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Abstract We study tidal synchronization and orbit circularization in a minimal model
that takes into account only the essential ingredients of tidal deformation and dissipation in
the secondary body. In previous work we introduced the model (Escribano et al. in Phys.
Rev. E, 78:036216, 2008); here we investigate in depth the complex dynamics that can arise
from this simplest model of tidal synchronization and orbit circularization. We model an
extended secondary body of mass m by two point masses of mass m/2 connected with a
damped spring. This composite body moves in the gravitational field of a primary of mass
M � m located at the origin. In this simplest case oscillation and rotation of the secondary
are assumed to take place in the plane of the Keplerian orbit. The gravitational interactions of
both point masses with the primary are taken into account, but that between the point masses
is neglected. We perform a Taylor expansion on the exact equations of motion to isolate
and identify the different effects of tidal interactions. We compare both sets of equations
and study the applicability of the approximations, in the presence of chaos. We introduce
the resonance function as a resource to identify resonant states. The approximate equations
of motion can account for both synchronization into the 1:1 spin-orbit resonance and the
circularization of the orbit as the only true asymptotic attractors, together with the existence
of relatively long-lived metastable orbits with the secondary in p:q (p and q being co-prime
integers) synchronous rotation.
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1 Introduction

Ever since Darwin (1908) models have been constructed of the tidal synchronization of the
Moon and other celestial bodies (MacDonald 1964; Goldreich and Soter 1966; Gladman et al.
1996; Rasio et al. 1996; Murray and Dermott 1999; Celletti and Chierchia 2000; Correia and
Laskar 2004; Dobbs-Dixon et al. 2004; Celletti et al. 2007; Efroimsky and Williams 2009;
Sidorenko and Celletti 2010).

These models have become more quantitatively accurate, but at the same time more com-
plex. Here we take the opposite approach: we strip the problem of tidal synchronization to
its bare bones with a minimal model that captures just the qualitative dynamical aspects of
the problem.

To our knowledge there are only two approaches modelling tidal interaction as a few-body
problem. Hut (1981) investigates a close binary system where the primary is modelled by
three gravitationally interacting point masses (the secondary is point like). Equilibrium tides
are described, and the effect of weak friction is taken into account by means of the introduc-
tion of a constant time lag. In the approach of Hurford and Greenberg (2000) the primary is
modelled as a sphere coupled to two point masses via damped springs which do not keep their
straight shape but can become curved. The point-like secondary can move along a spherical
orbit only and the primary is assumed to spin uniformly.

Although our model has a secondary consisting of two point masses only bound with a
damped spring, no specific restrictions are applied. We can thus study dynamical tides, the
nonuniform rotation of the secondary, resonances between rotation and orbital motion, and
the effect of circularization. This simple model fundamentally differs from others where the
secondary is described as a spatially extended object. The two-point-mass feature is nev-
ertheless similar in spirit to restricting those models to the l = 2 normal mode, as done
e.g. in Mardling (1995a,b), and Witte and Savonije (2002). It is perhaps due to this feature
that we find chaotic dynamics as Mardling (1995a) did although, owing to the presence of
dissipation, in our case chaos is unavoidably of a transient character. A somewhat related
problem is that of tethered satellite systems (Levin 2007; Sidorenko and Celletti 2010) but
dissipation is typically ignored in this approach.

Our minimal model also enables us to investigate the nature of resonances in detail. We
introduce a new definition of resonant states based on a resonance function which distin-
guishes resonances p : p and 1 : 1, and characterizes the different types of temporal behav-
iour. A necessary condition for the existence of a resonance is formulated: the energy of the
secondary should be constant on average. The response of the dynamics of the secondary to
the temporal change of orbital elements can be monitored.

The model is well-defined and easy to treat numerically in its original form (Escribano
et al. 2008). Nevertheless, we carry out a large distance Taylor expansion (l � r ) over the
exact equations of motion. The approximate equations enable us to identify and isolate
the different effects of tidal interactions. Special attention is paid to chaotic cases where the
applicability of the expansion method is nontrivial. Our finding is, that the exact and approx-
imate equations might lead to different resonances (quasi-attractors) owing to sensitivity to
the initial conditions, but if the two solutions reach the same asymptotic state, even the sec-
ond-order approximation provides a rather accurate description of the dynamics over long
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times. We can also obtain insight into apapsis precession and the temporal change of orbital
elements via the approximate equations.

The paper is organized as follows. The model is introduced in Sect. 2. The succeeding
Section is devoted to a discussion of resonant and chaotic states, and contains the definition
of the novel resonance function. The energy condition for resonant states is also given there.
The approximate equations of motion are derived, and their application to the energy con-
dition is worked out in Sect. 4. The change of orbital elements and the comparison of the
exact and approximate equations are the subjects of the following two sections. Finally, a
discussion follows that also summarizes the results which are expected to be valid beyond
the particular model. Technical details are relegated to the Appendix.

2 The model

We model an extended secondary body of mass m by two point masses of mass m/2 con-
nected with a damped spring; see Fig. 1a. The spring and damper or dashpot are in parallel
in a Kelvin–Voigt configuration (Munk and MacDonald 1975).

This composite body moves in the gravitational field of a primary of mass M � m located
at the origin. In this simplest case oscillation and rotation of the secondary are assumed to
take place in the plane of the Keplerian orbit. We use polar coordinates r, β for the centre of
mass of the secondary, with l as the instantaneous length of the spring and φ as the rotational
angle characterizing the orientation of the secondary. Both angles β and φ are measured from
the x-axis in an inertial reference frame. The gravitational interactions of both point masses
with the primary are taken into account, but that between the point masses is neglected.

To describe the conservative part of the dynamics we construct a dimensionless
Lagrangian, with the initial semi-major axis as the unit of length and the corresponding
Keplerian period as the unit of time, in terms of the generalized coordinates q = (r, β, l, φ):

L = ṙ2

2
+ r2β̇2

2
+ l̇2

8
+ l2φ̇2

8
+ 1

2r1
+ 1

2r2
− ω2

8
(l − l0)

2, (1)

where ri = (
r2 + l2/4 + (−1)i+1rl cos (φ − β)

)1/2
, i = 1, 2, is the distance of the i th

component of the secondary to the primary and ω is the vibrational frequency of the spring.

w

apapsisβ

β

(a) (b)

Fig. 1 a Instantaneous configuration of the system given by the generalized coordinates r, β, l, φ. The relative
angle α = φ − β is indicated. b Schematic diagram illustrating βapapsis(t)
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After including dissipation proportional to l̇ the equations of motion are

r̈ = r β̇2 − 1

2
r R+ − 1

4
l R− cos (φ − β), (2)

β̈ = −2
ṙ β̇

r
− 1

4

l

r
R− sin (φ − β), (3)

l̈ = lφ̇2 − ω2(l − l0) − 2γ l̇ − 1

2
l R+ − r R− cos (φ − β), (4)

φ̈ = −2
l̇φ̇

l
+ r

l
R− sin (φ − β), (5)

where γ is the dissipation constant and the shorthand notation

R± = 1

r3
1

± 1

r3
2

(6)

has been used.
The set of generalized coordinates can be split into two parts. The first subsystem is

related to the orbital motion (r, β) and the second subsystem describes the internal dynamics
(rotation, vibration) of the secondary (l, φ).

In order to understand the temporal evolution of the full system we can study the energy
and angular momentum transfer between the degrees of freedom and subsystems. The angular
momenta of the first and second subsystems are defined as

N1 = r2β̇ and N2 = 1

4
l2φ̇, (7)

respectively. The angular momentum is transferred between the two subsystems but the
sum is conserved as we only have central forces (N1 + N2 = N = const.). Because l � r , in
practice N1 ≈ N = const. The total energy (E) is split into a centre-of-mass energy Ec

(energy of the first subsystem), a vibrational energy Evibr and a rotational energy Erot:

Ec = 1

2

(
ṙ2 + (r β̇)2) − 1

r
, (8)

Evibr = 1

8

(
l̇2 + ω2(l − l0)

2), (9)

Erot = 1

8
l2φ̇2 − 1

2

(
1

r1
+ 1

r2

)
+ 1

r
. (10)

With the above equations we can monitor how the energy is transferred from the centre-of-
mass orbit to vibration and rotation and how the total energy decreases through dissipation.
We also define the energy of the secondary as

Esec = Evibr + Erot. (11)

The instantaneous angular momentum and the energy transfer are given by the time deriv-
atives of these quantities (Ė, Ṅ ).

In order to follow the orbital elements in continuous time, we recall some formulae from
the Keplerian problem. The instantaneous dimensionless semi-major axis and the eccentricity
can be expressed as

a(t) = − 1

2Ec(t)
, ε(t) =

√
1 + 2Ec(t)N 2

1 (t) =
√

1 − N 2
1 (t)

a(t)
. (12)
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respectively. According to (12) the change of Ec plays an important role in the change of the
semi-major axis and eccentricity. The angle w between the vector pointing to the centre of
mass of the secondary and the semi-major axis of the orbit can be obtained from the Keplerian
form r = p/(1 − ε cos w) as

w(t) = arccos
1 − N 2

1 (t)/r(t)

ε(t)
(13)

because p = N 2
1 . So the angle of apapsis — see Fig. 1b—is

βapapsis(t) = β(t) − w(t). (14)

In this article ti denote the instants when the secondary is at the apapsis (apapsis passages).
If a quantity ( f ) is followed over such a long time that the change of the orbital elements
is significant, we plot the quantity only at the instants ti . In such cases we use the notation
f (ti ). To study the long term behaviour of f , we use the time average of the time derivative
of f over a suitable time period. The choice of the suitable time period depends on the state
of the secondary. Generally, it is one period (q = 1) but if the system is in a p : q resonance,
the average is taken over q periods.

〈 ḟ 〉q = 1

ti+q − ti

ti+q∫

ti

ḟ (t)dt. (15)

3 Resonant and chaotic states

In dissipative cases (γ > 0) there is only one attractor, the 1:1 resonance, and a circular
orbit (Escribano et al. 2008). The approach towards the attractor typically occurs through a
series of resonances. Because of the change of orbital elements we introduce the following
resonance functions

ρ(i) ≡ R(ti ) = 1 + 1

2π

ti+1∫

ti

α̇ dt, i = 1, 2, 3, . . . . (16)

The integral term yields the overall rotational angle of the secondary between times ti and
ti+1 relative to the r axis in units of 2π ; see Fig. 1a. The unit term express the fact that the
radius has carried out approximately one rotation. Because of the small apapsis precession,
R or ρ differ slightly from the entire rotational angle of the secondary (in units of 2π).
The resonance function is thus a characteristic of the rotation after eliminating the apapsis
precession. If the system is in a p : q resonance, function ρ is periodic in i , its period is q
and

q∑

i=1

ρ(i) = p. (17)

The reason for the definition of the functions R is that they are more convenient to plot than
ρ(i). In the presence of constant apapsis precession, R would be periodic. Because of the
time dependence of the orbital elements in our problem, R is not strictly periodic but is almost
so. In a p:q resonance, during q orbital periods the rotation of the secondary relative to the
r axis is p − q and the average of the relative rotation is (p − q)/q . According to Eq. (16)
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Fig. 2 a Resonance function R(ti ), ε(ti ) (upper continuous line). Parameters and initial conditions: ω =
10, γ = 1, l0 = 10−3; ε0 = 0.4, φ(0) = 0, φ̇(0) = 5. The series of resonances is 5:1, 4:2, 4:1, 2:2. b
Resonance function R(ti ), Ec(ti ) (upper continuous line). Parameters and initial conditions: ω = 10, γ =
5, l0 = 10−3; ε0 = 0.4, φ(0) = 0, φ̇(0) = 5. The series of resonances is 2:1, 1:1, 2:2, 1:1

the relative rotation during one period is R − 1. Generally, the relative rotation is not exactly
equal to the average of the relative rotation but almost so: R − 1 ≈ (p − q)/q . The average
of R is therefore p/q and it typically takes on q different values around the average.

To understand better the features of R, consider two examples. In a 3:2 resonance, during
two orbital periods the relative rotation of the secondary is one. During one of the periods the
relative rotation is a little smaller than 1/2 and during the other it is a little larger than 1/2.
Thus in the first case R < 0.5 + 1 = 1.5 and in the second case R > 1.5. When plotting R
versus ti , if the points are quite dense, we can see two lines near to the value 1.5. The other
example is a 2:2 resonant state (see right side of Fig. 2a and the mid part of Fig. 2b), which
is different from 1:1 resonance. In the former during two orbital periods the relative rotation
of the secondary is two. During one of the periods the relative rotation is a little less than 0
(negative) and during the other the relative rotation is a little greater than 0 (positive). Thus
in the first period R < 1 and in the second R > 1. In a 1:1 resonance R = 1. Although
the average of R is the same in both cases (R̄ = 1), in a 1:1 resonance the position and the
angular velocity relative to the r axis are always the same at apapsis. The 1:1 resonant state
and the 2:2 should thus be distinguished from each other because they have quite different
features; for example, the amplitude of the libration is larger and the changes of orbital ele-
ments are faster in a 2:2 resonance. In this article the term p : q resonant state will be used
for resonances different from 1 : 1 only.

Figure 2a shows an example of the time-dependent resonance function where we also plot
the temporal change of eccentricity. It is easy to separate the different regimes in the figure.
During the first regime (t = 0–300000) the rotation of the secondary is chaotic. The orbital
motion drives the secondary. Depending on the orbital elements the driving can cause chaotic
rotation. The orbital elements are changing and the type of rotation caused by the driving
is also changing. By t ≈ 300000 the driving cannot cause chaotic rotation and the chaotic
regime ends.

The second regime is a resonance. If the system is in a p : q resonance the temporal
behaviour of the secondary is periodic, thus the average of its energy and the dissipation are
constants: 〈Ėsec〉q = 0 and

〈Ė〉q = 1

ti+q − ti

ti+q∫

ti

(
−1

2
γ l̇2

)
dt = C p:q = const. < 0. (18)
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Fig. 3 Lifetime distribution over
a piece of the φ, φ̇ plane with
l̇ = 0. The initial value of l is
chosen as l = l0/(ω2 − φ̇2).
Parameters are ω = 10, γ =
10, l0 = 10−4, ε = 0.1 (The
secondary is at the apapsis).
Lifetimes are given in units of
orbital periods. The filamentary
structure is a manifestation of
transient chaos
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A constant energy of the secondary can only be maintained if the system pumps the dissipated
energy from the orbit to the secondary which means

〈Ėc〉q = 〈Ė〉q − 〈Ėsec〉q = C p:q . (19)

This is an energy condition for the existence of a p : q resonant state. The subscript p : q
expresses the fact that the value of C is determined mainly by the type of resonant state.
Of course C also depends on the parameters—e.g., on l0—and on the orbital elements. The
resonant state ends—because of the change of orbital elements—when the system cannot
pump enough energy to the secondary. If the energy condition (19) is not valid, the resonant
state loses its stability.

The third regime (near t ≈ 750000) is quite short. At the beginning of this regime a
couple of stable resonant states are present. According to our simulations they behave as
quasi-attractors with fractal basin boundaries. If the state of the secondary is close to a
boundary between the basins of quasi-attractors, the orbit can exhibit long-time chaos.

The fourth regime is also a resonance. This time the mechanism of the disappearance of
the resonance is not the same as in the second regime. The simple quasi-attractor changes
into a strange (chaotic) quasi-attractor as a consequence of the change of the orbital elements.

Since all quasi-attractors are simple resonances, any type of chaos present in such dissi-
pative systems can only be of transient type. As is known from the theory of transient chaos
(Ott 2002; Tél and Gruiz 2006) the chaotic set is in such cases a non-attracting set, called a
chaotic saddle. Orbits initiated close to the stable manifold of the saddle converge towards
the chaotic set, stay a long time around it, and will be led eventually to a quasi-attractor along
the unstable manifold of the saddle. The presence of a chaotic saddle can be demonstrated by
plotting a lifetime distribution over the set of initial conditions. This is done in Fig. 3 where
a clear fractal filamentation of the longlived regions can be seen. Although this set of points
is similar in appearance to a chaotic attractor, which is an unstable manifold, we emphasize
that what we see here is the stable manifold of a chaotic saddle. We have to distinguish two
types of transient chaotic regimes. The first (second) type ends without (with) a change of
the orbital elements. In Fig. 2a the second and fourth chaotic regimes (the short ones) are of
the first type and the first and the third chaotic regimes (the longer ones) are of the second
type.

The typical behaviour of the eccentricity is a decrease toward zero. In every regime but the
1 : 1 resonance the function of eccentricity is piece-wise concave (see Appendix 8.1). The
semi-major axis also decreases and approaches a given value, a∞, determined by the initial
conditions (see Appendix 8.2). The further evolution of the system in this case is that it falls
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into 1 : 1 resonance around t ≈ 1.1×107, and the eccentricity tends to zero exponentially as
the orbit circularizes. Figure 2b shows another example illustrating that the 1 : 1 resonance
can lose stability if the eccentricity is not so small. A similar loss of stability can be found
in a recent paper (Sidorenko and Celletti 2010). Although the authors study a conservative
model, a loss of stability of the 1:1 resonance has been found due to the decrease of the
eccentricity. In that model the dynamics of the secondary is three-dimensional and the point
masses of the secondary are unequal, but because the orbital elements do not change, the loss
of stability is not the result of a temporal evolution as in our case. The figure also shows the
centre-of-mass energy Ec; our numerical experience is that the change of Ec is exponential
only in a 1:1 resonance (Escribano et al. 2008). In other resonant states the temporal change
in Ec is approximately linear (for an explanation see Eq. 19). Another important feature
illustrated in Fig. 2b is that the decrease of the centre-of-mass energy is, in general, more
intense in higher resonances than in 1 : 1 resonance.

In conservative cases (γ = 0), we do not have any attractor, but the system can still syn-
chronize in several metastable resonances. The spring alone is enough for the secondary to
interact with its orbit and temporarily store energy in the form of rotation and vibration.
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Fig. 4 a Energy transfer from the orbit (centre-of-mass kinetic energy, dark, red) to the secondary (rotation
and vibration, grey, yellow). After some orbital periods the energy is transferred back to the centre-of-mass
motion. ε0 = 0.50, γ = 0.0, l0 = 1.0−2, ω = 10. b Longer runs show that this behaviour is periodic.
ε0 = 0.30, γ = 0.0, l0 = 1.0−2, ω = 10

 0

 1

 2

 3

 4

 0  10000  20000  30000  40000

R

t

 0

 1

 2

 3

 4

 0  10000  20000  30000  40000

R

t

(a) (b)

Fig. 5 Function R(t) for elastic secondary with no dissipation, with (a) ω = 5 and (b) ω = 10. Weaker
springs show more resonant states and these remain stable for a longer time
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Eventually the energy will go back to the orbit and the system will return close to its initial
state. In Fig. 4a we show how the energy is transferred from orbit to rotation and back.
Stronger springs (higher ω) behave more like rigid bodies and hence produce fewer reso-
nances. Weaker springs show a wide variety of synchronizations that can last from a few
orbital periods to thousands of orbital periods. A very elastic secondary can easily synchro-
nize in rarer resonances. For instance, we can have resonances with rotation velocity slower
than the orbital velocity, or retrograde rotation: with rotation in the opposite sense to the
orbit. Figure 5b compares the varying resonances that are produced with different springs
using R(t) defined in Eq. (16). We can note how a more elastic secondary is more often
synchronized and its resonances remain stable for longer times.

4 Approximate equations of motion

To calculate the approximate equations of motion we Taylor expand the Lagrangian up to
4th order in l/(2r):

L = 1

2

[
ṙ2 + r2β̇2 + l̇2

4
+ l2

4
φ̇2

]
− 1

8
ω2(l − l0)

2

+1

r

[

1 +
(

l

2r

)2

P2 (cos α) +
(

l

2r

)4

P4 (cos α)

]

.

The Taylor-expanded equations of motion can be written as q̈ = q̈(0) + q̈(1) + q̈(2) + . . .

where q̈ = (r̈ , β̈, l̈, φ̈) and

q̈(0) =

⎛

⎜⎜⎜⎜
⎝

r β̇2 − 1
r2

−2 ṙ β̇
r

lφ̇2 − ω2(l − l0) − 2γ l̇

−2 l̇φ̇
l

⎞

⎟⎟⎟⎟
⎠

, (20)

q̈(1) =

⎛

⎜⎜⎜
⎝

0

0

− l
r3

(
1 − 3 cos2 α

)

− 3
2

1
r3 sin 2α

⎞

⎟⎟⎟
⎠

, q̈(2) =

⎛

⎜⎜⎜⎜
⎝

3
8

l2

r4

(
1 − 3 cos2 α

)

3
8

l2

r5 sin 2α

0

0

⎞

⎟⎟⎟⎟
⎠

, . . . (21)

Another form of the Taylor-expanded equations of motion is

0th order 1st order 2nd order

r̈ = r β̇2 − 1

r2 + 3

8

l2

r4

(
1 − 3 cos2 α

)

β̈ = − 2
ṙ β̇

r
+ 3

8

l2

r5
sin 2α

l̈ = lφ̇2 − ω2(l − l0) − 2γ l̇ − l

r3

(
1 − 3 cos2 α

)

φ̈ = − 2
l̇φ̇

l
− 3

2

1

r3 sin 2α
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In general, the nth order approximation contains the nth power of l/r in the equations of
r̈ , r β̈, l̈ and lφ̈ (accelerations).

In the 0th order approximation (q̈ = q̈(0)) the system of equations splits into two parts.
The first pair of equations (r̈ , β̈) forms the equations of motion of the pure Keplerian problem
and the second pair (l̈, φ̈) describes the problem of two rotating point masses connected by
a frictional spring.

It is worth emphasizing that in the 1st-order approximation (q̈ = q̈(0)+q̈(1)) the secondary
has no feedback on the centre-of-mass motion at all. That is why the first order approximation
has important qualitative differences from the exact model: (i) The orbital elements are not
changing; there is no circularization. (ii) It is a driven nonlinear system in which the drive
is not changing in time. Depending on the orbital elements the attractor(s) can be simple or
strange ones. Of course in the case of a strange attractor the dynamics of the secondary is
permanently chaotic and in the case of simple attractors the dynamics can be either regular
or transiently chaotic depending on the initial conditions. (iii) The orbit pumps energy into
the secondary but the orbital energy remains constant. (iv) The total angular momentum is
not constant. (v) The dimension of the phase space of this problem is only 5. In spite of these
differences, it is important to consider this approximation because a couple of its features
are reflected in the exact model.

We can also define approximations 1a and 2a. Approximation 1a is the 1st-order approx-
imation without the term q(1)

3 = −l/r3
(
1 − 3 cos2 α

)
, i.e., an equation corresponding to

rigid-body rotation of the secondary, provided l = const . In this approximation the action
of the primary on the spring is neglected. Approximation 2a is the 2nd-order approximation
without the term q(2)

2 = 3/8l2/r5 sin 2α in the equation of β̈. The term kept in the equation
of r̈ describes a central force perturbation proportional to 1/r4 provided l and α are constant.
The force is then 3/8l2/r4

(
1 − 3 cos2 α

)
and an analytic expression (Eq. 32) exists for the

apapsis precession.
In general, the trajectories calculated by the approximate and exact equations deviate

from each other because of the chaoticity of the dynamics; in such cases we expect only
the statistical behaviour to be the same. On the other hand, if the motion is regular—as in a
resonance—then the approximate equations are expected to be rather accurate.

The Taylor-expanded equations give us a facility to understand the response of the sec-
ondary to the changes of orbital elements. By using the second-order approximate equations

Ėc = ṙ

(
r̈ + 1

r2

)
+ rṙ β̇2 + r2β̇β̈ = ṙq(2)

1 + r2β̇q(2)
2 (22)

and the time average of the change of the centre-of-mass energy can be written as

〈Ėc〉q = 1

ti+q − ti

ti+q∫

ti

(ṙq(2)
1 + r2β̇q(2)

2 )dt

= 1

ti+q − ti

3

8

ti+q∫

ti

(
ṙ

r4

[
l2 (

1 − 3 cos2 α
)] + β̇

r3

[
l2 sin 2α

])
dt (23)

We use for illustrative purposes a 5:2 resonance and the initial eccentricity is 0.1.
Figure 6a,b shows the first (the fraction) and the second (expression in square bracket)

factors of the first [second] term in the integral over two orbital periods at different eccen-
tricities. The amplitudes of the two first factors are directly proportional to the eccentricity
because the eccentricity and the change of the semi-major axis are relatively small. Because
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Fig. 6 a Temporal change of the factors of the first term in the integral (23) over two orbital periods at different
eccentricities. The secondary is at apapsis at t = 0. The line styles correspond to the eccentricities: 0.9 (heavy
continuous), 0.8 (thin continuous), 0.7 (thin dashed), 0.65 (thin dotted) and 0.63 (heavy dashed). b Temporal
change of the factors of the second term in the integral (23)

Fig. 7 The shift of function α(t)
with eccentricity. The line styles
mark the eccentricity values as in
Fig. 6
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of the energy condition, the integral has to be constant. Therefore function α(t) has to change.
Figure 7 shows the function α(t) at ε = 0.9, 0.8, 0.7, 0.65, and 0.63. As the figure displays,
the response of the secondary is a shift of α(t). The shift becomes faster as the end of the
resonance is approaching.

5 Temporal evolution of the orbital elements

In order to obtain a continuous-time estimate of the orbital elements we use equations for

ε̇ = 1

ε
(Ėc N 2

1 + 2Ec N1 Ṅ1), (24)

ȧ = 1

2

1

E2
c

Ėc = 2a2 Ėc. (25)

These equations appear in several models which treat the secondary as a spatially extended
object, see e.g. Witte and Savonije (2002). The point is that Ėc and Ṅ1 cannot be expressed
by ε and a only, and the set of equations is thus not closed. Special approximate formulas for
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Ėc and Ṅ1 are typically needed obtain closure. We are not forced to do so since the numer-
ical values of these quantities easily follow from (2)–(5) and (7), (8). In fact we consider
(24), (25) only as diagnostic equations investigated along with the numerical solution of our
model.

For later purposes we also write down an equation for βapapsis, used in the same diagnostic
sense. By taking the time derivative of (14), (13) and using (7) and (12) we find:

β̇apapsis = β̇ + ε
(
3r2ṙ β̇2 + 2r3β̇β̈

) + ε̇
(
1 − r3β̇2

)

ṙε
√

a(1 − ε2)
. (26)

The leading-order behaviour of these quantities follows from the second-order approxi-
mate equations. Substituting

Ṅ1 = 2rṙ β̇ + r2β̈ ≈ r2q(2)
2 , (27)

and Eq. (22) into (24) and (25), we obtain

ε̇ = 1

ε

[(
ṙq(2)

1 + r β̇2q(2)
2

)
N 2

1 + 2Ec N1r2q(2)
2

]
, (28)

ȧ = 2a2
(

ṙq(2)
1 + r2β̇q(2)

2

)
. (29)

In a similar way, one finds from (26)

β̇apapsis = 2r3β̇εq(2)
2 − (

r3β̇2 − 1
)
ε̇

ṙε
√

a(1 − ε2)
. (30)

5.1 Apapsis precession

The apapsis precession 
β is obtained by multiplying β̇apapsis by the instantaneous period
T (t) = 2πa(t)3/2:


β(t) = 2π
√

a3(t)β̇apapsis(t). (31)

This equation provides the instantaneous tendency for producing a given apapsis precession.
This can, in certain phases of the motion, be of opposite sign than after a full period, i.e., than
the average of 
β(t) over a period. A well-known result (Landau and Lifshitz 1981) for 
β

in the presence of a dimensionless perturbative force of the type −κ/r4, κ � 1 yields


βpert(t) = 2π
κ(t)

N 4
1 (t)

(32)

where κ(t) = 3
8 l2(t)

(
1 − 3 cos2 α(t)

)
, under the assumption that κ(t) changes slowly.

In a time independent naive approximation when κ(t) is considered to be constant with
α ≈ 0 and l = l0, N1 = N


βnaive = 3π

2

l2
0

N 4 . (33)

In order to test the accuracy of the naive and the perturbative approximations of the apap-
sis precession we compare the numerical results in the case of the simplest, 1:1 resonance.
Figure 8a shows 
βnaive from Eq. (33), the measured 
β (measurement has been made
after a period but the value is represented by a continuous line), 
βpert(t) from Eq. (32),
its average, and the time average of 
β(t) from Eq. (31) all evaluated in approximation
2a. Our conclusion is that the naive and the perturbative approximations can only estimate
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Fig. 8 a Comparison of the different methods for the calculation of the apapsis precession in the case of a 1:1
resonance in approximation 2a: numerically measured 
β (heavy continuous), average of 
β(t) from Eq. (31)
(thin continuous, running very close to the heavy line), 
βpert(t) from Eq. (32) (thin dashed, oscillating),
average of 
βpert(t) (heavy dashed), 
βnaive from Eq. (33) (heavy dotted). Parameters and initial conditions:
ω = 10, γ = 1, l0 = 10−3, ε0 = 0.1, φ(0) = 0, φ̇(0) = 5. b Comparison of the apapsis precession
obtained by means of the different approximate equations. The measured exact and the exact 
β(t) averaged
coincide with the measured 
β in 2nd order (heavy continuous line). The exact 
β(t) coincides with 2nd
order 
β(t) (heavy dashed line). Parameters and initial conditions: ω = 10, γ = 1, l0 = 10−3, ε0 = 0.1,
φ(0) = 0, φ̇(0) = 5

the magnitude of the apapsis precession; they are not suitable to give the exact value. The
value of the time-averaged 
β(t) is practically the same as that of the measured 
β. The
difference between the averages of 
β(t) and 
βpert(t) may be because κ is also oscillating
with an amplitude which is about one fifth of its average value. Therefore, the perturbative
result based on the slow variation of κ is an educated guess only.

Figure 8b shows that the apapsis precession, Eq. (31), evaluated with the 2nd order approx-
imation and the exact equations coincide (heavy continuous line). This means that the equa-
tions of the 2nd order approximation are sufficient for calculating the apapsis precession to
high accuracy. The figure also shows the function 
β(t)—exact and 2nd order approxima-
tion (heavy dashed), 2a order approximation (heavy dotted)—and the numerically measured
apapsis precession in approximation 2a (thin continuous line). The result is about one half of
the measured apapsis precession of the 2nd order approximation and of the exact simulation.
This implies that the contribution of the perturbation 3/8 l2/r4 sin 2α in the equation of β̈ to
the apapsis precession is practically as important as the well known central force contribution,
Eq. (32), of approximation 2a.

Here we have concentrated on the case of the 1:1 resonance on time scales when the
system is still far away from the circularized attractor. Since the interesting time dependen-
cies all die out in the long-time limit, the approximate equations are expected to work even
better for later times. The behaviour of the approximation scheme around other resonances is
also similar. Altogether, the 2nd-order approximate equations seem to provide a rather accu-
rate description of the entire dynamics, provided that the resonant state under investigation
is the same as that predicted by the exact equation. The observation that the approximate
equations lead in some cases to different resonances or ‘transient attractors’ on intermediate
time scales appears to be a consequence of the fact that the dynamics between resonances
is chaotic and the errors attributable to using a perturbation expansion become drastically
amplified.

We can study the influence that the different parameters—γ, ω, l0, ε—have on the
apapsis precession 
βapapsis. Looking at Eq. (30), we can see that 
βapapsis does not depend
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Fig. 9 Numerical data (dots) and fits (continuous lines) for the apapsis precession as a function of spring
frequency (a) and eccentricity (b). a Parameters are γ = 1, l0 = 10−3; ε0 = 0.05, and the fitted parameters
of (34) are c1 = 9.85, c2 = 8.11. b Parameters are ω = 10, γ = 1, l0 = 10−3. The form of the fitted
function is aε2 + b. The result of the fit is a = 3.78 · 10−5, b = 1.13 · 10−5

on γ directly. Numerical results indicate that an indirect dependence cannot be found either
for a wide range of γ (γ < 2). β̇apapsis (30) depends on q(2)

1 (through ε̇) and q(2)
2 , and the

l-dependence of both terms is quadratic, so β̇apapsis ∼ l2. Using the approximation for l
(Eq. 43 of the Appendix 8.3) we expect that the l0 and ω dependencies can be written as


βapapsis = c1

(
l0

1 − c2/ω2

)2

, (34)

where c1 and c2 are fitting parameters. Numerical fits confirm this conjecture. The
l0-dependence is perfectly quadratic and Fig. 9a shows that expression (34) as a function
of ω is perfectly consistent with the measured data. Figure 9b shows that the eccentric-
ity dependence is basically also quadratic, but as ε → 0, the apapsis precession seems to
converge to a nonzero value.

6 Comparison of approximations in chaotic cases

To produce Fig. 10a, the exact equations of motion have been integrated with 35 different
initial conditions and the time averages of the angular velocity have been calculated in every
period. The initial eccentricities of all 35 integrations were the same (ε = 0.1). Figure 10a
shows the average of the angular velocities versus time. There is a plateau at the end of the
curve, since all 35 cases are in resonance. The height of the plateau is 1 implying that all the
cases are in a 1:1 resonance. We integrated the exact and the 2nd-order equations of motion
with the same initial conditions. Angular velocity φ̇ versus time can be seen in Fig. 10b.
Here and even in the case of the highest-order approximation the trajectories deviate from
each other in the transient chaotic regime (t > 300). Based on a study of a couple of sim-
ilar cases we conclude that the 2nd-order (and higher-order) approximations have the same
characteristic features as the exact equations of motion.

We have also studied the statistical behaviour of the different approximations. The same
type of plot as Fig. 10a has been made to all orders of the approximations in Fig. 11a. We
conclude that all approximations other than 1a exhibit the same statistical behaviour as the
exact case. From the graphs the characteristic time, τ1, needed to reach a 1:1 resonance can be

123



A minimal dynamical model for tidal synchronization and orbit circularization

1.00

1.25

1.50

1.75

 0  500  1000  1500  2000  2500  3000

<Φ>

t

.

-1

 0

 1

 2

 3

 4

 5

 0  100  200  300  400  500  600

Φ

t

.

(a) (b)

Fig. 10 a Average angular velocity with the exact equations. Initial conditions: ε0 = 0.1 and (φ0, φ̇0) is
an element of the grid determined by the values φ0 ∈ {0, 1, 2, 3, 4, 5, 6}, φ̇0 ∈ {4.98, 4.99, 5.0, 5.01, 5.02}.
We used this set of initial conditions for every averaged plot in this article. b φ̇(t) in the 2th order approxi-
mation (dark, red) and with the exact (grey, yellow) equations of motion. Parameters and initial conditions:
ω = 10, γ = 1, l0 = 10−3; ε0 = 0.1, φ(0) = 0, φ̇(0) = 5
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Fig. 11 Comparison of the average behaviour of the different approximate equations. Initial eccentricity is
a ε0 = 0.1; b ε0 = 0.2; c ε0 = 0.3

estimated. This state is not yet the circularized attractor since ε ≈ ε0 after such short period
of time. It takes typically a much longer time—denoted by τ in Escribano et al. (2008)—
for the attractor, where ε = 0, to be reached; in this example τ1 ≈ 2000 and τ ≈ 106. The
plateau of the green, 4th-order curve is slightly higher than 1. The reason is that one of the
4th-order cases is in a 5:2 resonance and not in 1:1. Among the 1st-order simulations there
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Fig. 12 a Comparison of eccentricities with the different approximate equations. Parameters and initial condi-
tions: ω = 10, γ = 1, l0 = 10−3; ε0 = 0.1, φ(0) = 0, φ̇(0) = 5. b Comparison of the averaged eccentrici-
ties with the different approximate equations. Parameters and initial conditions: ω = 10, γ = 1, l0 = 10−3;
ε0 = 0.1

were two in a 5:2 resonance, which is why the yellow curve is higher than the green one. It
is hardly observable but the dark blue, 3rd-order curve is also higher than 1; this is owing
to the presence of a 5:4 resonance. Figure 11b, c show a comparison of the exact and the
approximate cases with different initial eccentricities. Based on these, we conclude that the
higher the eccentricity the greater the time τ1. In Fig. 11c the asymptotic value is not 1, which
suggests that a 1:1 resonance has not yet been reached by the end of the integration; the curve
is not smooth because most of the trajectories are not in resonance.

Figure 12 shows the time dependence of the eccentricity ε(t) in the different approximate
equations. In all cases a 1:1 resonance has been reached by t ≈ 3, 000. In the first order
approximation there is no feedback of the secondary on the Keplerian problem, therefore
ε(t) = ε0 = const. The asymptotic slopes of the other curves show the rate of decrease of
eccentricity. These rates are the same in all cases with the exception of approximation 2a
which indicates that the contribution of the term 3/8 l2/r5 sin 2α missing from the equation
for β̈ is important.

Figure 12b shows the eccentricity averaged over 35 different initial conditions in the dif-
ferent approximate equations. It is a general observation that in resonances different from 1:1
the eccentricity decays much faster. This is the reason why in cases in which there are also
other resonances than 1:1 in the ensemble (the 3rd and 4th order) the averaged eccentricities
decrease faster. If we average only the 1:1 resonance cases than we obtain the light and the
dark blue curves. As expected, the curves of the 2nd and 3rd order are close to each other,
and close to the curves of the 4th order and to the exact numerical solution which practically
coincide. Figure 12b indicates that in exceptional cases even the 4th-order approximation
can lead to a resonance—a ‘transient attractor’—different from the exact one. The good
agreement between the approximate and exact equations only holds under the condition that
the same resonance has been reached.

7 Discussion

Spin-orbit resonances between a large primary body and a smaller secondary body are gen-
erally studied using models designed for quantitative analysis of a specific instance or a
particular part of the problem (MacDonald 1964; Goldreich and Soter 1966; Gladman et al.
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1996; Rasio et al. 1996; Murray and Dermott 1999; Celletti and Chierchia 2000; Correia
and Laskar 2004; Dobbs-Dixon et al. 2004; Celletti et al. 2007; Efroimsky and Williams
2009; Sidorenko and Celletti 2010). The complexity of these models tends to obscure the
fundamental physical principles involved in this interaction. We have instead taken a quali-
tative dynamical-systems approach, using a minimalistic model that takes into account only
the essential ingredients of tidal deformation and dissipation in the secondary body. Despite
its simplicity, the model can account for both synchronization into the 1:1 spin-orbit reso-
nance and the circularization of the orbit as the only true asymptotic attractors. Apart from its
applicability to tidal synchronization and orbit circularization of celestial bodies, our model
is also relevant to the problem of the dynamics of tethered satellites, which has recently
provoked much interest and a number of space missions (Levin 2007; Sidorenko and Celletti
2010).

One interesting open question is whether a pseudo-energy—or energy-like—approach
would provide new insight into the problem. In this case we have completely defined the
gravitational and mechanical energies—the centre of mass plus rotation and vibration of
the secondary—and thus the dissipated energy can be obtained simply by subtraction from
the initial energy; the same is true for the evolution between two arbitrary states. As the
dissipation is strictly passive the total energy is necessary a decaying function, reaching a
constant value only in a situation in which the dissipation term vanishes along the trajectory.
In the approach of Sarasola et al. (2005), energy dissipation is associated with a local change
in phase space volume and on this basis they define a partial differential equation that an
energy-like function must satisfy. The same depends on a part of the decomposition of the
vector velocity field; the divergence free or rotational part in contrast with the part that carries
the whole divergence. Once H is obtained we can calculate the energy derivative along a
trajectory of the system which is due to the part carrying the divergence of the vector field.
Probably this is the unique new information that can be obtained in our case: an analytical
expression instead of the indirect calculation by subtraction of the mechanical plus gravita-
tional energy. Nonetheless the pseudo-energy approach is of interest and we intend to pursue
it in future work.

The main conclusions that may be drawn from the present investigations are: The 1:1
resonance is the only stable attractor. Dissipation drives the system towards this synchroni-
zation and circularizes the orbit. All other resonances are metastable, or transient attractors,
and dissipate energy at a faster pace, and the approach towards the circular orbit is also faster.

If we look to our solar system, we find that all large moons are locked in 1:1 spin–orbit
resonance with their planets. Of the planets, however, only Mercury is locked into spin–orbit
resonance with the Sun, and this is a 3:2 spin-orbit resonance (Correia and Laskar 2004).
The presence or absence of locking can be explained in our model through the strength of the
coupling (Escribano et al. 2008), which is largest for the moons, and smaller for the planets,
of which Mercury has the strongest coupling. Within our minimal model, in which 1:1 is the
only asymptotic attractor, such a 3:2 resonance is metastable, and Mercury would eventually
decay into 1:1 spin–orbit resonance. On the other hand, it may be possible to stabilize 3:2
resonance in our model by adding to it interactions with further bodies (the other planets);
three-dimensionality (non-coplanarity of spin and orbit); and post-Newtonian effects.

Isolating the dominant interactions between the degrees of freedom in terms of a Taylor
expansion allows us to to study them separately. In general, the second-order approximation
is sufficient to reproduce the typical behaviour of the complete model, as long as we are in the
1:1 resonance. This has been studied for apapsis precession, chaotic regimes and eccentricity
evolution.
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Finally, we summarize features of our model which are expected to remain valid in more
general cases as well. Even if the expression for 〈Ė〉q can, in general, be quite complex, the
energy condition (19) for resonant states holds in any case. The mechanism of the response of
the secondary to the change of the orbital elements should remain similar to in our model. Of
course, we have to use the general formula (23) where q(2)

1 and q(2)
2 can be rather complicated.

Acknowledgments We acknowledge projects OTKA NK72037 (Hungary), Hielocris (Spain), CGL2008-
06245-CO2 (Spain), and the Hispano–Hungarian Binational project TeT ESP-34/2006.

8 Appendix

8.1 Temporal change of the eccentricity

As we saw there are two typical temporal behaviours of Ec; linear and exponential. From
Eq. (12) and considering that the approximate equation N1 ≈ N is valid we can estimate the
temporal change of eccentricity.

a. Exponential temporal behaviour of Ec Assuming the function of Ec(ti ) to be in the form
Ec(ti ) = Ec,∞ + AEce−λEcti we obtain an exponential function for the eccentricity

ε(ti ) ≈
√

1 + 2(Ec,∞ + AEce−λEcti )N 2 =
√

2AEce−λEcti N 2 (35)

where we used that
√

1 + 2Ec∞N 2 = ε∞ = 0. The eccentricity thus also decays exponen-
tially and its exponent is the half of the exponent of the function Ec(ti ) (λε = λEc/2).

b. Linear temporal behaviour of Ec In p : q resonant states the temporal behaviour of
Ec is linear with the negative slope C p:q so Ec(ti ) = C pq ti + Ec,0 where Ec,0 = Ec(t0).
The eccentricity at the instant t0 is

ε0 = ε(t0) =
√

1 + 2Ec,0 N 2. (36)

Using this we obtain the temporal change of the eccentricity

ε(ti ) =
√

1 + 2(C p:q ti + Ec,0)N 2 =
√

ε2
0 + 2C p:q N 2t (37)

which is always a concave function.

8.2 Radius of the circularized orbit

Consider a circular orbit in a 1:1 resonance: a∞ = r = const., β̇∞ = const., φ̇∞ = const.,
l∞ = const., α = 0 and l̇ = 0. The parameters of the circularized orbit are determined from the
condition

φ̇∞ = β̇∞. (38)

Because l∞ � a∞ from Eq. (12), a good approximation can be obtained for a∞ if we consider
that N1 ≈ N0. By writing down Eq. (12) initially we obtain

N 2
0 = 1 − ε2

0 . (39)
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Fig. 13 Comparison of the
measured l (continuous line) and
lequ calculated by Eq. (43)
(dashed line). Parameters and
initial conditions:
ω = 10, γ = 1, l0 = 10−3;
ε0 = 0.1, φ(0) = 0, φ̇(0) = 5
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In the final state ε∞ = 0, 0 = 1 − N 2
0 /a∞ and thus

a∞ = 1 − ε2
0 . (40)

The larger the initial eccentricity (ε0), the smaller the final radius of the orbit (a∞). It is
important to note that a∞ is independent of any other parameters i.e., γ, ω or l0.

8.3 Quasistationary behaviour of l

We introduce 
l = l − l0. Its equation of motion in the 2nd order approximation is


l̈ = lφ̇2 − ω2
l − 2γ 
̇l − l

r3

(
1 − 3 cos2 α

)
. (41)

According to numerical results 
l/ l � 1 which is why the left side and the third term
of the right side are neglectable. The second term is generally not negligible. After writing

l = l − l0 we obtain

0 = lφ̇2 − ω2(l − l0) − l

r3

(
1 − 3 cos2 α

)
. (42)

This means that l̈ ≈ 0, and the spring is almost in equilibrium at each moment. On expanding
l we obtain

lequ = ω2l0
ω2 − φ̇2 + 1

r3

(
1 − 3 cos2 α

) = l0
1

1 − 1
ω2

[
φ̇2 + 1

r3

(
3 cos2 α − 1

)] (43)

where we added the subscript equ. A comparison of l(t) and lequ(t) is shown in Fig. 13.
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