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The phenomenological quantum theory of the electromagnetic field in anisotropic
dielectrica is presented. The Hamiltonian of the field is diagonalized. and its quanta are inter-
preted as photons polarized in directions corresponding to the classical directions of polariza-
tion. Using Abraham’s expression we find that the momentum operator cannot be diagonalized
simultaneously, thus photons are considered as ‘“‘quasi-particles” the momenta of which are
given as mean values. Nevertheless, these photons are shown to exhibit particle properties
in contrast to Minkowski’s description, in which case, however, the energy and the momentum
can be diagonalized simultaneously.

Introduction

According to quantum electrodynamics the energy and the momentum
of the electromagnetic field in vacuum are quantized. The energy of the field
is given by

U= Shoap +1/2), (1)

i r=1

while its momentum can be expressed as

2
G= 3> Sikn{, (2)

i r=1

where n; =0,1,2, ..., k; and » stand for the wave-number vector and the
frequency of the i-th normal mode (photon), respectively, h denotes Planck’s
constant and % = h/(2z). The superscript r refers to the polarization of the
normal modes. Photons specified by energy hy and momentum /k exhibit
properties similar to those of particles. Their momentum and energy transform
as four-vectors when changing from one inertial system to another one. The
rest mass of a photon is zero but it has an inertial mass equal to hv/c?, where
¢ denotes the velocity of light in vacuum. The momentum of a photon is related
to its mass in the same fashion as in case of particles, i.e. momentum = inertial
mass X velocity. On the other hand the concept of particles arising from the
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126 K. NAGY and T. TEL

classical mechanics cannot be applied without some caution since it is meaning-
less to speak about the position or the path of a photon.

It is an interesting question whether the particle properties discussed
above remain valid also for the electromagnetic field in a transparent medium
where the field interacts with the charges in the atoms or molecules of the
medium and brings them in motion by transferring energy and momentum.
The oscillating charges then emit energy and momentum. One might ask then
whether the energy and the momentum of the field remain quantized simulta-
neously under these physical circumstances. If so, do light quanta possess
particle properties similar to those in the vacuum or is it possible that the
concept of photon is restricted only to vacuum. The answers to these questions
can be given by the quantum theoretical treatment of the electromagnetic
field in dielectrica. The theoretical investigations of transparent isotropic
media were carried out about a quarter of a century ago [1—3].

An important question arising already in the classical description of
the electromagnetic field in dielectrica is the choice of the energy-momentum
tensor. The two most important candidates, corresponding to different
divisions of medium and field, are the expressions proposed by MINKOWSKI
and ABRAHAM [4, 5]. Their validity has been discussed for a long time
[6—12]. Recent experiments [13, 14] have confirmed the view that at low
frequencies ABRAHAM’s tensor yields the more plausible results. On the other
hand, it is expected that at high frequencies it is a matter of taste which
description is used [12]. The quantization procedure based on MINKOWSKI’s
tensor in isotropic dielectrica led to strange properties for photons [2].
Therefore, we prefer the use of ABRAHAM’s expression but the alternative
result will be given, too.

It was pointed out earlier that, due to the interaction between the field
and the medium, a portion of the energy and the momentum of the radiation
appears, in general, in the form of mechanical energy and momentum of
molecules. Consequently, when describing the dynamical properties of the
radiation field, one must use the so-called radiation tensor arising as a
generalisation of ABRAHAM’s tensor [7, 8, 15]. For a medium at rest both
tensors give the same expressions for the field energy and for the momentum.

Quantum theoretical considerations have been limited only to isotropic
dielectrica. Here, we shall extend the phenomenological quantum electro-
dynamics to anisotropic media. Our investigations show that in anisotropic
dielectrica the photon picture holds only in a restricted sense since the momen-
tum of a photon can be given only as a mean value. Therefore, it is perhaps
appropriate to call the photons in anisotropic media “quasi-particles”.

Before discussing the case of anisotropic dielectrica, in the next Section
we summarize the most important results obtained for isotropic media. This
will make the picture more complete and easily understandable.
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Photons in transparent isotropic media

The electromagnetic wave passing through a transparent isotropic me-
dium produces a varying electric and magnetic polarization in the dielectricam
and the resulting radiation modifies the wave itself. Even if an entirely trans-
parent medium is considered, the incident energy of radiation is present at
a given moment only partly in the form of electromagnetic energy, since
partly it appears as the kinetic and potential energies of the polarized mole-
cules. In a periodical wave, e.g. the field transfers energy and momentum to
the dielectricum and recovers them in the next half period. In general, one
can picture the interaction as an exchange of energy and momentum. If the
dielectricum is at rest, the electromagnetic force acting on the medium cannot
cause macroscopic displacements, instead it produces stresses in the material
which compensate the forces causing molecular deformations. Consequently,
the energy and momentum of the radiation passing through the medium is
partly of electrical and partly of mechanical origin. Accordingly, the energy-
momentum tensor, S, ;, characterizing the radiation consists of two parts:
ABRAHAM’s tensor, T, ;. of the electromagnetic field and in addition the tensor
t, s describing the mechanical energy and momentum as well as the stresses
caused by the field, i.e.:

Sos=To s ¥ 6 wi=01,23. (3)

It was shown earlier that S, 4 is divergence free and symmetric. One can easily
check also that S, ; obeys the MGLLER criterion [16], i.e. when changing from
one inertial system to another, the velocity of the propagation of the radiant
energy transforms in the same way as that of a particle. Thus the energy and
the momentum of the radiation in a medium are to be calculated by means of
the radiation tensor S, ;. Since in a coordinate system fixed to the dielectricum,
in the so-called rest frame, only the space-like components of ¢, ; are non-
vanishing, the expressions of the energy and the momentum of the radiation
in this system coincide with those of ABRAHAM’s tensor. In terms of the field
vectors they are expressed as

U=%[(ED + HB)dV, (4)
1
G =—J(ExH)dV. 5)
c
Following the procedure of quantum electrodynamics, one considers

these quantities as operators and calculates their eigenvalues. The latter are
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given by [3]
U= Sea +n0+1), (©)
k
G = 3 g+ nd), . A7)
k
with
hike ik
o D e e 8
€k m gk ep ( )

where ¢ and p denote the dielectric coefficient and the magnetic permeability
of the medium, while n£°) and n,(:’) can be any non-negative integer number.
The indices @ and b refer to the two independent polarizations. Eqs. (6) and
(7) show that the energy and the momentum of the radiation are quantized
quantities in isotropic dielectrica as well, they are integer multiples of the quanta
&, and g,, respectively. Thus, the quantized structure of the radiation turns
out to be valid not only in vacuum but also in transparent isotropic dielectrica.
Between the phase velocity

e ik
V= e — 9
- 9)
and the frequency » the following relation holds
kv = 2mv. (10)

The energy ¢, and the momentum g, of a photon can be expressed through
v and v as

okl (11)
hy
&= 2 v (12)

For a dielectricum at rest, the phase velocity v coincides with the classical
expression of the propagation velocity of the energy of a plane wave with
wave-number k:

v =Slu. (13)

(S denotes the Poynting vector, and u stands for the energy density.) The
momentum of a photon can be expressed in isotropic dielectrica, too, as inertial
mass X velocity. From (12) the inertial mass of a photon is found to be

m = hy/c® (14)
as it is expected from the theory of relativity.
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All these results are valid in a coordinate system fixed to the dielectri-
cum. In a system moving as compared to the medium, the corresponding expres-
sions can be obtained by means of the Lorentz transformation. For example,
in a system moving along the x-axis with velocity ¥, one finds

L L) e (15)

’——- -
& = & o

el =

where f = V¢, and n = c/val_ denotes the refractive index of the medium.
Using the transformation formula of the frequency

& e LS (16)
| ip
one can write
5‘ = hy’ _1_—-_[3/_’1 g (]_7)
1—fn

This shows that the energy of the photon in isotropic media cannot be expressed,
in general, as hy, the formula ¢ = hy is valid only in the rest frame.

Since the velocity v of a photon in dielectrica is smaller than the velo-
city of light ¢ in vacuum the photon is characterized by a non-zero rest mass

hy
m, = EVnz i (18)

which is a positive real quantity. The rest energy ¢, of a photon can be obtain-
ed from (15) for § =1/n

h
eo=7”vnz ==, (19)

Comparing ¢, with (18) one finds ¢, = mc® in accordance with the theory of
relativity. The inertial mass (14) and the rest mass (18) of a photon are con-
nected by the equation
e S bl (20)
T—ve
which is well-known for particles.

The results of the phenomenological quantum electrodynamics for isotro-
pic media are thus entirely consistent with the corpuscular picture of the
radiation. The concept of photon proves to be correct in this case, too.

We have summarized here the particle properties of the photons in dielec-
trica in detail since these quantum theoretical results played an important role
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in the debate about the energy-momentum tensor. As a matter of fact, a pheno-
menological quantum theory of the electromagunetic field in transparent
isotropic media was worked out already in 1948 by Jaucm and Watson [2]
but they based their theory on the so-called canonical energy-momentum
tensor. Since this differs from MINKOWSKI’s one [4] only in spatial divergencies,
their results coincide essentially with those of a theory based on MINKOWSKI’s
tensor. They obtained also quantized values for the field energy and momentum,
but their photons exhibited properties which did not fit into a realistic physical
picture. For example, the energy of a photon turned out to be negative in
coordinate systems where the velocity of the dielectricum was larger than
¢/n. Furthermore, the rest mass of a photon was imaginary, and in the rest
frame of a photon its rest energy was zero but its momentum was not. The
reason behind these properties was the following. If one applies MINKOWSKI’s
tensor the momentum of the closed system formed by the dielectricum and the
electromagnetic field is divided between the medium and the field in an un-
natural way and therefore the momentum of the photon obtained in this way
contains a contribution depending on the momentum of the medium, too.
As we have seen, the description based on ABRAHAM’s interpretation is free
from such non-physical consequences.

Phenomenological quantum theory of the electromagnetic field in
anisotropic media

It is assumed that the medium is electrically anisotropic but its mag-
netic permeability 4 = 1. The equation relating the electric field vectors is

D — ¢E (21)

where € denotes the symmetric tensor of the dielectric coefficient. The coordi-
nate system is chosen to be the principal axis system fixed to the medium.

Then
: Di=eB. i=1,28 (22)

where ¢; stand for the eigenvalues of e.
The free radiation field is described by the Maxwell equations, the
corresponding Lagrangian density of which is given as
1

= (ED— 1), (23a)

where the scalar and vector potentials, @ and A, defined by

E= —gradd — i (23b)
c
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and
H = rot A, (23¢)

are considered as the canonical variables. The conjugated momentum, P, of A
is defined by

p,:%i:_%p,, fusd g (24)
The energy and the momentum of the field according to ABRAHAM’s tensor are
U=%J(ED+ H)dV 25)
and
G=-1—J(E><H)dV, (26)
respectively. g

In a quantum mechanical description the possible values which U and
G might assume are specified by the eigenvalues of the corresponding opera-
tors. Therefore in the following we shall determine the operators™ of the field
energy and momentum and then calculate their eigenvalues.

The commutation relations of our basic quantities, i.e. the potentials
and the conjugated momenta are as follows:

[P (e 0, Ay, 0] = 0,50 (c — ),
i

[P,(r, 1), Pg(x’, 1)] = [A,(r, t), Ag(x’, 1)] = 0, oy B =101 2,35 (27)
The operators A, P, are considered here as four-vectors defined by A4, =
= (A4,, A), P, =(P,, P) where A,=®. The complication due to the fact
that in a classical calculation the conjugated momentum associated to A4,
turns out to be zero can be avoided by using the quantization procedure de-
seribed in [3]. The operators A4 (r,t) and Pg(r,t) are functions of space and time.
One might introduce space-independent operators by expanding them, as
usual, in a series of orthogonal functions. In order to do it periodic boundary
conditions will be assumed in a cube of length L. The size of the cube can be

chosen arbitrarily since the final result will not depend on it. We expand the
operators 4, and Ppg in Fourier series as

Aa(r’ t) _— L—3/22q¢’k eikr,
k
Py(r, 1) = Lo %‘ P, «f=0,1,2,3. (28)

* We shall use the same notation for operators as for the corresponding classical quan-
tities.
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Here the components of the wave-number vector k are multiples of 2x/L.
The operators ¢, = (g9, G)> Pax = (Pow> Px) ©bey the following commutation
relations

h
[puk’ ka’] & _i' 6a,ﬂ 6!:, K>

[Pax> Pa] = [quxr 9p’] = 0 (29)

The operator of the field energy can be expressed in terms of q, and py:

e Bl o
= —2[2&1‘-}—,]'—1‘ +—(kXq,kxq,)|.
2 k Lj= 8] 02

It follows from the Maxwell equation div D = 0 and from (27) that
(k,py) = 0. (30)

The vector operator p, is therefore orthogonal to the wave-number vector
l: and p, can be decomposed into two independent components. Let e(a) nd
) denote two unit vectors orthogonal to k and to each other

(ef,k) =0, (ef),k) =0, (e, ) =0,
e =1, |ef)|=1. L

The vectors e, e and k are chosen to form a right handed system. Conse-

quently el ) changes its sign when reflecting k: e — —e9 but e remains

unchanged: e(b)— e®). The vectors qx and p, are decomposed into the three
orthogonal basis vectors as

g = 00 ¢ + 0P e + QP K/k,
P =P e + P o).

(32)

From (29) follows that the operators P,, Q, obey the canonical commutation
rules:

[P, Q0] = [P, 0] = 2 8, v (33)

while all other quantities commute. In terms of P, and Q,, the energy operator
reads

=_2[_p<a> p(a;z + PO PO, 3 K L
o j=1 &
3 o(a) ,(b) (34)
—(ppp — pope) > RUE L gow — opow)-

o e
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This expression can be diagonalized only if the coefficient of the term P(_alPl("’) 44
— P@P®) vanishes i.e. if
3 ola) o(b)
SRR o (35)

=

Egs. (35) and (31) determine two unit vectors. It can easily be seen that
Egs. (35) and (31) are equivalent to the condition of the classical crystal optics
specifying the directions of polarization (of D) in the medium, quoted in
several textbooks [17, 18]. Consequently, if e and e are chosen to coincide
with the directions of polarization of an electromagnetic plane wave (with
wave-number k) in the crystal, the energy operator is obtained as

U=2 3 (-aporg + 5 PO PR — D opeo + Zaew (30
k

with
3 :lz‘ 3 e‘{)’
TP fo=3E. (37)
=l ' =1 e]

Finally, the creation and the annihilation operators a;,a, and b, b, are
introduced by defining

0P — V—— Ao —ak), QP ——~l ;’ nlbe + b4,
(38)
o B Loy, m=]E leosy.
2¢ 0, 2c %

It is assumed that §, and p, do not change their signs when reflecting k. Then
the commutation relations of the new operators are g ven as

[, a™] = [b ] = &40 »
[, b] = [a4, b2F] = 0.

(39)

a 4
With the choice 8, = |/, 7, = |/fi the energy operator takes the following

diagonal form

U= ke [V (NO +12) + VB (N + 1/2)], (40)

where N( ) = a;fay, N = b] b,. Since the eigenvalues of the latter operators
are n{“), n(b =0,1,2,..., the eigenvalues of the energy operator U are
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obtained as

U= g fike [V (@ + 1/2) + VB (n? + 1/2)] . (41)

Thus, the energy of the electromagnetic radiation is quantized also in aniso-
tropic media but now the energy quantum (energy of a photon) becomes
different for different directions of polarization:

&0 = ke Vo ,
e — fike /By -

The refractive index of the medium for polarization @ (or b) can be shown to be

(42)

1 23‘ (eﬁ)/(b)/)z
nae =1 g

(43)

Using (43), (37) and (42) the energy of a photon in anisotropic media is
obtained in terms of the refractive index as

hke

Nap)

@OV —

(44)

Eq. (44) is of the same form as the expression of the energy of a photon in
an isotropic medium, ¢ = fkc/n, buth there the refractive index is independent
of the direction of polarization. When taking the isotropic limit ¢, — &, = ¢,
the results go over into those of [3].

Now we turn to the calculation of the momentum of the radiating field.
Starting with (26) and repeating the procedure described above, one obtains
the following expression as the momentum operator

G=2[ (kak—-e(a)ze"‘ ]N(a>+
k

=t

+ 7 |k B _eg‘b)éf}ﬂ‘l] N® —
=1 &

(45)
4
_E/ (b)zes“kj(a by + aif bty + a_ b, + a_ bE) —
j=1

4

ey 2% (0)2‘ e-’“ K (b ay — bfaty, —b_ya, 4+ b_, a—k)]
2 ﬂk =1 §&j
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The last two sums containing both types of polarization are non-diagonal.
Note that due to (31) in the isotropic case the non-diagonal terms vanish and
G goes over to the expression obtained in [3].

The energy eigenstates of the electromagnetic field are not eigenstates
of the momentum of the field in anisotropic media. If, however, one takes
the quantum mechanical mean value of (45) in an eigenstate of Nﬁ“’ and Nl(,”
the non-diagonal terms vanish:

(ko — ef@ 2 5" X

=1 &

© =z

] nf® +
(46)
+ & (kﬁk (b)z o "l’ (o)l

=1 &

i.e. the mean value of the momentum of the electromagnetic field becomes a
multiple of momentum quanta. An interpretation of this result can be that in
anisotropic dielectrica the momentum of a photon is given by one of the follow-
ing expressions depending on the polarization

g = [k oy — o > "’] (47)

Jj=1 8]

g — & (k By — e 2 ek ) J (48)

€j

It is worth-while noting that the relation between the momentum of a
photon g,, its energy ¢, and the velocity of the propagation of the energy
v* defined by (13) is the same as for vacuum or isotropic media:

e(a) [®f

—— Vi) - (49)

(a) /] —
= &

The combination &®/®/¢2 = M, is the inertial mass of a photon, the expression
of v is given by the formula (54). Eq. (49) shows that the direction of the
photon momentum corresponds to that of the Poynting vector but in an-
isotropic dielectrica it does not coincide with the direction of the wave-
number k characterizing the propagation of the light.

The non-diagonal terms in the expression of the momentum (45) are the
results of a mixing of waves with the same wavelength but different frequen-

cies and polarizations. They depend on time as exp [i(e — &)t/i]. The
average of these terms is zero, therefore no measurable contribution is given
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by them. It can be easily seen that this phenomenon coming from the aniso-
tropy of the medium is not of quantum origin since it appears also in the
classical theory of crystal optics. If one calculates the Poynting vector of two
superposed electromagnetic plane waves with wave number k and different
polarizations, then it also contains ““interference terms’ with a time depend-
ence as above. Since the time average of the “interference terms’ vanishes
the light intensity is composed of two diagonal terms corresponding to the
two possible directions of polarization.

If we consider an electromagnetic wave of a given (a or b) polarization
then, of course, no mixing can occur, consequently the energy and momentum
operators are diagonal and their eigenvalues can uniquely be given as sums of
photon energies and photon momenta, respectively. In this sense the cor-
puscular nature of the electromagnetic radiation holds also in anisotropic
dielectrica. In the general case, however, we have to consider photons of aniso-
tropic media as “quasi-particles’” the momenta of which can be given only
as mean values.

Finally, for the sake of comparison we summarize the results which
would arise from a calculation based on MINKOWSKI’s tensor. According to
MiNnkowskl the momentum of the field for 4 =1, is given by

~

G — lJ (D x H)dV, (50)

while the expression of the energy remains (26).
Following the quantization procedure described above, one obtains

6™ = > ik(af ay + by b) (51)
k

as the momentum operator the eigenvalues of which are

GM = N ik(n@ + nY), (52)
k
where n® and n{ denote non-negative integer numbers. Accordingly,

MinkowskI’s photons possess momentum

g = k.

Minkowskr1’s photons, however, exhibit the same strange properties as those
in isotropic media. For example, the rest mass of these photons is imaginary:

mgﬁd&) = hk)T — n2 s/ (cngp). Furthermore, the direction of the photon mo-
mentum does not coincide with that of the propagation velocity v* of the
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energy defined by (13) and consequently the momentum cannot be expressed
as inertial mass X velocity.

On the contrary, for photons arising from a theory based on ABRAHAM’s
tensor the formula momentum = inertial mass X velocity holds (see (49)), the
rest mass given by

hk -
My qp) = e Vl o ”:%o)/cz (53)
a(b)
with
k 3 (@0
Vi =c¢|— — @O, Zﬁ__i. (54)
L) =1 gk

is real and the rest mass and the inertial one m,,, are related by the formula

My q(b)
My = ————— . 55
ot Vl e v:(zb)/c =)

Egs. (55) and (49) suggest that in anisotropic media vj() is to be considered
as the velocity of a photon of polarisation a (or b).

Concluding, we can say that in spite of the fact that ABRAHAM’s photons
are only ‘““‘quasi-particles” in the sense discussed above, they possess a number
of properties characterizing the realistic particles. On the other hand, the
advantage of the use of MINKOWSKI's expression lies in the fact that the
energy and the momentum operators of the field commute and, consequently,
they can be diagonalized simultaneously.
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