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T h e  p h e n o m e n o lo g ic a l  q u a n t u m  t h e o r y  o f  t h e  e l e c t r o m a g n e t i c  f i e l d  i n  a n i s o t r o p ic  
d i e l e c t r i c a  i s  p r e s e n t e d .  T h e  H a m i l t o n i a n  o f  t h e  f i e ld  is  d i a g o n a l i z e d ,  a n d  i t s  q u a n t a  a r e  i n t e r ­
p r e t e d  a s  p h o t o n s  p o l a r i z e d  i n  d i r e c t i o n s  c o r r e s p o n d in g  t o  t h e  c la s s ic a l  d i r e c t i o n s  o f  p o l a r i z a ­
t i o n .  U s in g  A b r a h a m ’s  e x p r e s s io n  w e  f i n d  t h a t  t h e  m o m e n t u m  o p e r a t o r  c a n n o t  h e  d i a g o n a l i z e d  
s i m u l t a n e o u s l y ,  t h u s  p h o t o n s  a r e  c o n s i d e r e d  a s  “ q u a s i - p a r t i c l e s ”  t h e  m o m e n t a  o f  w h i c h  a r e  
g iv e n  a s  m e a n  v a lu e s .  N e v e r th e l e s s ,  t h e s e  p h o t o n s  a r e  s h o w n  t o  e x h i b i t  p a r t i c l e  p r o p e r t i e s  
i n  c o n t r a s t  t o  M in k o w s k i ’s  d e s c r ip t i o n ,  i n  w h ic h  c a s e ,  h o w e v e r ,  t h e  e n e r g y  a n d  t h e  m o m e n t u m  
c a n  b e  d ia g o n a l i z e d  s i m u l t a n e o u s l y .

Introduction

According to  quantum  electrodynam ics the energy and the m om entum  
o f the electrom agnetic field  in vacuum  are quantized. The energy o f th e  field  
is g iven  by

u = 2 Í w » S r) +  1/2) ,  ( l)
i  r =  1

w hile its m om entum  can be expressed as

G  =  2  J * k /n f>, (2 )
i  Г—  1

w here ni =  0 , 1 , 2 , . . k (- and vt stand for the wave-num ber vector and the
frequency o f  the i-th  normal m ode (photon), respectively , h denotes P lanck’s 
constant and % =  h/(2n). The superscript r refers to  th e  polarization o f the  
norm al m odes. P hotons specified b y  energy hv and m om entum  Âk exhibit 
properties similar to  those o f particles. Their m om entum  and energy transform  
as four-vectors w hen changing from  one inertial system  to  another one. The 
rest m ass o f  a photon  is zero but i t  has an inertial mass equal to  hv/c2, where 
c denotes the ve lo c ity  o f  light in  vacuum . The m om entum  o f a photon  is related  
to  its  m ass in  the sam e fashion as in  case o f particles, i.e . m om entum  =  inertial 
m ass X velocity . On the other hand the concept o f  particles arising from  the
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classical m echanics cannot be applied w ithout som e caution since it is m eaning­
less to  speak about the position or th e  path o f a photon.

It is an in teresting  question w hether the particle properties discussed  
above rem ain valid  also for the electrom agnetic field  in  a transparent medium  
w here the fie ld  in teracts w ith  th e  charges in  the atom s or m olecules o f the  
m edium  and brings them  in  m otion  by transferring energy and m om entum . 
T he oscillating charges then em it energy and m om entum . One m ight ask then  
w hether the energy and the m om entum  of the field  rem ain quantized sim ulta­
n eou sly  under th ese  physical circum stances. I f  so, do light quanta possess 
particle properties similar to  th ose  in  the vacuum  or is it  possible th at the  
concept o f ph oton  is restricted on ly  to  vacuum . The answers to  these questions 
can  be given b y  th e  quantum  theoretical treatm ent o f the electrom agnetic  
fie ld  in  d ielectrica. The theoretical investigations o f  transparent isotropic 
m edia were carried out about a quarter o f a century ago [ 1 —3].

A n im portant question arising already in the classical description of 
th e  electrom agnetic field  in d ielectrica is the choice o f  the energy-m om entum  
tensor. The tw o  m ost im portant candidates, corresponding to  different 
div isions o f  m edium  and fie ld , are the expressions proposed b y  Minkow ski 
and A braham  [4 , 5 ]. Their v a lid ity  has been discussed for a long tim e  
[ 6 — 12]. R ecent experim ents [13 , 14] have confirm ed the v iew  th at at low  
frequencies A brah am ’s tensor y ie ld s the more plausible results. On the other 
han d , it  is exp ected  th at at h igh frequencies it is a m atter o f  ta ste  which  
description  is used [12]. The quantization  procedure based on Mink o w sk i’s 
tensor in isotropic dielectrica led  to  strange properties for photons [2 ]. 
Therefore, we prefer the use o f  A braham ’s expression but th e  alternative  
resu lt w ill be g iven , too.

I t  was poin ted  out earlier th a t, due to  the in teraction  betw een  the field  
and the m edium , a portion o f th e  energy and the m om entum  o f th e  radiation  
appears, in  general, in  the form  o f  m echanical energy and m om entum  of 
m olecules. C onsequently, w hen describing the dynam ical properties o f the  
radiation  fie ld , one m ust use th e  so-called radiation  tensor arising as a 
generalisation o f  A braham ’s tensor [7, 8 , 15]. For a m edium  at rest both  
tensors give the sam e expressions for the field  energy and for the m om entum .

Q uantum  theoretical considerations have been lim ited  on ly  to  isotropic 
dielectrica. H ere, w e shall ex ten d  the phenom enological quantum  electro­
dynam ics to  anisotropic m edia. Our investigations show th a t in  anisotropic 
dielectrica the p h oton  picture holds on ly  in  a restricted sense since th e  m om en­
tu m  o f a photon  can  be g iven o n ly  as a m ean value. Therefore, it  is perhaps 
appropriate to  call the photons in  anisotropic m edia “ quasi-particles” .

Before discussing the case o f  anisotropic dielectrica, in  the n ext Section  
w e sum m arize th e  m ost im portant results obtained for isotropic m edia. This 
w ill make the picture more com plete and easily  understandable.
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Photons in transparen t isotropic m edia

The electrom agnetic wave passing through a transparent isotropic m e­
dium produces a varying  electric and m agnetic polarization  in  the dielectricum  
and th e  resulting radiation m odifies the w ave itself. E ven  i f  an entirely trans­
parent medium  is considered, the incident energy o f radiation is present at 
a given  m om ent on ly  partly in  th e  form o f electrom agnetic energy, since 
partly  it  appears as the kinetic and potential energies o f the polarized m ole­
cules. In  a periodical w ave, e.g. th e  field  transfers energy and m om entum  to  
the dielectricum  and recovers them  in  the next h a lf period. In  general, one 
can picture the interaction  as an exchange of energy and m om entum . I f  the  
dielectricum  is at rest, the electrom agnetic force acting on the m edium  cannot 
cause m acroscopic displacem ents, instead it produces stresses in th e  m aterial 
which com pensate th e  forces causing molecular deform ations. Consequently, 
the energy and m om entum  o f the radiation passing through the m edium  is 
partly  o f  electrical and partly o f m echanical origin. A ccordingly, the energy- 
m om entum  tensor, S a ß, characterizing the radiation consists o f tw o  parts: 
Abraham ’s tensor, Ta p, o f the electrom agnetic fie ld  and in  addition  the tensor  
ta ß describing the m echanical energy and m om entum  as well as th e  stresses 
caused by the fie ld , i.e.:

p =  Т л ß -f- ß , X, ß  =  0 , 1 ,  2, 3 . (3)

It was show n earlier th a t S x ß is divergence free and sym m etric. One can easily  
check also that S a ß obeys the Mhller  criterion [16], i.e. when changing from  
one inertial system  to  another, th e  ve loc ity  o f the propagation o f th e  radiant 
energy transform s in  th e  same w ay  as th at o f a particle. Thus the energy and 
the m om entum  o f th e  radiation in  a medium  are to  be calculated b y  m eans of 
the radiation  tensor ß. Since in  a coordinate system  fix ed  to  the dielectricum , 
in  th e  so-called rest fram e, on ly  th e  space-like com ponents o f  f  ̂ are non­
vanish ing, the expressions o f the energy and the m om entum  o f the radiation  
in  th is system  coincide w ith those o f  A braham’s tensor. In  term s o f the field  
vectors th ey  are expressed as

[7 =  - !  j^ED  +  HB) d V ,  

G  =  ^-J(ExH) d V .

(4)

(5)

Follow ing the procedure o f  quantum  electrodynam ics, one considers 
these quantities as operators and calculates their eigenvalues. The latter are
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g iven  b y  [3]

w ith

V  =  2  ekK a) +  +  1 ) ,k
(6 )

G  =  2 ё к( п Р  +  п Р ) ,
k

. (?)

%kc hk
(8 )

e k - V W '
gk =  —  » 

ец

w here e and ц denote the dielectric coefficient and the m agnetic perm eability  
o f  th e  m edium , w hile nk°̂  and nk6̂  can be any non-negative integer number. 
T he indices a and b refer to  th e  tw o  independent polarizations. E qs. (6 ) and 
(7) show  th at th e  energy and the m om entum  o f the radiation are quantized  
quantities in isotropic dielectrica as w ell, th ey  are integer m ultiples o f  the quanta 
ek and gk, respectively . Thus, the quantized structure o f  the radiation  turns 
ou t to  be valid  n o t on ly  in vacuum  but also in  transparent isotropic dielectrica.

B etw een th e  phase ve loc ity

y = - ^ ~
Уец к

and the frequency v the follow ing relation holds

kv —  2 tcv . ( 10)

T h e energy ek and the m om entum  gk o f a photon  can be expressed through  
v and v as

ek =  h v , 

hv
gk =  - v .

( И )

( 12)

F or a dielectricum  at rest, the phase velocity  v coincides w ith  the classical 
expression  o f th e  propagation v e lo c ity  o f  the energy o f a plane w ave w ith  
w ave-num ber k:

- S /u . (13)

(S denotes the P oyn tin g  vector, and и stands for the energy density.) The 
m om entum  o f a ph oton  can be expressed in  isotropic dielectrica, too , as inertial 
m ass X v e loc ity . From  (12) th e  inertial mass o f  a photon is found to  be

m  =  hv/c1 ( 14)

as it  is expected  from the theory  o f  relativ ity .
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A ll these results are valid  in a coordinate system  fix ed  to the dielectri- 
cum . In  a system  m oving as compared to  th e  medium, the corresponding expres­
sions can be obtained b y  means of th e  Lorentz transform ation. For exam ple, 
in  a system  m oving along the a-axis w ith  velocity  V, one finds

» 1  ~ ß l n 
k

=  h v
1 - ß l n
f î ^ ’

(15)

where ß  =  V/c, and n =  c j [ denotes th e  refractive in d ex  of the m edium . 
U sing the transform ation form ula o f  the frequency

one can w rite

v ' —  V
1  — ßn

h v ' 1 — ß l”
1 — ß n

(16)

(17)

This shows th at the energy o f the photon  in  isotropic m edia cannot be expressed, 
in  general, as h v ,  the form ula e  =  h v  is va lid  only in  th e  rest frame.

Since the ve loc ity  и o f  a photon in  dielectrica is sm aller than  th e  velo­
c ity  o f ligh t c  in  vacuum  th e photon is characterized b y  a non-zero rest mass

m o =  -  1  , (18)

which is a positive real q uantity . The rest energy e0 o f a photon  can be obtain  
ed from (15) for ß  =  1 fn

h v
en ==  — ]An2 l  . (19)

Comparing e 0 w ith  (18) one finds e0 =  m 0c? in  accordance w ith the th eory  of 
rela tiv ity . The inertial m ass (14) and th e  rest mass (18) o f  a photon are con­
nected  b y  the equation

m  = W0

у 1 — »•*/«* ’
( 20)

which is well-know n for particles.
The results o f the phenom enological quantum  electrodynam ics for isotro­

pic m edia are thus entirely  consistent w ith  the corpuscular picture o f  the  
radiation. The concept o f  photon proves to  be correct in  th is case, too .

W e have sum m arized here the particle properties o f  the photons in  d ielec­
trica in  detail since these quantum  theoretical results p layed  an im portant role
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in  the debate about the energy-m om entum  tensor. As a m atter o f  fact, a pheno­
m enological quantum  theory o f  the electrom agnetic fie ld  in  transparent 
isotropic m edia w as worked out already in  1948 by Jauch  and Watson [2] 
b u t they  based their theory on the so-called canonical energy-m om entum  
tensor. Since th is  differs from Minkow ski’s one [4] only in spatia l divergencies, 
th eir  results coincide essentially  w ith  those o f  a theory based on Minkow ski’s 
tensor. They obta ined  also quantized  values for th e  field  energy and m om entum , 
b u t their photons exhibited properties which did not fit  into a realistic physical 
picture. For exam p le, the energy o f a photon  turned out to  be negative in  
coordinate sy stem s where th e  v e lo c ity  o f th e  dielectricum  was larger th an  
c/n. Furtherm ore, the rest m ass o f  a photon w as im aginary, and in the rest 
fram e of a p h oton  its rest energy was zero b u t its m om entum  was not. The 
reason behind th ese  properties w as the follow ing. I f  one applies Minkow ski’s 
tensor the m om entum  of the closed system  form ed by the dielectricum  and the  
electrom agnetic fie ld  is divided betw een the m edium  and th e  field  in  an u n ­
natural w ay and therefore th e  m om entum  o f th e  photon obtained  in  this w ay  
contains a contribution  depending on the m om entum  o f th e  medium, too. 
A s w e have seen , th e  description based on A braham ’s interpretation  is free 
from  such non-physical consequences.

Phenom enological quan tum  theory of th e  electrom agnetic field in
anisotropic m edia

It is assum ed that the m edium  is electrically  anisotropic but its m ag­
n etic  perm eability  /1 = 1 . The equation relating the electric field  vectors is

D =  eE (21)

w here e denotes th e  sym m etric tensor of the dielectric coefficien t. The coordi­
n a te  system  is  chosen to be th e  principal axis system  fix ed  to  the m edium . 
T hen

Dj =  S jE j ,  i  =  1, 2, 3, (22)

w here e( stand for th e  eigenvalues o f e.
The free radiation fie ld  is described b y  the M axwell equations, the  

corresponding Lagrangian d en sity  o f which is g iven  as

£  =  (ED — H 2) , (23a)

w here the scalar and vector potentia ls, Ф and A , defined b y

E =  — grad Ф — — Á  (23b)
c
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and
H  =  rot A, (23c)

are considered as th e  canonical variables. The conjugated m om entum , P, o f A  
is defined by

P  i — =  — —D /,  i  =  1 , 2 ,3 .  (24)
d A i  c

The energy and th e  m om entum  o f th e  field  according to  Abraham ’s tensor are

U  =  y J ( E D  +  W ) d V  (25)

and

G  =  i J ( E X H) d V ,  (26)

respectively.
In  a quantum  m echanical description the possib le values w hich U  and 

G  m ight assume are specified b y  th e  eigenvalues o f  the corresponding opera­
tors. Therefore in  th e  following w e shall determ ine th e  operators* o f  th e  field  
energy and m om entum  and then  calcu late their eigenvalues.

The com m utation  relations o f  our basic quantities, i.e. the potentials  
and the conjugated m om enta are as follows:

[P x( t , t ) , A ß(r',  *)] =  * ^ i ( r - r ' ) ,

[ P „ ( r , t ) ,P „ ( r ' , t ) ] =  [ A b ( r , t ) ,A ß(r ' , t ) ]  =  0, «, ß  =  0, 1, 2 , 3. (27)

The operators A a, P a are considered here as four-vectors defined b y  A a =  
=  ( A 0, A ), P a =  ( P 0, P) where А 0 ?==Ф. The com plication  due to  the fact 
th a t in  a classical calculation the conjugated m om entum  associated to  A 0 
turns out to  he zero can be avoided b y  using the quantization procedure de­
scribed in  [3]. The operators A x(r,t)  and Pß(r,t)  are functions o f  space and tim e. 
One m ight introduce space-independent operators b y  expanding them , as 
usual, in a series o f  orthogonal functions. In order to  do it periodic boundary  
conditions w ill be assum ed in  a cube o f  length L.  The size o f the cube can he 
chosen arbitrarily since the final result w ill not depend on it. W e expand the  
operators A a and Pp  in  Fourier series as

A a(r, t ) = L ~ ^ 2 9 ^ e ikt,
к

P ß (r, t) =  L -W  2 Pß,ke~‘kT, «, ß  =  о, 1, 2, 3. (28)
к

* W e  s h a l l  u s e  t h e  s a m e  n o t a t i o n  f o r  o p e r a t o r s  a s  f o r  t h e  c o r r e s p o n d in g  c la s s ic a l  q u a n ­
t i t i e s .
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H ere th e  com ponents of the w ave-num ber vector k  are m ultiples o f  2n/L. 
The operators qл  =  (q0,k, qk), р л  =  (p ok, Pk) obey the following com m utation  
relations

[ P a k ,  i/S k '] =  T  ^<*,0 ^ k .k 'l
i

[ P a k ,  Р / 3k '] =  [ ? « k ,  9 /3k '] =  0  • ( 2 9 )

The operator of th e  field  energy can  be expressed in  term s o f q,̂  and pk:

Г 3
2

Ly=i

PjkPj,  -k
Si

+  —  ( k x q k, k x q _ k)
c2

It  follow s from th e  M axwell equation  div D =  0 and from (27) th at

( k , Pk) =  0. (30)

T he vector operator pk is therefore orthogonal to  the w ave-num ber vector  
k , and pk can be decom posed in to  tw o  independent com ponents. L et eka) and 
e k̂  denote tw o u n it vectors orthogonal to  k  and to  each other

(ebb, k) =  0, (e<?>, k) =  0, (e<‘>, öf») =  0 ,

I4 û)l =  1, I ek » | =  1 .  (31)

T he vectors eka\  ek  ̂ and k are chosen  to  form a right handed system . Conse­
q u en tly  eka) changes its  sign w hen reflecting k: eka) =  — e^k but ek0) remains 
unchanged: ek6)= e ^ k. The vectors qk and pk are decom posed in to  the three 
orthogonal basis vectors as

qk =  Qla) 4 e) +  Q P  e«» +  & 0) k /k , 

Pk =  pjß) 4 “) +  p№) 4 « .
(32)

From  (29) follows th a t the operators Pk, <?k obey th e  canonical com m utation  
rules:

=  - b k ,k - ,
l

(33)

w hile all other quantities com m ute. In  term s o f P k and Qk, the energy operator 
reads

v - U

3 Ja )*  3 Jb)*
— Pia) p (“1 j ?  +  р <6> p<?>k - A _  -

j = 1 e] j= i ej

(I*“{  P<kft) — P<?> PL6>) y r  -  —  (Qjf) Q<% -  QW Q(*l) I ,
p i  Sj ca J

(34)
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This expression can be diagonalized only if  th e  coefficient o f  th e  term  P ^ kP£6  ̂ — 
— pO O p^ vanishes i.e. if

3

2
7=1

Ja)  Jb)
eJk VJ к =  0 .

si
(35)

E qs. (35) and (31) determ ine tw o unit vectors. It can ea sily  be seen th a t  
E qs. (35) and (31) are equivalent to  the cond ition  o f  the classical crystal op tics  
specifying th e  directions o f  polarization (o f  D) in  the m edium , quoted in  
several textbooks [1 7 ,1 8 ]. Consequently, i f  eka) and ek6) are chosen to  coincide  
w ith  the directions o f polarization  o f an electrom agnetic plane w ave (w ith  
wave-num ber k) in  the crystal, the energy operator is obtained  as

fc2 k2
u  = -i- 2  -<4 Pla) p(- l  + ßk p lb)p4  -  №  Q -) +  — <№ Q-i)

w ith
3 e (o)»

j— 1 ej

c2

3 M *  

7=1 Ej

(36)

(37)

F in a lly , the creation and th e  annihilation operators ak , ak and bk , bk are 
introduced b y  defining

Qia) =  Sk(ak -  a±k) , (?<*> =
z/c

p(a) [ hk i

Ac

P ib)

2 к

rW ±
2c y k

VkiK +  b±k) ,

(38)

(bk -  b_k) .

I t  is assum ed th a t ô k  and y k  do not change their signs w hen reflecting k. T hen  
the com m utation  relations o f  th e  new operators are g ven  as

[ok, a +.] — [6 k 5 bk' ] — <5k)k'»

V ]  =  [ak5 b£]  =  0 .
(39)

4 4_
W ith  the choice <5k =  ]/a^, y k =  \fßk the energy operator tak es the fo llow ing  
diagonal form

u = 2 hkc 1У«Г W  + J/2) + УК №  + 1/2)], (40)
к

where lVka) == ak ak, N k  ̂ =  bk bk. Since the eigenvalues o f  th e  latter operators 
are nkQ), nk 5 =  0, 1, 2, . . ., th e  eigenvalues o f  the energy operator U  are
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obtained as

u =  2 kkc « a) +  V2) +  Ш  К й) +  1 /2 ) ] . (41)
k

T hus, the energy o f the electrom agnetic radiation  is quantized  also in  an iso­
tropic m edia hut now  th e  energy quantum  (energy o f  a photon) becom es 
different for different directions o f polarization:

sjf* =  tike У ak ,

еф =  U s e Y K .
(42)

The refractive index o f  the m edium  for polarization  a (or b) can be show n to  be

n a(b) 7 = 1  e j
(43)

U sing (43), (37) and (42) th e  energy o f  a photon in  anisotropic m edia is 
obtained in  term s o f the refractive index  as

(44)
n a(b)

E q. (44) is o f  th e  sam e form  as the expression  of the energy  of a p h oton  in  
an isotropic m edium , e — tike/n, buth there th e  refractive index  is independent 
o f  th e  d irection  o f polarization. W hen ta k in g  the isotropic lim it e3 =  e2 =  e 3 
th e  results go over into th ose o f  [3].

N ow  w e turn to  the calcu lation  o f th e  m om entum  o f  the radiating field . 
Starting w ith  (26) and repeating the procedure described above, one obtains 
th e  fo llow ing expression as th e  m om entum  operator

Í  k « t _  «.M
7=1 £ j  I

I N i a > +

+  Ä |M k -e i? >  2 3 ejv kj

J= 1 e]
N ib)

(45)

A
2

4 » (« Í  +  °k +  °-k^k +  e -k^-k) —

~ ~  e<f> 2  —  ( V  «k -  К  «-k  -  b_ k ok +  b_ k o i k) l .
P k 7=1 £j J
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The last tw o sums containing both  types o f polarization are non-diagonal. 
N ote th at due to  (31) in  the isotropic case the non-diagonal term s vanish and 
G  goes over to the expression obtained in  [3].

The energy eigenstates o f th e  electrom agnetic field  are n o t eigenstates 
o f th e  m om entum  o f  the field in  anisotropic m edia. If, how ever, one takes 
th e  quantum  m echanical mean va lu e o f  (45) in  an  eigenstate o f  N ^  and 
the non-diagonal term s vanish:

< G > = ^
к

% 4 a) +

+  h [k/?k

(46)

i.e . th e  m ean value o f  the m om entum  o f the electrom agnetic fie ld  becomes a 
m ultiple o f  m om entum  quanta. A n interpretation  o f  th is result can  be that in  
anisotropic dielectrica the m om entum  o f  a photon is  given by one o f  the follow ­
ing expressions depending on the polarization

&  =  h -  e.W< 2
ejk kj

i'=i e]

gib) к ßk

(47)

(48)

It is w orth-w hile noting th a t the relation betw een the m om entum  o f a 
photon gk, its energy ek, and th e  velocity  of th e  propagation o f  the energy 
V* defined by (13) is the same as for vacuum  or isotropic m edia:

gCa) /<&)/ =
_ (a )/< 6 > /
c k

C2
17*y a ( b )  ■ (49)

The com bination e ^ ^ b̂ /c2 =  ma(b) th e  inertial m ass o f a photon, th e  expression  
o f is given b y  th e  formula (54). E q. (49) show s th at the direction  o f th e  
photon  m om entum  corresponds to  th at of th e  Poynting vector but in  an­
isotropic dielectrica it  does not coincide w ith  th e  direction o f  the w ave- 
num ber к characterizing the propagation o f th e  light.

The non-diagonal terms in th e  expression o f  the m om entum  (45) are the  
results o f a m ixing o f  w aves w ith  th e  same w avelength  but different frequen­
cies and polarizations. They depend on tim e as exp [i(eka  ̂ — ek*')tjh]■ The 
average o f these term s is zero, therefore no m easurable contribution is g iven
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b y  them . It can be easily  seen th at th is phenom enon com ing from th e aniso­
trop y  o f the m edium  is not o f quantum  origin since it  appears also in the  
classical theory o f  crysta l optics. I f  one calculates th e  P oynting vector  of two  
superposed electrom agnetic plane w aves w ith w ave number k and different 
polarizations, then  it  also contains “ interference term s” with a tim e depend­
ence as above. Since th e  tim e average o f the “ interference term s” vanishes 
th e  light in tensity  is com posed o f tw o  diagonal term s corresponding to the  
tw o  possible directions o f  polarization.

I f  w e consider an electrom agnetic w ave o f a g iven  (a or b) polarization  
th en , o f  course, no m ixing  can occur, consequently th e  energy and m om entum  
operators are diagonal and their eigenvalues can un iquely  be given as sums o f  
photon  energies and photon  m om enta, respectively . In  this sense the cor­
puscular nature o f th e  electrom agnetic radiation holds also in anisotropic 
dielectrica. In  the general case, how ever, we have to  consider photons o f  aniso­
tropic m edia as “ quasi-particles” th e  m om enta o f  w hich  can be g iven  only  
as m ean values.

F inally , for the sake o f com parison we sum m arize the results which 
w ould arise from a calculation  based on M i n k o w s k i ’s tensor. According to  
M i n k o w s k i  the m om entum  o f the fie ld  for /л = 1 ,  is given by

G<") =  — J (D  X H ) d V ,  (50)

w hile the expression o f  the energy rem ains (26).
Follow ing the quantization  procedure described above, one obtains

G W  =  ^ A k « a k +  bk+ 6 k) (51)
k

as th e  m om entum  operator the eigenvalues of w hich are

G W  = ^ Â k (n < ? >  +  nk» ) ,  (52)
k

where nk°̂  and nkfc) denote non-negative integer num bers. Accordingly, 
M i n k o w s k i ’s photons possess m om entum

g W  =  Ak.

M i n k o w s k i ’s photons, how ever, exh ib it the same strange properties as those 
in  isotropic m edia. For exam ple, the rest mass o f th ese photons is im aginary: 
m oa(b) =  h k y i  — Па(ь)/(cna(b))• Furtherm ore, the direction  of the ph oton  mo­
m entum  does not coincide w ith  th a t o f  the propagation velocity  v* o f  the
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energy defined b y  (13) and consequently  the m om entum  cannot be expressed  
as inertia l mass X velocity .

On the contrary, for photons arising from a theory  based on A braham ’s 
tensor th e  formula m om entum  =  inertial m ass X ve loc ity  holds (see (49)), the  
rest m ass given by

m oaW =  — -  vfib)l<? (53)
c n aW

w ith

c k

3
na ( b ) ^

7=1

e f f W k j  !

Sjk I
(54)

is real and the rest mass and the inertial one are related by th e  form ula

ma(b) —
f i  - ^ ( V « 2

(55)

Eqs. (55) and (49) suggest that in  anisotropic media v*(b) is t0 be considered  
as the ve loc ity  o f a photon  o f polarisation  a (or b).

Concluding, we can say that in sp ite  o f the fact th a t Abraham’s photons 
are on ly  “ quasi-particles”  in  the sense discussed above, th ey  possess a number 
o f properties characterizing the realistic particles. On the other hand, the 
advantage of the use o f  Mink o w sk i’s expression lies in  the fact th a t the 
energy and the m om entum  operators o f  the field  com m ute and, consequently, 
th ey  can be diagonalized sim ultaneously.
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