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Many examples of chemical and biological processes take place in large-scale environmental flows.
Such flows generate filamental patterns which are often fractal due to the presence of chaos in the
underlying advection dynamics. In such processes, hydrodynamical stirring strongly couples into
the reactivity of the advected species and might thus make the traditional treatment of the problem
through partial differential equations difficult. Here we present a simple approach for the activity in
inhomogeneously stirred flows. We show that the fractal patterns serving as skeletons and catalysts
lead to a rate equation with a universal form that is independent of the flow, of the particle
properties, and of the details of the active process. One aspect of the universality of our approach

is that it also applies to reactions among particles of finite @aecalled inertial particles © 2004
American Institute of Physics[DOI: 10.1063/1.1626391

Environmental processes of biological and chemical na-
ture, like the plankton blooming in the oceans? and the
ozone depletion in the stratospheré;* occur within fluid
flows. The study of such processes is of importance in a
broad range of fields including chemistry>=° population
dynamics® geophysics, atmospheric sciencé$*® and
combustion* Many chemical and biological species are
immersed in a dynamic environment typically character-
ized by a time-dependent flow which advects and stirs the
species. Because the advection dynamics is oftéha-
grangian) chaotic, the application of the theory of dy-
namical systems to hydrodynamical advection
problems'> 1’ sheds new light on the reactive dynamics
and on the production efficiency in such flows. As a result
of the chaotic dynamics, fractal patterns are present, and
the product distribution of the reactive process becomes
concentrated along these patterns. There is evidence that
such a filamental structure is indeed present in the distri-
bution of active species in oceanic and atmospheric flows,
such as the one shown in Fig. 1. In this article, we develop
a description for active processes in flows with such struc-
ture. Our results imply that the character of a reaction
can drastically change if it takes place in a time-
dependent flow. A reaction which spreads over the whole
space in a well mixed container can lead to a pattern
formation of a new type: the product is asymptotically
distributed around a filamental fractal which moves in a
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rhythm corresponding to the time dependence of the flow.
In a periodic case, the total amount of product is thus
oscillating around a mean: a kind of limit-cycle behavior

sets in. This pattern formation is due to the interplay of

the chaotic particle motion produced by hydrodynamics
and the production of the new patrticles by the reaction.
In particular, we show that the theory is also valid if the

reaction takes place with inertial particles, i.e., with par-

ticles of small but finite size whose density differs from
that of the surrounding fluid.

A standard approach to describe active processes in
flows is based on the use of advection—reaction—diffusion
equations. The basic required assumption, from the Eulerian
hydrodynamical point of view, is thdahe active species be-
have as fluid particlesand as such, their distribution can
faithfully be described by smooth concentration fields. As a
simple example, consider an autocatalytic reaction
A+B—2B in which an unlimited amount of component A is
present. In a homogeneously mixed environment, the reac-
tion equation isdb/dt=kab, wherea and b stand for the
respective A and B concentrations akg the reaction rate.

If the concentrations of A and B are not homogeneous in
space, diffusion plays a role, and the reaction outcome is
described by a partial differential equation:

b
—r +(u-V)b=kab+ kAb, 1)
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FIG. 2. Local reaction-advection dynamics on a filamental segment.

a fractal dimensiorD in the physical space of the fluid for
the reaction-free advection problem. This fractality means
that, after some transient tinfeeacting or nonreactingoar-
ticles accumulate along zero-width filaments of a
FIG. 1. (Color onling Filamentation in a phytoplankton bloom in Norwe- D-dimensional fractal set in the fluid. There are some pieces
gian Sea(provided by the SeaWiFS Project, NASA/Goddard Space Flightof evidence that suggests the presence of such filamental
C_enter, and ORBIMAGE, URL: http://visibleearth.nasa.gov/cgi-bin/ fractal sets in a variety of processes taking place in fl5ws.
viewrecord?5278 .. . .
There are two distinct dynamical origins for such fractal sets.
The better known of them is the presence ofclaaotic
attractor’”*2~%8n the inertial problems. The other possibility
where« is the diffusion coefficient and is the velocity of s for the advection dynamics to exhiliansient chaog?~*°
the fluid (anda is the fixed concentration of the component which can be associated with chaotic saddles in the advec-
A). This is the advection—reaction—diffusion equation, intion dynamics of either the inertial or noninertial problems.
which the presence of the advection term Y)b indicates The fractal filaments align along the unstable direction,
that, in this approach, the advection of particles must takevhere stretching takes place, and across these filaments, con-
part with the fluid velocityu. Although this approach is ca- traction occurs. In typical chaotic systems, this contraction is
pable of describing a filamentation procé$s’! it might  exponential in time with some contraction rate-0. In the
break down if strong clusterization takes pl#c€ as in the  language of dynamical system theory,\ is the largest
case where inertial effects of the advected reacting particleamong the contracting Lyapunov exponents of the advection
are included. dynamics which, of course, depends on the flow's hydrody-
Inertial effects are due to the fact that the active particlesxamical characteristics and the particle’s inertial properties.
areof finite size and they can béeavier or lighterthan the  This means that a typical distance &fcross the filaments
fluid. This is the case with aerosol particles or cloud rainshrinks with a velocity—\ 6.
droplet$* in the air (heaviej and with gaseous bubbles in In what follows we restrict our attention to autocatalytic
fluids or some species of phytoplankton in oceéighter). reactions which occur often in natutdsor such processes,
Such particles, due to viscosittokes drag try to follow  the reaction typically propagates in the form of froftise
the surrounding fluid, but typically diverge from the fluid stable B phase propagates into the unstable A phagh
trajectory”>~3*The inertial effect alone is a source of chaotic relatively sharp boundaries, since the effect of diffusion is
behavior?"*¢~%|n general, because of viscosity, the dynam-rather weak on the length scales of intef8dn the simplest
ics of inertial particles is dissipative and it is characterized byapproximation, both ozone depletion and plankton blooming
the presence of attractors. An attractor embodies the generean be described by front propagation of this type. Further
tendency towards accumulation or clusterization of inertialexamples are the Belousov—Zhabotinskii reaétiand the
particles (see Appendix A As a result, the advection— propagation of flame®
reaction—diffusion equatiofl) is no longer validfor the Many real examples of environmental flows are essen-
inertial active particles since the particle motion differs fromtially two dimensional, and thus we restrict ourselves here to
that of the surrounding fluid. A partial description in terms of the case wher® is between 1 and 2. The flow has a clean
concentration is available, but only for the continuity equa-fractal structure whem is well defined and it is different
tion and the diffusion equatioi;** or in the limit of small  from both 1 and 2. We note, however, that a similar treatment
inertia®*! which can only be a starting point for more gen- is applicable even to a three-dimensional flow with fractal
eral problems. At present, it is unknown whether an equainvariant manifolds, since the arguments below are quite
tion, analogous to Eq(l), exists at all for active inertial general.
particles. This fact alone calls for an alternative description  Consider a blob of B-particles in a region of interest.
of the global kinetics of the active species. After some time, material B will be distributed along fila-
Herewith we present an approach that can successfullgnents in bands of average width Consider now aingle
be applied to describe the kinetics of active particles in dilamental segment on the underlying fractal, covered by a
flow. The idea is to determine the total number of particles oband of B-particles with the average width &fas illustrated
a given constituent in a macroscopic range of the fluid aftein Fig. 2. The width of the band decreases at the raied
some time, and show that this quantity fulfils a kind of but there is, due to the reaction, also an increase of it. Ap-
simple rate equation. proximating the local reaction front velocity by its average
The essential ingredient of our theory is the existence ofaluev,, the rate of increase of the width i 2. Thus, the
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time derivatives=ds/dt of the width is given as B= —¢,B+cv,B7A,

8=—\6+2v,. (20 wherec, andc, are positive coefficients independent of the

. . . : . tive process. The novel feature of this equation is the
This simple differential equation expresses the competitioflo 2o Ve, .
P d b b singularity of the termP(B). It states that the smaller is the

of two effects: the exponential contraction towards the un-

derlying fractal, and the linear expansion due the autocatdumper of B-particles, the higher is the production. This pe-

lytic process, which could be regarded as a kind of “infec-?Zgarnscna“rg%rpggf er ?;:‘r;isr%drugtl?gcig] thcasngﬁine:{'(zrll-
tion.” After some transient time, this competition leads to a \ed in n ! imufati u i : I

d 4=0) ch red by the fixed Do | particles*~“°Here we emphasize that these resultsvale
sbiea 2y S‘/tste &=0) characterized by the fixed point value for inertial particlesas well. Figure 3 shows the results of
=2v,/\.

the numerical simulations for finite-size active B-particles in

The basp op;ervatlon is that on any f|Iam§ntaI segmené simple two-dimensional cellular flow field, given by the
accumulates infinitely many other segments, since they for tream function

a fractal set. However, after the spreading of the material
along any one of these fractal segments, there is a fattening (x,y)=[1+ksin(wt)]sinx siny, (6)

up of the segments and we can assume that these bands arﬁ K and h litud q lar ¢
similar to the typical one just been treated above and hav}%: erex andw are the ampiitude and angular r?q“?g‘gcy ©
the temporal oscillation of the flow field, respectivély:

bandwidthé. Then, the number of B-particle bandbserved

to cover the segments with an average instantaneous Width The universality of our description is grounded on the
is finite. The union of all bands of B-particles, covering the 9ENeric property of a filamental fractal that the perimeter

fractal filaments, appears to be a fractal on length scale@ngth of its finite-width Ccoveragecreasesas the.area of
aboves, but it is a two-dimensional object below this cross- coverage decreases. This relationship leads to singularly en-

over scale. Let us consider a fixed region that contains thE"’mce_d reactivity. In order to see this, let us derive the rela-
filamental fractal bands. According to the fractal tionship be_tween the observeq perimeter Ien_gﬂand the
geometry?®5° the minimal numbem of boxes needed to areaA of flla_lmental fractals. Smc_e the covering of such a
cover a fractal set of dimensidh with boxes of linear size fract%l set with small squares of linear sizeequiresN(e)

is proportional toe ~°. By using the actual widths of the such squares, and since two of the four edges of each
B-coverage as the box size € ), the number of boxes box_ typically belqng to thg penmeEeDr of the coverage, the
needed to cover the fractal filaments in the region of obserpermemr Iengt_h Is proportional ml andincreaseswith
vation isN(8)~ 6~ P. The symbol~ indicates the presence refining rgsolunon .D>1) (ZsieDe Fig. 4. On the .other_h.and,

of a proportionality geometric factor not written out explic- the area s proportional ta , gnddecreasesvlth refmmg

itly. The total area covered by the B-particles is thereforeres‘zlué'on D<2)2-7|S>y eliminating s from the relationst
N(4) times the are@? of a single box, oB?N(4), whichis ~ ° andA~&""", we find that

proportional tos?~P. Although the number of B-particles in L~A"B 7
each box may vary along the filaments due to the stretching

and folding action of the advection dynamics, the averagaVith 8 as given by(5). Thus, the perimeter length is, at any
number of particles in each box will saturate, since the numsmall resolution, aegativepower (- B) of the are&" (Note

ber of A-particles available in each box is limited. It is then that for classical nonfractal objects, e.g., a sphere or a cube,
natural to assume that the aré& ° is proportional to the ~One hasC~.A™2 which is nonsingular since the exponent is

number Bof the B-particles in a given region of observation, Positive) In view of this, the production terr in (3) can be
i.e., B~&2"P. The time derivative of the total number of interpreted as the expression for the fact that the reaction

takes place along the perimeter of the fattened-up filamental
fractal seen at resolutiof Since the peculiar relationsh{p)

is purely geometrical, it does not depend on the precise na-
ture of the activity. Similar singular terms appear in the equa-
tion for other types of activity as welf:*°

B-particles isB~(2—D) 5" P35, where s can be obtained
simply by substituting it fron{2). Thus,B can be written as
the sum of a(negative loss term—L and a(positive pro-
duction termP:

B=P(B)—L(B), (3) In summary, the fractal filaments of the advection prob-
lem act as dynamicatatalystsfor the reactions. The rate

where equation(3) has auniversalcharacter, as its form does not

L(B)=\(2—-D)B, P(B)=cv,(2-D)B# (4)  depend either on the particle, flow or reactivity properties.

. ) . ) . Fundamentally, the exponeftcharacterizes the geometry of
with ¢ as aB-independent geometric factéwhich might  the reaction-free chaotic advection. The singular productivity
depend on the location and the size of the region of obselisappears foD =1, representing a flow in which the fila-

vation), and ments do not form a fractal, and the advection is conse-
D—1 quently nonchaotic.
Bzﬁ' (5 Equation (3) describes the competition of two effects:

contraction and production. As a result of the balance be-
The exponent of the production term is always negative sincéwveen these effects, steady statesets in after sufficiently
1<D<?2 (B is positive. Thus, the overall structure of the long time for the global distribution of the B-particl¢see
rate equation is Figs. 3c) and 3d)]. This steady state is synchronized to the
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FIG. 3. (Color) Autocatalytic inertial particles advected by a two-dimensional flow field of counter-rotating array of vortices with time-periodic ifEefsity

27), given by the stream functia®) with o= 7r. The flow can be regarded as a model of the arrangement of eddies in a vertical plane of the lower atmosphere
or the upper ocean. The parametemeasures the amplitude of oscillation of the strength of the vortiegsib) Chaotic sets in the advection dynamics of

the nonreacting inertial B-particle&) chaotic attractor K=0.53) and(b) chaotic saddle responsible for transient chdos @.524). The small rectangle at

the top of the panelb) is magnified in the inset to show the small scé@antor-like structure of the saddle. The other parameters arelStv=1.7, and
w=—3.934 (see Appendix A (c), (d) Distribution of the product particles after a sufficiently long time=@00 periods of the flow field Fractal
filamentation is caused by the chaotic attractaicirand by the chaotic saddle {d). Only a single vortex cell of0,7]X[0,7] is shown and the gravity points
downward in(a)—(d). The color coding represents the density of B-particles, in which darker colors correspond to higher density. The density of B-particle is
bounded in this simulatiofRef. 36. Note that in(d) the product is distributed not along the chaotic saddle but along its unstable mathldifference
between the saddle ifi) and the unstable manifold seen(i) is apparently small, partly because they are projected onto the two-dimensional configuration
spacé. The initial condition is a small blob of B-particle®), (f) The total numbeB* of the B-particles in the steady state vs the reaction velagiip the

case of the chaotic attractor {®8) and the chaotic saddle iff). The full line corresponds to the IB*~vr2’D predicted by the theorjsee Eq.(8)]. For
reference, thd* ~v, line is shown as a dashed line, which corresponds to a nonchaotic Rastk)(

flow, i.e., it takes over the time dependence of the flow and in  Remark I Production vs diffusivityBecause the reaction
general follows the hydrodynamical time dependence manifront velocity v, is knowr??>® to be proportional to the

fested in the parameter. In the case when the time depen- square root of the diffusion coefficiert we obtain from(8),
dence of parametear is weak, the steady state value of the

1-D/2
number of particles is B*~« :
cv.\2°D The amount of particles produced is proportional to the frac-
B* = (Tr ~§*27 P, (8)  tional power (1 D/2) of the diffusion coefficient. This re-

lation for diffusive particles has been derived using an Eule-
The scaling is uniqueB* is proportional to the power (2 rian approach in Refs. 4 and 12. Our arguments herewith
—D)<1 of the reaction velocity. This means that the num-imply that it is in fact valid for active inertial particles as
ber B* of particles decreases by a factor smaller than thavell, providedv,~ 2.

factor by which the reaction velocity decreases. For example, Remark Il: Dependence of production on resolutibat

if v,~10"4, the value ofB* with D=1.5 is two orders of us now consider the production tefy but for simplicity, in
magnitude larger than that for the traditional active processhe steady state. Assume that this production is measured
whereD = 1. Equation(8) is confirmed in Figs. @) and 3f) with a resolutione worsethan the crossover scale length,
for inertial particles whose dynamics possesses a chaotic ate., ¢>6*. Since the production is proportional to the

tractor and transient chaos, respectively. perimeter length seen with the resolution used, we have
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FIG. 4. Schematic diagram illustrating tlredependence of the perimeter

length £ and the aread of a filamental fractal, when observed with resolu-  F|G. 5. The definition of the exponent*) for a given resolutiors* .
tion e.

decades of resolution. This is the case, for example, for the
P(e)~el P, (9)  plankton growtht® or for the deactivation process of the
ClO-rich polar air by the N@rich air in the mid-northern
latitudes, which can suppress the depletion of oZo@air
treatment can be carried out in this case with an exponent
v(e=6*) replacingD, wherey(e) is defined as the slope of

The exact amount of productidd(5*) is, however, propor-
tional to *1~P. The ratio of the observed, coarse-grained
amount of production to the exact one is thus

P(e) z(ﬁ)D_l (10) the InN(g) vs In(1k) curve(see Fig.
P(&*) \e dInN(e)
By improving the resolutior{decreasing: to 5*) the ratio v(e)=-— dine

moves towards unity. This dependence is not present at all inh i ) hich Id be the |
the nonchaotic case whef@=1. Therefore, we conclude The exponenty is a quantity which wou € the Tractal

that the increase of productivity with increasing resolutiond'mens'onD i th? exact scalmg\l(.s)~s' D, holds W't,h a
observed earlier in simulations of environmental constantD. Equationg3)—(11) remain valid if we substitute
problemé*>* is describable by the equation derived in this D—y(5*).

paper. Our results show that this effect is present even Whelq
the description of the hydrodynamical flow field is complete,
in contrast to the similar effect reported befdr& which
may be due to incomplete knowledge of the flow field. Al-
though previous studids? treat only noninertial particles, it
follows from our approach that this behavior must be presen
in the inertial problem as well.

Remark Ill: Enhancement factoln a nonchaotic flow,
the average widtld* of B-particle bands in the steady state
is proportional tov, /\. The enhancement factor relative to
the nonchaotic case is thus

B*(D) [ Ur

B*(D=1) |\

Since §* is typically much smaller than the characteristic
length scale of the flowichosen here to be unitythere is

always a considerable enhancement due to the chaoticity
the advection dynamicgecall 1-D<0).5®

ote, however, that, in contrast to the case of a clear fracta-
lity, the use of our theory in this case requires the knowledge
of the steady state widtl?* and the assumption th& is
close to its steady state vallB* so thaty(5*) stays ap-
?roximately constant over time. We observe that the expo-
nentvy, relevant for reactions, can be different from the exact
dimension of an underlying fractal set, even when such a
quantity existgsee Appendix B
Conclusions Starting from a particle-based “micro-

scopic” picture, we derived, by applying elementary rules of
the fractal geometry, a novel type of rate equation in which
the production term does not follow the principle of
“mass-action”®® well known from thermodynamics. In fact,
these processes are much further away from thermal equilib-
rium than traditional reactions since they do not fill the con-
figuration (or phase space. The problem treated here pro-

des a clean example of a feature we believe to be general:
whenever a transport process is concentrated on a fractal set

. . ; ! NG the configuration space, the correspondiamsport equa-
nature of reaction(autocatalytic, bistable, excitable, ofc. tion deviates substantiallfrom the one known from irre-
that is, whenever the product is distributed in bands along/ersible thermodynamics

filaments of a fractal set, Eq&3)—(11) hold.
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APPENDIX A: EQUATION OF MOTION FOR INERTIAL Y(e)
PARTICLES 1.8
For small spherical particles of finite size, the particle
velocity v=dr/dt (r is the position of the particjetypically 17
differs from the fluid velocityu. The equation of motion is 10° 1071° 107
given by Newton’s second law: the force causing the relative €

accelerationdv/dt—du/dt [du/dt=du/dt+(u-V)u] be- ) )
. A . . .. FIG. 6. The exponeny as a function of the observational scaldor the
tween the particle and the fluid is due to the viscous frictiongamental fractal constructed in Appendix B, which models fractals ob-

and, in the gravitational field, due to buoyancy. The formerserved in typical nonhyperbolic systems.

the so-called Stokes drag, is proportional to the velocity dif-

ferencev—u, and vanishes for pointlike particles. The latter . _ o _
is proportional to the density differen@®,arice— Cfia- The hyperbolic chaotic systems, the relative size of removed in-

dimensionless form of the equation of motion read&3957  tervals at each step is not constant, but, for example, is in-
versely proportional to the number of steps in the

ﬂ_ad_uz v—u (A1) constructior?® In this case, the limit set in the two-
dt dt St ' dimensional space is a fractal set of dimension two. How-
ver, the exponent at resolutiore is smaller than 2 and can

Here St>0 is the Stokes number, the dimensionless deca;Ze approximated by

time due to the Stokes drag, (positive for heavy particlgs

is the dimensionless buoyancy force acting in the vertical
direction, andn denotes the vertical normal vector pointing y(e)~2— In(Ts)

upward. The coefficientt>0 expresses the fact that a finite ]

size particle brings into motion a certain amount of fluid The exponenty converges very slowly to the exact dimen-
proportional to its volume. The noninertial particle dynamicsSion 2 and it is quite different from the limiting value, even
is recovered when the particle radius vanishes, which corrd0r unrealistically small scales, as shown in Fig. 6. A similar
sponds to the limit St-0. In this limit, the advection dynam- behavior for the exponent s also expected in the presence

ics is governed by of small dissipation due to inertial effects™ If a reactive
process takes place in such a nonhyperbolic advection dy-
_d_r_ namics,D in (3)—(11) must be replaced by the exponent
v=—=u(r,t). . .
dt v(e=6) in a self-consistent manner.

The general inertial dynamic4Al) possesses a four-

dimensional phase space,y,v,,v,) even for planar sta- lE-IR- Abéé}hgmﬁ Na_tur(aLF?ndor;)e 321 57L7(1d998>:S Aei Eéalcggégoi’)gvzn—
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space volume contracts at the rat€/St, which is always E';AAgagam-’ C-N S-t LZ‘I’_Vv P(-jV\r; ‘B‘rg;’dv?; (JZ-OLOES’e”deﬂ M. T. Maldonado,
. . . . . . an . R. bowie, NatureLondo f .

negatlvg, in contrast to the_ non_lnertlal case which is volumegs_ Edouard, B. Legras, . Lefevre, and R. Eymard, Natuoador) 384

preserving. The fractal object in the full phase space must 444 (1996.

have a dimension less than 2, if one wishes to keep its frac?A. Wonhas and J. C. Vassilicos, Phys. Re\6% 051111(2002.

tality in the projection onto the configuration space of the G- Metcalfe and J. M. Ottino, Phys. Rev. Lele, 2875(1994.
I. R. Epstein, NaturéLondon 374, 321(1995.
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8M. Menzinger and P. Jankowski, J. Phys. Chef, 1217 (1986; M.
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FRACTAL DIMENSION inger, ibid. 101, 2304(1997. ;
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