map can be everywhere expanding. An interesting interplay between
periodic and chaotic behaviour is, therefore, expected to be present for small b-s. The
phenomena found at b< 1 are qualitatively similar to those at b=0, thus in the
following we consider the map

p'=h(p)=1—ap*+gsgn (p). (4.1)

We restrict our attention to the region 0.8 <a<2,0<g < 1. The plot of h(p) is displayed
in Fig. 4. (4.1) is a straightforward extension of the parabola map p'=1—ap? which is
recovered as a special case for g=0.

The situation when the maximum point of a single humped continuous map is
mapped in two steps to an unstable fixed point is of importance since fully developed
chaos [22] may then exist. This corresponds, at the same time, to a crisis situation [23]
since an unstable orbit collides with the chaotic attractor. Such a crisis configuration
may also be found in (4.1) with an appropriate choice of the parameters a and g but, as
we shall see, it does not necessarily imply chaos.

1+g

A\

0 1 1+g
P

Fig. 4. Plot of the function h(p) defining (4.1). A crisis situation is shown at a=1.140, g =0.556
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Fig. 5. Bifurcation diagram along the crisis line of (4.1} in the region 0 < g < 1. A regular sequence of relatively
broad periodic windows can be seen

The maximum point h(+0)=1+g¢ is mapped into the fixed point p*=

—(1+./1+4a(1—g) )/(2a) if the relation

a*(1 +g)* —2a*(1+ g)* +2g =0 4.2)

is fulfilled. The solution a(g) of (4.2) defines a crisis line in the parameter plane a, g. For
a>a/g) trajectories are able to escape from the interval (p*, 1 4+ g). Only trajectories
belonging to a Cantor set (the so-called repeller [38]) remain then bounded, provided
no attracting cycle exists.

We have investigated numerically the dynamics generated by (4.1) along the
crisis line a=a,(g) at different values of g. The ‘bifurcation diagram’ of Fig. 5 shows the
results, where attractor points are plotted in the vertical direction. It is clear from this
diagram that regions characterized by chaotic attractors (in a numerical sense) are
interrupted by periodic windows. The condition of crisis is for maps like (4.1) not
sufficient for chaotic behaviour. This is clear by noticing that the large negative
contribution to the Lyapunov exponent of trajectories starting from the right
neighbourhood of the origin is compensated by staying for a long time around the
unstable fixed point, but this is no longer true for trajectories starting from the left
neighbourhood of p=0, which may, thus, produce a negative Lyapunov exponent at
certain values of g, along the crisis line.
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Fig. 6. The shape of the mth iterate of h(p) in a left neighbourhood of the origin (bold line) for O <g<dgm

1+g

iy 00, 5

Fig. 7. The action of the map (4.1) on the interval I, in crisis configuration

There is a striking regularity in the sequence of periodic windows for g—1 (Fig.
5). In the following we study how to specify these windows. First, it is to be noted that
the mth iterate of h(p), the stable fixed point of which is an element of the period-m cycle
of the original map, has the shape sketched in Fig. 6 in the vicinity of the origin. When
increasing g the left branch of h™(p) is shifted downwards and at a certain value I
(dashed line) h™(—0) reaches the origin. Then a stable fixed point, and by that a stable
limit cycle appears. By increasing g further, it exists till a certain d., the stable and
unstable fixed points of A™ coincide. The m-cycle disappears at g, via a tangent
bifurcation (dashed dotted line).

Next, we specify the position of the periodic windows. For g> g3 theintervals I,
1,, I, shown in Fig. 7 are mapped as follows:

-1, +1,, I,—-1;, I;—1,. 4.3)
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To every periodic cycle one point belongs from I, and I and the rest of points from I,
Let us consider a cycle the element of which is A{ —0) =1 — ¢ (this is the case at g =g,,,).
For g—1 1 —g=e¢<1. The image of this point is h%(—0), which is mapped into h3(—0)
=h(1+g)—h'(2—e)ae. In the crisis situation, however, h(1 + g)=p*, thus h3(—0)=
p*— (2 —e¢)ae?. Consequently, the trajectory passes close to the unstable fixed point
p*. It will stay for a while in the vicinity of p* but there is also another region where it
will be captured, namely the left neighbourhood of the origin (where the map is flat).

Let us estimate first, the time steps k the trajectory stays around p*. Since f'(p*)
=2, h(p)—h(p*)=2p—p*) and for the kth iterate h*(p)— h*(p*)=2%p—p*). This
difference will be of order unity for p=h3(—0) if

k=const—2log, ¢. (4.4

The trajectory must return to p= —0. Therefore, after leaving the vicinity of p* it
must reach a point p for which h(p)= —0. Since the map is h(p)=¢—ap? for p <0,
k'~ Y(p)= —(¢/a)!’* holds. On the other hand, by iterating forward p=p one finds
'~ Y(p)= —(alp|)®a” !, where w=2'"". From here it follows that

I=log, (—log, &)+ const. 4.5)
For the total length of a cycle m we obtain, thus,
m= —2log, ¢+ log,(—log, &)+ const. (4.6)
for e—0. The inverse of this relation yields the position of the m-cycle at
gm=1—g,=1—cm'?2"m2 4.7

which is valid for asymptotically long trajectories. Table I contains this approximate
value for cycles of finite length compared with the result of a numerical solution of g5.

These considerations show that there is an infinite sequence of periodic windows
in the map (4.1) when changing the parameters in such a way that the condition for
crisis (4.2) is maintained. Note that there is a geometric sequence of periodic windows
also in the parabola map for a—2 [31], however, in a pre-crisis situation. The sequence
described by (4.7) is of quite different nature. The presence of the prefactor m'/? is a
consequence of the smooth local maximum of the map at p= —0 while the exponent
—m/2 follows from the fact that the map is discontinuous at the origin. It is worth
mentioning the result obtained for an arbitrary exponent > 1, i.e. for the map h(p)=
1 —a|p|® +g sgn(p). The same argumentation then yields

65 = 1= cmP(H(p*) =™ 438)
with
log; K(p*)
=== - - 49
P= Blog, B (*5)
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Table I

Stable periodic orbits in (4.1) along its crisis line. m denotes the length

of the petiodic orbit, g,, is the control parameter value where it

appears by increasing g. The third column contains the resuits of the

formula (4.7) with the fitted value ¢ = 1.05. Numbers in the last column
yield a measure of the accuracy of (4.7)

—my1/2
m g< 1—1.05(m2~m)!/2 1—05‘("%
l1—-g
3 0.452875 0.357009 1.175
4 0.593984 0.475000 1.293
5 0.696769 0.584951 1.368
6 0.771194 0.678504 1.405
7 0.826018 0.754454 1411
8 0.867098 0.814384 1.396
9 0.898288 0.860788 1.368
10 0.922182 0.896238 1.333
11 0.940582 0.923048 1.295
12 0.954777 0.943167 1.256
13 0.965722 0.958172 1.220
14 0974137 0.969307 1.186
15 0.980580 0.977535 1.156
16 0.985489 0.983594 1.130
17 0.989207 0.988042 1.107
18 0.992008 0.991299 1.088
19 0.994105 0.993679 1.072
20 0.995668 0.995414 1.058
21 0.996827 0.996677 1.047
22 0.997682 0.997595 1.037
23 0.998311 0.998261 1.029
24 0.998772 0.998744 1.022
25 0.999109 0.999094 1.016
26 0.999354 0.999346 1.011
27 0.999533 0.999529 1.008
28 0.999663 0.999661 1.005
29 0.999757 0.999756 1.003
30 0.999824 0.999824 0.9982

1
Since, however, for g—1 the fixed point is p*= —a” 51, h'(p*)=p and, thus
gri=1—cm!Pg—mF (4.10)

follows for the position of the m-cycle.

Satellite series of windows approaching g, and g, can also be specified. A
detailed description of them is given in the Appendix by means of itinerary sequences.

Finally, it is worth emphasizing that an interplay between chaotic and periodic
regions along the crisis line is characteristic not only for the map (4.1) but also for
certain subclasses of (3.9). Namely, the same phenomenon can be found in maps with
5<1and f>1 and also in maps where h(p) possesses two points with a vanishing first
derivative (case c).
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5. Discrete dynamics on branched manifolds

Chaotic attractors of systems with finite dissipation consist of infinitely many
branches arranged in a fractal structure. If, however, the dissipation is strong only a few
branches can be observed owing to the limited accuracy of the measurement. It may
then be convenient to consider these branches to be infinitely narrow. They are called
branched manifolds [16]. The dynamics on such branched manifolds is, of course,
noninvertible since several original branches are considered as identical. Our aim is
here to specify branched manifolds of Lorenz and Hénon type maps and to determine
the dynamics on them. We shall apply the perturbative method worked out in [25]
which determines the shape of the attractor as a power series in the inverse dissipation
strength. The dynamics will turn out to be a map of the interval which depends,
however, also on certain discrete variables, in lowest orders on the sign of subsequent
preimages of the continuous variable.

Lorenz type maps

We start to investigate this type of maps since here even in the limit of extremely
strong dissipation a dynamics with a special two-step nature has been found (cf. (3.8)).
The deviation from this limiting case is measured now by

e=ab—c, (5.1)
a factor of the Jacobian (3.4). From (3.3) it follows that
X' —ay +sgn(x)g/b= —ey|x|°. (5.2)

In a first order calculation in ¢, it is sufficient to use the Oth order result (3.5) and
(3.7) on the right hand side. Thus, we obtain for the shape of the attractor

x=ay=og/b— - (0f (v —d) +79/b) (f o~ ), (53)

where f ;! denotes the inverse of f, defined in (3.6) and ¢ and 7 stand for the sign of the
first and second preimage of x, respectively. An elimination of y from the first equation
of (3.3) by means of (5.3) yields the dynamics of the x-variable as

x' =(—e+al|x|?) sgn (x) + bx|x|®+ag|x|*+

+ lel"[—x—ag/b+ (of;,l (e:xa) +r(e+ad)>] <f¢,',l (e-i;xa))"’ (5.9

o' =sgn (x),

m=q.
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Note that both the shape and the dynamics depend on two discrete variables ¢ and 1,
and that for extremely strong dissipation, ¢ =0, the dependence on the second preimage
disappears.

Since the map (3.3) is inversion symmetric, the memory of the dynamics (5.4) can
be reduced by introducing again, like in Section 3, p= —ox as a new variable. In this
representation (5.4) has the form

p'=e—alp|’—b|p|' *°+gsgn(p)p|°+

+ §|p|"{|p|+sgn (p)[—g/b+ (f::, (e—gﬂ) —pg/b> (f_:, (‘j”)) ]} (539)

p' =sgn(p).

The p-dynamics has only a one-step memory since it depends on (the sign of) the
immediate preimage only. Anyhow, these results show that in the case of a strong but
finite dissipation, when the branched manifold of the extremely dissipative case splits
into two, the number of discrete variables specifying the dynamics (either in x or in p) on
the manifolds increases by one.

Hénon type maps

We investigate here maps of the class of (2.6) defined, as typically, by a single
humped f(x) the maximum of which is chosen to be at x =0. As for the shape of the
attractor, the special case of Hénon’s map has been extensively studied in the literature
[25, 39].

Since the Jacobian J is constant in this class, the quantity b= —J can be
considered as the small parameter. As we have seen, in the limit of extremely strong
dissipation the shape of the attractor is x = f(y) and the dynamics on it is given by x’
= f(x). In first order, y is to be expressed through x= f(y) leading to the dynamics

X' =fx)+bf; (), (5.6)

where /! denotes that branch of f ~! where the sign of y is ¢. Since y' = x, ¢’ =sgn ().
By means of these relations and (5.6) the shape of the attractor immediately follows.
A similar calculation yields in second order the dynamics

xX'=f)+bfy x—bfH(f5 (D), 5.7)

where 7 is the sign of the second preimage of x: t'=¢. This shows that inspite of the
differences between Lorenz and Hénon type maps the dynamics on branched
manifolds is, in both cases, a map of the interval with additional discrete variables, in
lowest order the sign of preimages, the number of which increases with the number of
branched manifolds. From this point of view there is only a minor difference between
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Fig. 8. The chaotic attractor obtained in numerical simulations of (6.1) (shown in the right column) and of
(6.2) (left column) at increasing step numbers (m or N) in crisis configuration.

a) N= 2(m= 0.35), a=a,=1.068, b=0.3,
b)N= 4(m= 1.05),a=a.=1.164, b=0.3,
c) N=16 (m= 5.85), a=a.=1.404, b=0.3,
d) N=38 (m=1445), a=a,= 1413, b=03,
¢) The Hénon map at a=a,=1.427, b=0.3.

Fig. 9. The parabolas x =1+ b(k + 1/2)/m—ay? for k= -2, — 1,0, 1, the preimage I of a’point Q, and the fixed
points P, P_ of (6.2). The parameter values agree with those of Fig. 8b
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these two classes, namely, that the memory of the dynamics is one step shorter in
Hénon type systems than in Lorenz type ones.

It is to be noted that by an appropriate redefinition of the variable, multivalued
one-dimensional maps (like (5.515.7)) can always be brought into the form of (2.8)
where f is single-valued but discontinuous at several points. In the light of this
comment (4.1) appears to be a prototype of such systems the qualitative features of
which may be characteristic also for more general cases.

6. Approximation of Hénon’s map with a series of one-dimensional
maps coupled to a discrete-valued variable

In high orders of the perturbation expansion described in the previous Section
several two-valued variables appear, the sign of certain preimages of a continuum-
valued variable, which may be difficult to handle in analytic calculations or numerical
simulations. One can, however, find other approximate dynamics for maps of the plane
which are constructed in the same spirit but are easier to handle. We consider here
approximations for Hénon’s map. Firstly, let us take

x'=1—ax*+by, (6.1a)

V=S(x)= Int (mrJ:')+ 1/2, 6.1b)

where Int (g) stands for the integer part of g. Note that the second recursion, y'=x, of
(2.6) has been replaced by a piecewise constant form (6.1b) with segment length 1/m. In
the following another approximation will be used where the first equation of (2.6) is
modified and the second one remains unchanged:

x'=1—ax*+bS(y),
y=x. (6.2)

An approach toward the Hénon map is expected for m> 1.

Figure 8 displays the chaotic attractor of (6.1) and (6.2) obtained numerically by
making the multi-step function S(x) finer and finer. The attractors are plotted in a crisis
configuration to be defined below. There is a striking similarity in the geometrical
appearance of these attractors and that of the Hénon map [12] at already rather low
step numbers, especially in the second version (6:2). Here and in the following it is more
natural to use the number of steps N induced by S(x) inside the maximal extension of
the chaotic attractor than that inside the unit interval (Int (m)).

Equation (6.2) maps the plane to the parabolas x =14 b(k + 1/2)/m—a y2, where k
is an integer. An unusual feature follows from this fact. Only points on these parabolas
possess preimages, and such a preimage is a straight line segment (see Fig. 9).
Consequently, the chaotic attractor of (6.2) lies on a finite number of parabolas only,
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and the dynamics on the attractor is essentially a map of the interval coupled to an
extra multi-valued variable.

We have studied in detail the attractors of (6.2) in crisis configuration. Crisis in
two-dimensional maps is defined by the existence of heteroclinic tangencies of stable
and unstable manifolds [40, 23]. In Hénon’s map the crisis when the unstable manifold
W, of the hyperbolic fixed point P, touches the stable manifold W*_ of the hyperbolic
fixed point P_, situated in the negative quadrant, defines a critical line a = a/b) in the
parameter space. Beyond this line no one-piece chaotic attractor, which is the closure of
W% [40], may exist.

In the map (6.2) there are hyperbolic fixed points analogous with those of the
Hénon map. Due to the special multi-step nature of (6.2) the stable manifold W*_is
discontinuous and consists of straight line segments, which are the preimages of the
fixed point P_. The unstable manifold W* is also discontinuous and consists of
parabola segments. (If there exists a chaotic attractor which contains P, it agrees in
this case with W+ )

In a certain region of the parameter space these manifolds have no common
points (Fig. 10a).

Let w denote the highest index k at which the maximum point of the
corresponding parabola still belongs to W* . There are two topologically different
possibilities for tangencies between W* and W* .

Case a: The wth parabola touches W* ,

Case b): The endpoint of a segment of W* (with k>w) collides with W*_.

It is clear from (6.2) that together with a tangency also intersections appear since the
preimages of a point of tangency are segments of straight line. Figure 10b illustrates
case a).

Beyond such a special configuration tangencies turn to intersections. Simulta-
neously, the region 'from which trajectories escape to infinity (a part of which is
displayed in Fig. 10c as shaded area) overlaps with W* . Therefore, a chaotic attractor
containing P, cannot exist then (and gives way for a chaotic repeller [38]).

Thus, for maps like (6.2) the crisis line a = a (b) is to be defined as the borderline of
that region of the parameter space where W% and W* have no common points. The
crisis configuration realized at a=a,(b) is then characterized by a simultaneous
appearance of heteroclinic tangencies and intersections but without any escape.

The critical value a (b) obtained at a fixed b for increasing step numbers N (which
can be expressed in terms of other parameters as N =2m+ 1 +(2w+1)b) have been
found to approach rapidly the crisis value for the Hénon map at the same b (for data see
caption of Fig. 8).

We have determined numerically also the bifurcation diagram along the crisis
line at different fixed values of the step number N. Fig. 11 illustrates at N =8 that there
isan interplay between chaotic and periodic regimes. Thus, in this system crisis is again
not a sufficient condition for chaos (not even in a numerical sense).
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Fig. 10. The unstable manifold W (bold line) and a few branches of the stable manifold W*. (straight line
segments) in (6.2) at different values of a (b=0.3). The segment A is the first preimage of P_, the B-s are its
second preimages. Subsequent further preimages are denoted by C, D and E. Trajectories starting from the
dashed region are mapped in at most 5 iterations on the parabola arch drawn by a dashed line, where they go
] to infinity from.
a) a<a,= 1.164, no heteroclinic points,
b) a=a,, heteroclinic tangencies and intersections, but no escape from W,
c) a>a,, escape occurs
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Fig. /1. Bifurcation diagram of (6.2) along its crisis line obtained at a fixed step number N = 8. The slashes on
the top denote the position of stable 3,5,6-cycles in the Hénon map

[
b x N=2
) 4 N=3
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0 | =] N:L
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0 ‘ - . . . :

i 18 19 20 a
Fig. 12. Position of the stable 3-cycle in the parameter plane a, b for the Hénon map and for (6.2) with step
numbers N=2,3,4

The position of the largest periodic windows has been specified and compared
with that of Hénon’s model appearing along its crisis line. It can be seen from Table II
that, although not all periodic cycles of the Hénon map can be observed in (6.2) at
arbitrary values of N, if a window disappears at a certain N it reappears at a somewhat
larger one and the values specifying its position tend toward those of the Hénon map.
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Table 11

A few stable periodic orbits in (6.2) found at different values of the step number

N, and those of Hénon’s map. m denotes the length of the periodic orbit, the

couples(a, b) specify that point of the parameter plane where the cycle appears
along the crisis line when increasing b

m N=38 N=10 N=16 N=24 N=39 Hénon

3 a=1891 1.893 1.893 1.895 1.895 1.895
b=0.052 0.047 0.051 0.050 0.051 0.053
5 - 1.50 1.46 — 1.48 1.48
— 0.23 0.27 - 0.26 0.27
6 1.37 — = 1.50 - 1.46
032 — — 0.25 — 0.28

The line of a stable period-3 cycle in the parameter plane a, b has also been
determined for a<a,(b) at different values of N and has been compared with that of
Hénon’s map [41]. Fig. 12 shows a qualitative agreement already at rather small step
numbers. ‘

These investigations support the view that the map (6.2) can be a reasonable
approximation of Hénon’s map for not too weak dissipations.

Appendix

In this Appendix we return to the map (4.1) and restrict ourselves again to the
crisis situation (4.2) in the region 0<g<1. We shall use itineraries to classify the
windows of periodic attractors in the parameter space (see reference [6] Section IL.1 for
definitions).

The first iterate s of —0 is the maximum of the negative branch of h,i.c. s=1—g.
The itinerary I(s) of the point s plays a central role in the following. It will be denoted
by M. It depends on the parameter g. At the appearance of a window the point —0
becomes the element of a stable periodic orbit and correspondingly M is finite: M = DC,
where D is a finite sequence of R and L symbols. Inside the window the itinerary of s is
infinite M =(DL)®. One can use the repeated sequence E = DL to identify the window.

Let us introduce the ordering between itineraries [6] here. Considering two
different itineraries A, B let i be the first index for which A;# B;. Let n denote the
number of R’s in AyA, . ..A;_,. By definition L<C <R. It is said that 4 <B if either

a) A;<B; and n is even, or

b) A;> B; and n is odd.
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It is easy to see that the orderings p<gq and I(p)<I(q) are equivalent.

The itinerary of the iterates of a point p can be obtained by shifting the itinerary
of p I(Wp))={1I,, 1,41, I,+3,. ..}, which can be written with the help of the shift
operator as

I(h(p))=S"I(p)- (A.1)
For any itinerary we obtain I(h"(p)) < I(—0)=LM if h"(p) <0, thus

S Up) <M for I,=L. (A2)
For p=s it gives
S"MIM <M for M,=L. (A.3)

The itinerary M plays a similar role in these conditions as the kneeding sequence
for unimodal maps [6].

In the following we restrict ourselves to the case when the separate intervals 1,
I,, I are mapped into each other according to (4.3) (see Fig. 7). It is fulfilled in the
region g; <g < 1. It can be easily seen that R’s inside the itineraries may occur only in
RR pairs followed by L. So itineraries of points in I, can be written as a product

I=N11le"'NlnC or I=N11N12"'7
where
N,=R%L, 11,>0.

Correspondingly, the itinerary M has this form. The situation when M is finite
corresponds to the appearance of a window, the repeated sequence belonging to the
stable periodic orbit in the window is

E=DL=N,N,,...N,, k>0 (A4)

The allowed sequence {k;}]., of the subscripts is selected by the requirement (A.3) for
M=DC.
On the basis of this description we get for the windows investigated in Section 4

Ef, =N F=REL"32, m>2 (A.5)
and we find satellite series of windows
Ep «x=Nu 3Np_345 m>3, k>0,
Em.k=(Nm—2)kL=(Nm—2)k_le—la m2>2, k>1
The parameter values of E,, _(E,, ,) tend to the g (g, ) value where the stable period

E, appears (disappears). Some of these windows were observed in bifurcation
diagrams.
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