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We review and generalize recent results on advection of particles in open time-periodic
hydrodynamical flows. First, the problem of passive advection is considered, and its fractal and
chaotic nature is pointed out. Next, we study the effect of weak molecular diffusion or randomness
of the flow. Finally, we investigate the influence of passive advection on chemical or biological
activity superimposed on open flows. The nondiffusive approach is shown to carry some features of
a weak diffusion, due to the finiteness of the reaction range or reaction velocity. ©2000 American
Institute of Physics.@S1054-1500~00!02001-2#
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Advection of passive tracers in open nonstationary flows
is an interesting phenomenon because even in simpl
time-periodic velocity fields the tracer particles can ex-
hibit chaotic motion, and tracer ensembles display pro-
nounced fractal patterns. As an illustrative numerical ex-
periment we analyze a model of the von Ka´rmán vortex
street, a time-periodic two-dimensional flow of a viscous
fluid around a cylinder. First, we consider the problem of
passive advection, and discuss the chaoticity of the par
ticle dynamics and its relationship to the appearance of
fractal patterns. Then we include weak diffusion and
show that this leads to a washing out of the fine-scale
structure below a critical length scale, while still preserv-
ing fractal scaling above this scale. Finally, we study how
chemical or biological processes superimposed on ope
flows are influenced by the properties of the underlying
nondiffusive passive advection. We present an elemen
tary derivation of the reaction equation that describes
accumulation of products along the unstable manifold.
Moreover, the similarity of this fattening of a fractal to
that due to diffusion is discussed and analyzed, and our
method is compared with the traditional description via
reaction-advection-diffusion equations.
891054-1500/2000/10(1)/89/10/$17.00
I. PASSIVE ADVECTION IN OPEN FLOWS

The advection of particles by hydrodynamical flows h
attracted recent interest from the dynamical syst
community.1–32

If advected particles take on the velocity of the flow ve
rapidly, i.e., inertial effects are negligible, we call the adve
tion passive and the particle a passive tracer. The equa
for the positionr (t) of the particle is then

ṙ5v~r ,t !, ~1!

wherev represents the velocity field that is assumed to
known. The tracer dynamics is thus governed by a se
ordinary differential equations, e.g., like those of a driv
anharmonic oscillator, whose solution is typically chaotic

A unique feature of chaotic advection in time-depend
planar incompressibleflows is that the fractal structure
characterizing chaos in phase space become observab
the naked eye in the form of spatial patterns.1–4 In such cases
there exists astreamfunctioncm(t)(x,y) ~Ref. 33! whose de-
rivatives can be identified with the velocity components a

vx~x,y,t !5
]cm(t)~x,y!

]y
, vy~x,y,t !52

]cm(t)~x,y!

]x
,

~2!
© 2000 American Institute of Physics
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and whose level curves provide the streamlines. The s
scriptm(t) indicates the set of all parameters determining
streamfunction, which is generally time dependent. Note
Eq. ~2! is a consequence of incompressibility because it
plies ¹•v50. Combining Eq.~2! with Eq. ~1! for a planar
flow, wherer5(x,y) and v5(vx ,vy), one notices that the
equations of motion have canonical character, w
cm(t)(x,y) playing the role of the Hamiltonian andx and y
being the canonical coordinates and momenta~or vice versa!,
respectively. Thus, the plane of the flowcoincideswith the
particles’ phase space. This property makes passive ad
tion in planar incompressible flows especially interesting a
a good candidate for an experimental observation of patt
that are typically hidden in an abstract phase space. In
tionary flows whenc is independent oft, the system~1! and
~2! is integrable and the particle trajectories coincide with
streamlines. In time-dependent cases, however, particle
jectories and streamlines are different, and the former o
can only be obtained by solving Eqs.~1! and~2! numerically.

Here we consider passive advection inopenflows. This
means that there is a net current flowing through the ob
vation region where the velocity field is time dependent.
the far upstream and far downstream regions the flow is c
sidered stationary. In such cases complicated tracer m
ments are restricted to afinite region. This will be called the
mixing regionoutside of which the time dependence ofc is
negligible. It is worth emphasizing that a complicated flo
field ~turbulence! inside the mixing region isnot required for
a complex tracer dynamics or for the appearance of fra
patterns. Even simple forms of time dependence, e.g., a
riodic repetition of the velocity field with some periodT, is
sufficient. However, the periodicity of such flows allows f
a simpler presentation of the chaotic advection dynamics
the so-called stroboscopic map. It is a discrete mapMm de-
fined by the sequence of snapshots taken at time inst
separated byT connecting the coordinates (xn ,yn) of the
particle at snapshotn with those at the next one as

~xn11 ,yn11!5Mm~xn ,yn!. ~3!

Since the parameters of the flow are time periodic withT, the
parametersm on the snapshots aren-independent, and henc
the map is autonomous. Due to the incompressibility of
flow, mapMm is area preserving.

The complicated form of trajectories implies a long tim
spent in the mixing region. In other words, tracers can
temporarily trapped there. It is even more surprising, ho
ever, that for very special initial tracer positionsnonescaping
orbits exist. The simplest among these orbits are the perio
ones with periods that are integer multiples of the flow
period,T. All the nonescaping orbits are highly unstable a
possess a strictly positive local Lyapunov exponent. Anot
important feature of these orbits is that they are rather exc
tional so that they cannot fill a finite portion of the plan
Indeed, the union of all nonescaping orbits forms a frac
cloud of points on a stroboscopic map. This cloud is mov
periodically with the flow but never leaves the mixing r
gion.

Typical tracer trajectories not exactly reaching any of
nonescaping orbits are, however, influenced by them. T
b-
e
at
-

h

ec-
d
ns
ta-

e
ra-
es

r-

n-
e-

al
e-

ia

ts

e

e
-

ic

r
p-
.
l

g

e
y

follow some of the periodic orbits for awhile and later turn
follow another one. This wandering among periodic~or,
more generally, nonescaping! orbits results in thechaotic
motionof passive tracers. Indeed, as long as the tracers a
the mixing region, their trajectories possess a positive av
age Lyapunov exponentl. Hence the union of all nonescap
ing orbits is called thechaotic saddle. It has a unique fracta
dimensionD0

(saddle) on a stroboscopic map, independent
the time instant at which the snapshot is taken.

While many of the tracers spend a long time in the m
ing region, the overwhelming majority of particles leav
this region sooner or later. The decay of their number in
fixed frame is typically exponential with a positive expone
k (,l), which is independent of the frame. This quantity
the escape ratefrom the saddle~or the mixing region!. The
reciprocal of the escape rate can also be considered a
average lifetime of chaos, and therefore the chaotic adv
tion of passive tracers in open flows istransient chaos.34

The chaotic saddle is the set of nonescaping orbits wh
tracer particles can follow for an arbitrarily long time. Eac
orbit of the set, and therefore the set as a whole, has a s
and an unstablemanifold. The stable manifold is a set of
points along which the saddle can be reached after an
nitely long time. Theunstablemanifold is the set along
which particles lying infinitesimally close to the saddle w
eventually leave it in the course of time. Viewed on a st
boscopic map, these manifolds arefractal curves, winding in
a complicated manner. By looking at different snapshots
these curves we can observe that they move periodically w
the periodT of the flow. Their fractal dimensionD0 (1
,D0,2) is, however, independent of the snapshot.@The
stable and unstable manifolds have identical fractal dim
sion due to the tracer dynamics’ time reversal invariance,
D0

(saddle)52(D021).]
The unstable manifold plays a special role since it is

only manifold which can be directly observed in an expe
ment. Let us consider a droplet~ensemble! of a large number
of particles which initially overlaps with the stable manifol
As the droplet is advected into the mixing region its shape
strongly deformed, but the ensemble comes closer and cl
to the chaotic saddle as time goes on. Since, however, on
small portion of particles can fall very close to the stab
manifold, the majority do not reach the saddle and start flo
ing away from it along the unstable manifold. Therefore w
conclude that in open flowsdroplets of particles trace ou
the unstable manifoldof the chaotic saddle after a suffi
ciently long time of observation. This implies that classic
flow visualization techniques based on dye evaporation
streaklines trace out fractal curves~unstable manifolds!
which aredifferent from streamlinesor any other character
istics of the Eulerian velocity field~for several flow visual-
ization photographs of this type, see Ref. 35!.

A classical result, valid for any transient chaotic motio
relates the dynamical quantities to the fractality of t
manifolds.36,34,37 Applied to our particular problem, it im-
plies that the information dimensionD1 of the manifold is
uniquely related to the average Lyapunov exponentl around
the chaotic saddle and the escape ratek:
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D1522
k

l
. ~4!

This formula says that the unstable manifold’s dimension
smaller than the plane’s dimension by an amount given
the ratiok/l of two dynamical rates, or two characterist
times. Since the fractal dimensionD0 of the manifold is
typically very close~from above! to D1, Eq. ~4! also pro-
vides a fairly good estimate ofD0.

The derivation of Eq.~4! is based on the observation th
if we cover the unstable manifold in a given region wi
boxes of linear sizee and color the covered areaA, the
colored areaA8 staying inside the preselected region af
some timet will be smaller by a factor of exp(2kt) due to
escape. Simultaneously, the covering will be narrower du
the convergence along the stable direction towards the
stable manifold. Therefore we write that the new box size
e85e exp(2lt) where 2l is the average negativ
Lyapunov exponent. By this we are considering boxes wh
are typical with respect to the natural measure34 on the
saddle and so their numberN(e) scales ase2D1. This expo-
nentD1 is somewhat smaller than the fractal dimension
termining the scaling of all the covering boxes. Since, ho
ever, our boxes are typical, the total covered area isA
;e22D1 andA8;e822D1 up to corrections which are negl
gible in the smalle limit. By inserting the relation between
the box sizes and the areas, we find that Eq.~4! holds irre-
spective oft.

It is worth emphasizing the usefulness of a further, ind
pendent characteristic, thetopological entropy K0 of the cha-
otic saddle. It can be interpreted25,11,38as the growth rate o
the lengthL(t) of material lines or of the droplet perimete
in a fixed region of observation as a function of timet:

L~ t !;eK0t ~5!

for asymptotically long times. In spite of the very natur
measurability of these lengths in passive advection, the
of topological entropy is not yet widespread. The quantityK0

provides an upper bound to the metric entropyK1 which
turns out to be the difference between the Lyapunov ex
nent and the escape rate:36,34

K0>K15l2k. ~6!

The average Lyapunov exponent can also be expressed a
average growth rate of lnL(t) around the chaotic saddle. Th
difference betweenK0 and l is due to the difference be
tween the logarithm of an average and the average of a l
rithm.

Next, as a paradigm of two-dimensional viscous flo
around obstacles, we consider the case of the particle mo
around a cylinder. We work in a range of parameters wh
a von Kármán vortex street exists, and vortices are detach
from the upper and lower halves of the cylinder with a per
T. Experiments carried out in this flow proved the existen
of unstable periodic orbits and of a fractal unstab
manifold.39 This problem has also been investigated num
cally in great detail.21–25For simplicity we take an analytica
model for the streamfunction introduced in Ref. 24. It d
scribes the flow when only two vortices are present in
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wake of the cylinder at any instant of time and these vorti
alternate when separating from the cylinder. The form of
analytical model is motivated by the results of a direct n
merical simulation of the Navier–Stokes equations at R
nolds number 250, reported in Ref. 23. The dynamical a
geometrical parametersl,k,K0, andD0 are functions of the
Reynolds number. The wake of the cylinder plays the role
the mixing region.

It is worth emphasizing that relations~4! and ~6! are
valid for hyperbolic chaotic saddles only. The chao
saddles in advection problems typically also contain non
perbolic components. One source of them can be KAM t
generated by the Hamiltonian problem~1! and
~2!.10–12,14,15,26In the wake of the cylinder, however, the
can hardly be observed.24,39 The applied resolutions sugge
that they are certainly not present on dimensionless len
scales above 1024. Another, independent source is the su
face of the cylinder. It acts as a union of parabolic orbits, a
hence as a smooth torus, which is also sticky. Close to
surface, i.e., in the boundary layer, this stickiness leads to
immediate power law decay,24 but further out in the wake
exponential decay can be observed over more than 15 p
ods. Thus, the advection problem in the wake can faithfu
be described over a long time span as if the saddle was f
hyperbolic. Thus,~4! and~6! can safely be used in this con
text.

Figure 1 displays the unstable manifold of the chao
saddle taken at different snapshots within one period. T
radius R of the cylinder and the periodT of the flow are
taken as the length and time units. The construction is ba
on the mathematical definition of the unstable manifol
therefore what we see are infinitesimally thin lines. As
comparison, Fig. 2 illustrates the droplet dynamics m
tioned above. It shows the shape of an originally comp
droplet as time goes on. We can observe that after a s
ciently long time the droplet traces out the unstable ma
fold. Due to the finite number of particles, however, the ch
otic saddle cannot be reached exactly, and the numbe
particles in the wake tends to zero in the long time lim
Permanent fractal patterns can only be observed if there
continuous inflow of tracers in front of the cylinder.

II. DIFFUSION AND RANDOM FLOWS

The effect of molecular diffusion on passive advecti
can be taken into account by considering, instead of Eqs~1!
and~2!, their stochastic counterparts augmented by Lange
terms:3,17

ẋ5
]cm(t)~x,y!

]y
1jx~ t !, ẏ52

]cm(t)~x,y!

]x
1jy~ t !.

~7!

Here jx , jy represent, in the simplest case, uncorrelat
Gaussian noises with white autocorrelation functions:

^jx~ t !jx~ t8!&52Dd~ t2t8!, ~8!

^jy~ t !jy~ t8!&52Dd~ t2t8!, ~9!

where D is the molecular diffusion coefficient and is a
sumed to be isotropic in the plane.
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FIG. 1. Snapshots taken on the unstable manifold of the chaotic saddle at timest50,
2
5,

3
5, and 1 in the wake of the cylinder. This fractal pattern is tim

periodic with the period of the flow.t50 is the instant when a vortex is born close to the first quadrant of the cylinder surface. The length is measured
of cylinder radiusR.
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In the case of time-periodic flows this leads to a no
stroboscopic map taken with the periodT of the flow

~xn11 ,yn11!5Mm~xn ,yn!1~jx,n ,jy,n!, ~10!

where the noise termsjx,n ,jy,n obey similar characteristic
as their continuous counterparts. The autonomous prop
of the map is broken due to the appearance of additive no
the full map depends on the snapshot taken, i.e., onn. Fur-
thermore, it is no longer exactly area preserving.

Let us now qualitatively formulate how molecular diffu
sion modifies the behavior around the filaments of the
stable manifold, assuming the case of weak diffusion. O
then expects to see diffusive effects on small scales o
This implies that the convergence of a droplet towards
unstable manifold can be observed similarly as without d
fusion, but not up to infinite accuracy. If a filament is loca
covered by particles in a sufficiently narrow band of widthd,
this width can change in time due to twocompetingeffects.
It tends to broaden because of diffusion, but also shri
because of the contraction along the stable direction,
perpendicular to the filament. These effects result in a cer
time dependence ofd which leads to asteady statein which
the two effects exactly compensate each other.

To see this qualitatively, let us follow the evolution o
the filament widthdn over a time intervalt. It increases to
(dn

212Dt)1/2 according to the usual spreading due to diff
sion, multiplied by the typical shrinking factor exp(2lt). So
all together the new width is

dn115~dn
212Dt!1/2e2lt. ~11!

This equation has obvious steady solutions. By requiring
d85d[d* we find

d* 5S 2Dt

e2lt21
D 1/2

. ~12!

This describes a solution in which the coverage of the fi
ments by tracers is changing in time in a periodic fash
rty
e:

-
e
y.
e
-

s
.,
in

at

-
n

corresponding to a limit cycle behavior repeating itself af
time intervalst. The flow in the wake of the cylinder is time
periodic with T but, since it is reflection symmetric with
respect to thex-axis after a time shift ofT/2, we expect a
steady solution for the diffusive case witht5T/2.

The solution is simpler iflt!1, formally correspond-
ing to the limit t,T→0, since then

d* 5S D

l D 1/2

. ~13!

The asymptotic solution is then strictly constant in time, a
appears to be a fixed point of thed-dynamics. This formula
can be used as a first guess for the filament width even
finite values oft since Eq.~12! can be written asAD/l
multiplied by a dimensionless function oflt. Both cases
illustrate that the coverage of the manifold’s filaments f
lows a dissipatived-dynamics, in spite of the Hamiltonian
character of the original passive advection problem@Eqs.~1!
and ~2!#. This dynamics can also be expressed in terms o
differential equation in the limitt→0:

ḋ5
D

d
2ld, ~14!

which has~13! as its steady-state solution. Irrespective of t
form of the advection dynamics, we conclude that in t
presence of diffusion, the fractal scaling of the asympto
tracer distribution remains valid beyond the crossover d
tanced* with the same dimensionsD0 or D1 as without
diffusion, but belowd* the distribution is smoothed out.

One can also estimate the timetd needed to see the effec
of diffusion. Starting with a droplet of linear size of orde
unity, the typical width of its filaments decreases
exp(2lt). At td it reaches the size ofAD/l which yields
td;1/l ln D, i.e., the diffusion time depends logarithmical
on the magnitude of the diffusion coefficient.

Note that, althoughd converges to a steady state, th
material content does not. There is a permanentdilution in
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FIG. 2. The evolution of a droplet of passively advected tracers is shown at the time instancest50,
2
5,

3
5,1,

7
5,

8
5,2, and 4. The initial droplet is a rectangle o

linear size 0.130.2, inx andy directions, respectively, and it is centered aroundx522.5 andy50. It contains 20 000 particles. Note that the pattern trac
out after a short transient is similar to the corresponding patterns of Fig. 1. The coverage of the unstable manifold by the tracers is not perfect duethe finite
number of particles.
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the covered region due to diffusion, and since the numbe
colored particles decreases in the fixed region of observa
as exp(2kt), their concentration also decreases with this r
asymptotically.

Next, it is worth contrasting the case of diffusion wi
that of nondiffusive passive advection in arandomflow. By
random we mean that the flow parametersm entering the
streamfunctionc are not constant in the course of time b
fluctuate around their meanm̄, i.e.,m(t)5m̄1dm(t), where
dm(t) is the fluctuation. In our particular example of th
flow around a cylinder, this can be realized either by lett
the cylinder fluctuate randomly but slowly around its origin
center with some small amplitude, or, more naturally,
going to higher Reynolds numbers where the detachmen
vortices is no longer strictly periodic, but rather modulat
with a nonperiodic, chaotic component. Thus, the case
flows where the velocity field is changingchaoticallyin time
can also be considered as a random flow. In any case
instantaneous streamlines are smooth, i.e., the flow is
from turbulent.

By considering snapshots of the passively advected
of
n
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ticles with some sampling timet ~which can be completely
independently chosen from the original periodT of the flow!
one finds a mapMmn

which connects the particle position
(xn ,yn) and (xn11 ,yn11) on two subsequent snapshots
the form of

~xn11 ,yn11!5M m̄1dmn
~xn ,yn!. ~15!

Map ~15! is area preserving. It further differs from~10! not
only in the nonadditive character of the noise, but more i
portantly in the fact thatall advected particles feel thesame
realization of the flow at a given instant of time, while th
additive noise in~10! is considered to be independent for a
particle. More generally, map~15! expresses the randomne
of the velocity fields, i.e., randomness in the Eulerian p
ture, while map~10! describes stochasticity in the advectio
process, i.e., in the Lagrangian picture for exactly perio
flows. They are both extensions of map~3! for different
types of random perturbations.

If the fluctuations of the parameters can be considere
be taken with astationaryprobability distribution, i.e., if the
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probability P(dm) of the parameter fluctuations is time-~n!-
independent, then mapMmn

is called arandom map. Note
that the particular form of the distributionP(dm) ~e.g.,
Gaussianity! does not need to be specified. The stationa
can be insured if the flow has some structural stability an
the observational time is sufficiently long. These criteria
met by the examples mentioned above.

The theory of random maps has been originally work
out in the context of dissipative systems,40 and applied to
flows in closed containers.41 This approach has recently bee
extended to advection in open flows42,43 which implies the
use of open area-preserving random maps. We note, in p
ing, that if the condition of stationarity is not fulfilled, i.e
either structural stability of the flow, or long observation
times are not available, the theory of random maps is
applicable. In such cases the advection dynamics is not
otic, and hence beyond the scope of the present article; h
ever, concepts of dynamical systems can usefully be app
to characterize such advection.44

The motion of individual particles in random maps is
‘‘random looking’’ as that of diffusive particles. By consid
ering howeverensemblesof particles which are in this cas
subjected to the same realization of the random flow, one
uniquely define chaos characteristics~like l, k, and K0),
which are to be treated as averages over all realizations~or
over sufficiently long times!. Perhaps even more surpri
ingly, tracer patterns converge towardsfractal objects, and
the analogs of the chaotic saddle, as well as of its manifo
can be defined. Moreover, for the information dimensionD1

of the analog of the unstable manifold Eq.~4! turns out to
remain valid.42,43 Thus, for ensembles of nondiffusive tra
ers, the behavior is very similar to that in time period
flows, and, in spite of the randomness, an exact fractal s
ing holdswithout any lower cutoff due to noise.@Note that
for ensembles of diffusive tracers described by map~10! the
fractality of droplet patterns is washed out below the cut
scales~12! or ~13!.# It is worth mentioning that advection b
random flows, especially by chaotically moving poi
vortices,43 is reminiscent to advection by two-dimension
turbulence,45 at least on finite time scales.

III. CHEMICAL ACTIVITY

We showed in the previous sections that the fractal
stable manifold is the avenue of long-time propagation a
transport of passive tracers in open flows. It is natural
expect that this object also plays a central role if the trac
are chemically active and can react with other tracers or w
the background flow. The problem of chemical reactions
imperfectly mixed flows attracts ongoing interest46,47and has
important applications to environmental chemistry.48

For our discussion let us assume that the activity of
advected particles is some kind of ‘‘infection’’ leading to
change of properties if particles come close enough to e
other. Particles with new properties are the products.
nondiffusive tracers, anenhancementof activity can be ob-
served around the chaotic saddle and its unstable man
since it is there where the active tracers spend the lon
time close to each other. Then, as the products are pass
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advected, they trace out the unstable manifold.~The en-
hancement of activity is meant in comparison with nonch
otic, i.e., stationary flows.!

To be specific, we consider a simplekinetic model49

where two passively advected particles of different kind u
dergo a reaction if and only if they come within a distances.
The distances is called thereaction range, and, as we see
later, can also be considered as a diffusion distance.
study ~cf. Refs. 50 and 51! an auto-catalytic processA1B
→2B in which componentA is the background material cov
ering the majority of the entire fluid surface. For compu
tional simplicity we assume that the reactions are instan
neous and take place at integer multiples of a time lagt.
Thus,s andt are the two new parameters characterizing
chemical process.

Figure 3 displays the results of a numerical simulati
showing the spreading of a small droplet ofB ~black! in the
course of time. The background is considered to be cove
by A ~white!. Note the rapid increase of theB area and the
formation of a filamental structure. After about four period
the chemical reaction takes on the period of the flow a
reaches asteady state. In this steady state, the reaction pro
ucts are apparently distributed in strips of finite width alo
the unstable manifold, and theB particles trace out a station
ary pattern on a stroboscopic map taken with the periodT of
the flow. On linear scales larger than an average widthe* the
B distribution is a fractal of thesamedimensionD0 or D1 as
the unstable manifold of the reaction-free flow.

Next we present a simple theory, a slightly extend
version of the one given in Refs. 50 and 51~where the un-
stable manifold was assumed to be a monofractal withD0

5D1). The basic observation is that after a sufficiently lo
time, the filaments of the unstable manifold will be cover
in narrow strips by materialB due to its autocatalytic pro
duction. The product is distributed on a fattened-up unsta
manifold. Let «n denote the average width of these stri
right before reaction takes place. The effect of the reactio
then a broadening of the width by an amount proportiona
the reaction ranges: «n→«n1cs. Herec is a dimension-
less number expressing geometrical effects. It turns out to
slightly time dependent, but for simplicity we consider it
be constant in what follows. In the next period of lengtht
there is no reaction, just contraction towards the unsta
manifold. Therefore, the width«n11 right before the next
reaction can be given as

«n115~«n1cs!e2lt. ~16!

This is a recursive map, for the actual width of theB-strips
on snapshots taken with multiples of the time lagt. Its so-
lution converges to the fixed point

«* 5
cs

elt21
. ~17!

In the time-continuous limitt→0, s→0, but keepings/t
[v r constant, one obtains the differential equation:

«̇5cv r2l«. ~18!
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FIG. 3. Time evolution of autocatalytic tracers is shown at the time instancest50,
2
5,

3
5,1,

7
5,

8
5,2, and 10. The initial droplet is the same as in Fig. 2. The patt

traced out after reaching the stationary state is a fattened-up copy of the unstable manifold, which is the skeleton of activity. The chemical modelrameters
ares50.005 andt50.2. The simulation was performed on a rectangular grid of size 0.005.
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Herev r can be interpreted as a reaction velocity. The re
tion is tending to broaden the width, while convergence
wards the unstable manifold produces shrinking. These
effects are competing, and when compensating each o
they lead to the steady solution

«* 5
cv r

l
. ~19!

At this point, it is worth making a comparison to th
effect of diffusion in reaction-free flows. Both reaction an
diffusion lead to a broadening, expressed in the simila
between Eqs.~11! and~16!, ~14! and~18!, and also between
the steady state results~12! and ~17!, ~13! and ~19!. The
latter suggest the correspondenceD↔s2/t in the discrete
time version, andD↔v r

2/l in the continuous time limit.
This implies that the reaction range or reaction velocity pla
a similar role as diffusion in reaction free flows. Note, ho
ever, that in contrast to the latter case, there isno dilution in
the chemical model due to the reaction.

An important consequence of the«-dynamics is the time
evolution of the areaAB occupied by particlesB in a fixed
region of observation. This area scales asA B'e22D1 with
-
-
o
er,

y

s

D1 as the information dimension of the unstable manifo
@cf. the derivation of~4!# for any box sizee not shorter than
the width « of the B-strips. We can thus choosee5«
'AB

(1/(22D1) , and rewrite~18! so that it represents an equ
tion for the area:

ȦB52kAB1c
kv r

l
A B

2b . ~20!

Here

b[~D121!/~22D1!5
l2k

k
5

K1

k
~21!

is a nontrivial exponent. Since the manifold’s dimension l
between 1 and 2, andK1.0, the exponentb is typically
positive. ForD05D151 the differential equation~20! de-
scribes a classical surface reaction along a line with fr
velocity v r in the presence of escape. For 1,D1,2 it rep-
resents a novel form of reaction equations containing als
negative power of concentration due to the fractality of t
unstable manifold. Such processes are generalization
classical surface reactions.33 The enhancing reaction term
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with a negativepower of the area occupied byB is due to the
fractality of the unstable manifold. The lessB material is
present, the more effective the reaction is, because the
solved perimeter is larger. Thus the manifold effectively
creases the free surface area where the reaction takes
and thus acts as acatalyst.

Let us finally sketch how the effect of molecular diffu
sion would modify the results. In such a case one expects
combination of~14! and ~18! to hold, i.e., the differential
equation

«̇5cv r1
D

«
2l« ~22!

for the width of theB-strip covering the unstable manifold
HereD is the molecular diffusion coefficient. This equatio
also possesses a steady-state solution with a constan«* .
Around this state the solution is similar to that of~18! with
an effective reaction velocity

v r ,eff5v r1
D

c«*
. ~23!

Thus close to the steady state, the inclusion of diffusion o
renormalizes the effect of the reaction velocity.

Alternatively, one can also consider the stochastic v
sion of ~18! by adding a Gaussian white noise termj with
autocorrelation strength 2D to the right-hand side. The sam
derivation which led to~20! then yields~see also Ref. 51!

ȦB52kAB1
k

l
A B

2b~cv r1j!, ~24!

which is a nonlinear Langevin-type equation with multip
cative noise. This indicates that on the macroscopic level,
the total area ofB, the noise appears in a nontrivial fashio
and its effect is enhanced by fractality via the prefac
A B

2b .

IV. BIOLOGICAL ACTIVITY

Our discussion on chemical reaction in open flows c
be naturally extended to population dynamics models p
vided the species’ advection can be approximated with
passive tracer model. In such cases, we expect that diffe
species accumulate along the unstable manifold of the
sive advection problem. Here we consider a particular pr
lem of several different species competing for the same
source. According to the classical theory, the number
coexisting species can at most be equal to the numbe
independent resources, if the environment is well stirred
homogeneous.52 It is well known that in plankton communi
ties the number of coexisting species can be much la
than that of the resources. In the wake of an obstacle
expect that several species can coexist in spite of compe
for a single resource. This would be again a deviation fr
classical results due to the fractality of the unstable manifo
In fact, our model53 may also shed some new light on th
apparent contradiction between empirical and theoret
studies, sometimes called the ‘‘plankton paradox.’’52

Our competition dynamics for a single background m
terial A is a simple model of replication and competition wi
re-
-
ace

he

ly

r-
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point like particles~species! of type B and C. There is a
constant inflow of materialA into the system on the entir
surface of the flow. SpeciesB (C) catalyzed by materialA
reproduce instantaneously at time intervalst only if their
centers come within a distancesB (sC) to particles of type
A. Due to the open character of the flow, the particles will
drifted downstream, therefore leaving the mixing region
the wake with escape ratek. In addition, there is a sponta
neous decay of individuals toA with mortality ratesdB and
dC . Two autocatalytic processesA1B→gB2B, B→dBA and
A1C→gC2C, C→dCA describe thus replication and comp
tition. Material A is the common limiting resource for bot
speciesB andC.

In our numerical experiment, we place two droplets
organisms from speciesB andC into the flow in front of the
cylinder. We find that both speciesB andC are pulled onto
the unstable manifold of the chaotic set, as their initial po
tions overlap with its stable manifold. Thus, both speciesB
andC are trapped in the wake, and are accumulated along
filaments of the fractal unstable manifold. This leads to
enhancement of their activity, with both of them having i
creased access to the backgroundA for which they compete.
Along the fractal unstable manifold,B and C can be sepa-
rated quite efficiently by filaments ofA. Due to the imperfect
mixing, the competition is reduced by spatial separation a
the survival is catalyzed by increased access to materiaA.
This leads to the coexistence of the competing species f
wide range of parameter values.

Figure 4 shows a series of snapshots of the organism
the region of observation from the insertion of the droplets
time t50 to time t520. The filamental structure shown i
Fig. 4 is reminiscent of the patterns found in mesosc
plankton models.54–58

Note that in the asymptotic state speciesB covers the
surface of the cylinder, while speciesC occupies mainly the
wake. This shows that the actual number of individuals d
not only depend on the parameters but also on the in
conditions. The mere fact of coexistence is, however, in
pendent of these in a broad range.

V. CONCLUDING REMARKS

Finally we summarize those features of the chemical a
biological activity which we believe are generally valid
typical open flows.

~i! Active processes take place around the unstable m
fold of the passive advection’s saddle. If the pass
advection is chaotic, the manifold is a fractal and co
sequently active processes also lead to fractal p
terns.

~ii ! Although the fractal manifold is of measure zero, d
to the chemical reaction~or population dynamics! the
amount of active tracers covering this manifold is
nite. This implies that the fractality can be observ
on length scales larger than the average width of
fattened-up manifold.

~iii ! On one hand, the fractal skeleton results in an
crease of the active surface and acts as a catalys
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FIG. 4. ~Color! Time evolution of two competing species is shown at time instancest50,
2
5,

3
5,1,

7
5,

8
5,2, and 20. The initial position of speciesB ~green! and

C ~red! is a square of linear size 0.1 centered aroundx522.5, y520.05 andy50.05, respectively. The initially small droplets of speciesB and C are
eventually pulled along the unstable manifold. The stationary state is reached after a short time: the last two snapshots~taken att52 andt520) are almost
the same. SpeciesC ~red! occupies also the boundary layer around the cylinder, whileB ~green! is trapped mainly on the chaotic set in the wake. The mo

parameters aresB5
1

150, sC5
1

300, dB50.5, dC50.0001, andt5
1
5. The simulation was performed on a rectangular grid of size 0.001.
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the growth process. On the other hand, different s
cies are separated efficiently along the fractal ma
fold decreasing competition.

~iv! The derivation of reaction~or population dynamics!
equations is similar to that of the macroscopic tra
port equations from microscopic molecular dynami
The presence of the ever-refining fractal structu
generates new terms in the macroscopic equatio
leading to interesting new effects like singular sour
term in the reaction equation.

~v! The macroscopic equations describing the active p
cess typically reach a steady state synchronized w
the background flow’s temporal behavior. If mo
than one species is present, coexistence is typica
the steady state for a wide range of parameter valu

We emphasize that our method of studying activity
open flows is based on a fullydeterministicapproach of pas-
sive advection. It is described by means ofordinary differ-
ential equations. Nevertheless, we are able to study com
-
i-

-
.
s
s,

-
th

in
s.

ex

spatial patternswhich is due to the fact that the phase spa
of Eqs.~1! and~2! coincides with the geometrical space~the
only example of this sort to our knowledge!. In order to see
these spatial patterns we useensemblesof particles, corre-
sponding to droplets in the hydrodynamical context.
pointed out here, even effects similar to that of diffusion c
be described by the inclusion of an interaction range or
action velocity. In this approach Lagrangian characterist
like Lyapunov exponents, entropies, and dimensions see
be natural parameters of the processes. It is of interest to
how this approach is related to the more traditional o
based onpartial differential equations describing reaction
advection-diffusion effects, and carrying Eulerian paramet
like shears or diffusion~see e.g., Refs. 46, 48, and 56–59!.
This problem clearly needs further investigation.
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