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Many examples of chemical and biological processes take place in large-scale environmental flows.
Such flows generate filamental patterns which are often fractal due to the presence of chaos in the
underlying advection dynamics. In such processes, hydrodynamical stirring strongly couples into
the reactivity of the advected species and might thus make the traditional treatment of the problem
through partial differential equations difficult. Here we present a simple approach for the activity in
inhomogeneously stirred flows. We show that the fractal patterns serving as skeletons and catalysts
lead to a rate equation with a universal form that is independent of the flow, of the particle
properties, and of the details of the active process. One aspect of the universality of our approach
is that it also applies to reactions among particles of finite size~so-called inertial particles!. © 2004
American Institute of Physics.@DOI: 10.1063/1.1626391#

Environmental processes of biological and chemical na-
ture, like the plankton blooming in the oceans1,2 and the
ozone depletion in the stratosphere,3,4 occur within fluid
flows. The study of such processes is of importance in a
broad range of fields including chemistry,5–9 population
dynamics,10 geophysics, atmospheric sciences,11–13 and
combustion.14 Many chemical and biological species are
immersed in a dynamic environment typically character-
ized by a time-dependent flow which advects and stirs the
species. Because the advection dynamics is often„La-
grangian… chaotic, the application of the theory of dy-
namical systems to hydrodynamical advection
problems15–17 sheds new light on the reactive dynamics
and on the production efficiency in such flows. As a result
of the chaotic dynamics, fractal patterns are present, and
the product distribution of the reactive process becomes
concentrated along these patterns. There is evidence that
such a filamental structure is indeed present in the distri-
bution of active species in oceanic and atmospheric flows,
such as the one shown in Fig. 1. In this article, we develop
a description for active processes in flows with such struc-
ture. Our results imply that the character of a reaction
can drastically change if it takes place in a time-
dependent flow. A reaction which spreads over the whole
space in a well mixed container can lead to a pattern
formation of a new type: the product is asymptotically
distributed around a filamental fractal which moves in a

rhythm corresponding to the time dependence of the flow.
In a periodic case, the total amount of product is thus
oscillating around a mean: a kind of limit-cycle behavior
sets in. This pattern formation is due to the interplay of
the chaotic particle motion produced by hydrodynamics
and the production of the new particles by the reaction.
In particular, we show that the theory is also valid if the
reaction takes place with inertial particles, i.e., with par-
ticles of small but finite size whose density differs from
that of the surrounding fluid.

A standard approach to describe active processes in
flows is based on the use of advection–reaction–diffusion
equations. The basic required assumption, from the Eulerian
hydrodynamical point of view, is thatthe active species be-
have as fluid particles, and as such, their distribution can
faithfully be described by smooth concentration fields. As a
simple example, consider an autocatalytic reaction
A1B→2B in which an unlimited amount of component A is
present. In a homogeneously mixed environment, the reac-
tion equation isdb/dt5kab, wherea and b stand for the
respective A and B concentrations andk is the reaction rate.
If the concentrations of A and B are not homogeneous in
space, diffusion plays a role, and the reaction outcome is
described by a partial differential equation:
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wherek is the diffusion coefficient andu is the velocity of
the fluid ~anda is the fixed concentration of the component
A!. This is the advection–reaction–diffusion equation, in
which the presence of the advection term (u•¹)b indicates
that, in this approach, the advection of particles must take
part with the fluid velocityu. Although this approach is ca-
pable of describing a filamentation process,18–21 it might
break down if strong clusterization takes place22,23 as in the
case where inertial effects of the advected reacting particles
are included.

Inertial effects are due to the fact that the active particles
areof finite size, and they can beheavier or lighterthan the
fluid. This is the case with aerosol particles or cloud rain
droplets24 in the air ~heavier! and with gaseous bubbles in
fluids or some species of phytoplankton in oceans~lighter!.
Such particles, due to viscosity~Stokes drag!, try to follow
the surrounding fluid, but typically diverge from the fluid
trajectory.25–35The inertial effect alone is a source of chaotic
behavior.27,36–38In general, because of viscosity, the dynam-
ics of inertial particles is dissipative and it is characterized by
the presence of attractors. An attractor embodies the general
tendency towards accumulation or clusterization of inertial
particles ~see Appendix A!. As a result, the advection–
reaction–diffusion equation~1! is no longer valid for the
inertial active particles since the particle motion differs from
that of the surrounding fluid. A partial description in terms of
concentration is available, but only for the continuity equa-
tion and the diffusion equation,39,40 or in the limit of small
inertia,30,41 which can only be a starting point for more gen-
eral problems. At present, it is unknown whether an equa-
tion, analogous to Eq.~1!, exists at all for active inertial
particles. This fact alone calls for an alternative description
of the global kinetics of the active species.

Herewith we present an approach that can successfully
be applied to describe the kinetics of active particles in a
flow. The idea is to determine the total number of particles of
a given constituent in a macroscopic range of the fluid after
some time, and show that this quantity fulfills a kind of
simple rate equation.

The essential ingredient of our theory is the existence of

a fractal dimensionD in the physical space of the fluid for
the reaction-free advection problem. This fractality means
that, after some transient time~reacting or nonreacting! par-
ticles accumulate along zero-width filaments of a
D-dimensional fractal set in the fluid. There are some pieces
of evidence that suggests the presence of such filamental
fractal sets in a variety of processes taking place in flows.1–14

There are two distinct dynamical origins for such fractal sets.
The better known of them is the presence of achaotic
attractor27,32–38in the inertial problems. The other possibility
is for the advection dynamics to exhibittransient chaos,42–45

which can be associated with chaotic saddles in the advec-
tion dynamics of either the inertial or noninertial problems.
The fractal filaments align along the unstable direction,
where stretching takes place, and across these filaments, con-
traction occurs. In typical chaotic systems, this contraction is
exponential in time with some contraction ratel.0. In the
language of dynamical system theory,2l is the largest
among the contracting Lyapunov exponents of the advection
dynamics which, of course, depends on the flow’s hydrody-
namical characteristics and the particle’s inertial properties.
This means that a typical distance ofd across the filaments
shrinks with a velocity2ld.

In what follows we restrict our attention to autocatalytic
reactions which occur often in nature.6 For such processes,
the reaction typically propagates in the form of fronts~the
stable B phase propagates into the unstable A phase! with
relatively sharp boundaries, since the effect of diffusion is
rather weak on the length scales of interest.46 In the simplest
approximation, both ozone depletion and plankton blooming
can be described by front propagation of this type. Further
examples are the Belousov–Zhabotinskii reaction47 and the
propagation of flames.48

Many real examples of environmental flows are essen-
tially two dimensional, and thus we restrict ourselves here to
the case whereD is between 1 and 2. The flow has a clean
fractal structure whenD is well defined and it is different
from both 1 and 2. We note, however, that a similar treatment
is applicable even to a three-dimensional flow with fractal
invariant manifolds, since the arguments below are quite
general.

Consider a blob of B-particles in a region of interest.
After some time, material B will be distributed along fila-
ments in bands of average widthd. Consider now asingle
filamental segment on the underlying fractal, covered by a
band of B-particles with the average width ofd, as illustrated
in Fig. 2. The width of the band decreases at the rate2ld
but there is, due to the reaction, also an increase of it. Ap-
proximating the local reaction front velocity by its average
valuev r , the rate of increase of the width is 2v r . Thus, the

FIG. 1. ~Color online! Filamentation in a phytoplankton bloom in Norwe-
gian Sea~provided by the SeaWiFS Project, NASA/Goddard Space Flight
Center, and ORBIMAGE, URL: http://visibleearth.nasa.gov/cgi-bin/
viewrecord?5278!.

FIG. 2. Local reaction-advection dynamics on a filamental segment.
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time derivativeḋ[dd/dt of the width is given as

ḋ52ld12v r . ~2!

This simple differential equation expresses the competition
of two effects: the exponential contraction towards the un-
derlying fractal, and the linear expansion due the autocata-
lytic process, which could be regarded as a kind of ‘‘infec-
tion.’’ After some transient time, this competition leads to a
steady state (ḋ50) characterized by the fixed point value
d* 52v r /l.

The basic observation is that on any filamental segment
accumulates infinitely many other segments, since they form
a fractal set. However, after the spreading of the material
along any one of these fractal segments, there is a fattening
up of the segments and we can assume that these bands are
similar to the typical one just been treated above and have
bandwidthd. Then, the number of B-particle bandsobserved
to cover the segments with an average instantaneous widthd
is finite. The union of all bands of B-particles, covering the
fractal filaments, appears to be a fractal on length scales
aboved, but it is a two-dimensional object below this cross-
over scale. Let us consider a fixed region that contains the
filamental fractal bands. According to the fractal
geometry,49,50 the minimal numberN of boxes needed to
cover a fractal set of dimensionD with boxes of linear size«
is proportional to«2D. By using the actual widthd of the
B-coverage as the box size («5d), the number of boxes
needed to cover the fractal filaments in the region of obser-
vation isN(d);d2D. The symbol; indicates the presence
of a proportionality geometric factor not written out explic-
itly. The total area covered by the B-particles is therefore
N(d) times the aread2 of a single box, ord2N(d), which is
proportional tod22D. Although the number of B-particles in
each box may vary along the filaments due to the stretching
and folding action of the advection dynamics, the average
number of particles in each box will saturate, since the num-
ber of A-particles available in each box is limited. It is then
natural to assume that the aread22D is proportional to the
number Bof the B-particles in a given region of observation,
i.e., B;d22D. The time derivative of the total number of
B-particles isḂ;(22D)d12Dḋ, where ḋ can be obtained
simply by substituting it from~2!. Thus,Ḃ can be written as
the sum of a~negative! loss term2L and a~positive! pro-
duction termP:

Ḃ5P~B!2L~B!, ~3!

where

L~B!5l~22D !B, P~B!5cv r~22D !B2b ~4!

with c as aB-independent geometric factor~which might
depend on the location and the size of the region of obser-
vation!, and

b[
D21

22D
. ~5!

The exponent of the production term is always negative since
1,D,2 ~b is positive!. Thus, the overall structure of the
rate equation is

Ḃ52c1B1c2v rB
2b,

wherec1 andc2 are positive coefficients independent of the
reactive process. The novel feature of this equation is the
singularity of the termP(B). It states that the smaller is the
number of B-particles, the higher is the production. This pe-
culiar scaling property of the production term has been veri-
fied in numerical simulations for autocatalytic noninertial
particles.44–46Here we emphasize that these results arevalid
for inertial particles as well. Figure 3 shows the results of
the numerical simulations for finite-size active B-particles in
a simple two-dimensional cellular flow field, given by the
stream function

c~x,y!5@11k sin~vt !#sinx siny, ~6!

wherek and v are the amplitude and angular frequency of
the temporal oscillation of the flow field, respectively.36–38

The universality of our description is grounded on the
generic property of a filamental fractal that the perimeter
length of its finite-width coverageincreasesas the area of
coverage decreases. This relationship leads to singularly en-
hanced reactivity. In order to see this, let us derive the rela-
tionship between the observed perimeter lengthL and the
areaA of filamental fractals. Since the covering of such a
fractal set with small squares of linear size« requiresN(«)
;«2D such squares, and since two of the four edges of each
box typically belong to the perimeter of the coverage, the
perimeter length is proportional to«12D and increaseswith
refining resolution (D.1) ~see Fig. 4!. On the other hand,
the area is proportional to«22D anddecreaseswith refining
resolution (D,2). By eliminating « from the relationsL
;«12D andA;«22D, we find that

L;A 2b ~7!

with b as given by~5!. Thus, the perimeter length is, at any
small resolution, anegativepower (2b) of the area.51 ~Note
that for classical nonfractal objects, e.g., a sphere or a cube,
one hasL;A 1/2, which is nonsingular since the exponent is
positive.! In view of this, the production termP in ~3! can be
interpreted as the expression for the fact that the reaction
takes place along the perimeter of the fattened-up filamental
fractal seen at resolutiond. Since the peculiar relationship~7!
is purely geometrical, it does not depend on the precise na-
ture of the activity. Similar singular terms appear in the equa-
tion for other types of activity as well.44,45

In summary, the fractal filaments of the advection prob-
lem act as dynamicalcatalystsfor the reactions. The rate
equation~3! has auniversalcharacter, as its form does not
depend either on the particle, flow or reactivity properties.
Fundamentally, the exponentb characterizes the geometry of
the reaction-free chaotic advection. The singular productivity
disappears forD51, representing a flow in which the fila-
ments do not form a fractal, and the advection is conse-
quently nonchaotic.

Equation ~3! describes the competition of two effects:
contraction and production. As a result of the balance be-
tween these effects, asteady statesets in after sufficiently
long time for the global distribution of the B-particles@see
Figs. 3~c! and 3~d!#. This steady state is synchronized to the
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flow, i.e., it takes over the time dependence of the flow and in
general follows the hydrodynamical time dependence mani-
fested in the parameterc. In the case when the time depen-
dence of parameterc is weak, the steady state value of the
number of particles is

B* 5S cv r

l D 22D

;d* 22D. ~8!

The scaling is unique:B* is proportional to the power (2
2D),1 of the reaction velocity. This means that the num-
ber B* of particles decreases by a factor smaller than the
factor by which the reaction velocity decreases. For example,
if v r;1024, the value ofB* with D51.5 is two orders of
magnitude larger than that for the traditional active process
whereD51. Equation~8! is confirmed in Figs. 3~e! and 3~f!
for inertial particles whose dynamics possesses a chaotic at-
tractor and transient chaos, respectively.

Remark I: Production vs diffusivity. Because the reaction

front velocity v r is known52,53 to be proportional to the
square root of the diffusion coefficientk, we obtain from~8!,

B* ;k12D/2.

The amount of particles produced is proportional to the frac-
tional power (12D/2) of the diffusion coefficient. This re-
lation for diffusive particles has been derived using an Eule-
rian approach in Refs. 4 and 12. Our arguments herewith
imply that it is in fact valid for active inertial particles as
well, providedv r;k1/2.

Remark II: Dependence of production on resolution. Let
us now consider the production termP, but for simplicity, in
the steady state. Assume that this production is measured
with a resolution« worse than the crossover scale length,
i.e., «.d* . Since the production is proportional to the
perimeter length seen with the resolution used, we have

FIG. 3. ~Color! Autocatalytic inertial particles advected by a two-dimensional flow field of counter-rotating array of vortices with time-periodic intensity~Ref.
27!, given by the stream function~6! with v5p. The flow can be regarded as a model of the arrangement of eddies in a vertical plane of the lower atmosphere
or the upper ocean. The parameterk measures the amplitude of oscillation of the strength of the vortices.~a!, ~b! Chaotic sets in the advection dynamics of
the nonreacting inertial B-particles:~a! chaotic attractor (k50.53) and~b! chaotic saddle responsible for transient chaos (k50.524). The small rectangle at
the top of the panel~b! is magnified in the inset to show the small scale~Cantor-like! structure of the saddle. The other parameters are St51, a51.7, and
w523.934 ~see Appendix A!. ~c!, ~d! Distribution of the product particles after a sufficiently long time (t5100 periods of the flow field!. Fractal
filamentation is caused by the chaotic attractor in~c! and by the chaotic saddle in~d!. Only a single vortex cell of@0,p#3@0,p# is shown and the gravity points
downward in~a!–~d!. The color coding represents the density of B-particles, in which darker colors correspond to higher density. The density of B-particle is
bounded in this simulation~Ref. 36!. Note that in~d! the product is distributed not along the chaotic saddle but along its unstable manifold@the difference
between the saddle in~b! and the unstable manifold seen in~d! is apparently small, partly because they are projected onto the two-dimensional configuration
space#. The initial condition is a small blob of B-particles.~e!, ~f! The total numberB* of the B-particles in the steady state vs the reaction velocityv r in the
case of the chaotic attractor in~e! and the chaotic saddle in~f!. The full line corresponds to the fitB* ;v r

22D predicted by the theory@see Eq.~8!#. For
reference, theB* ;v r line is shown as a dashed line, which corresponds to a nonchaotic case (D51).
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P~«!;«12D. ~9!

The exact amount of productionP(d* ) is, however, propor-
tional to d* 12D. The ratio of the observed, coarse-grained
amount of production to the exact one is thus

P~«!

P~d* !
5S d*

« D D21

. ~10!

By improving the resolution~decreasing« to d* ) the ratio
moves towards unity. This dependence is not present at all in
the nonchaotic case whereD51. Therefore, we conclude
that the increase of productivity with increasing resolution
observed earlier in simulations of environmental
problems3,54 is describable by the equation derived in this
paper. Our results show that this effect is present even when
the description of the hydrodynamical flow field is complete,
in contrast to the similar effect reported before,3,54 which
may be due to incomplete knowledge of the flow field. Al-
though previous studies3,54 treat only noninertial particles, it
follows from our approach that this behavior must be present
in the inertial problem as well.

Remark III: Enhancement factor. In a nonchaotic flow,
the average widthd* of B-particle bands in the steady state
is proportional tov r /l. The enhancement factor relative to
the nonchaotic case is thus

B* ~D !

B* ~D51!
>S v r

l D 12D

. ~11!

Since d* is typically much smaller than the characteristic
length scale of the flow~chosen here to be unity!, there is
always a considerable enhancement due to the chaoticity of
the advection dynamics~recall 12D,0).55

We emphasize that these results are independent of the
nature of reaction~autocatalytic, bistable, excitable, etc.!,
that is, whenever the product is distributed in bands along
filaments of a fractal set, Eqs.~3!–~11! hold.

Remark IV: Effects of nonfractal filaments. The existence
of a well-defined fractal scaling over decades of resolution is
actually not necessary for our theory to work. For systems
close to the steady state, our approach only requires that
N(d) is a power law ofd at the length scale aroundd* . This
is important because many filamental structures observed in
environmental processes do not present a clear scaling over

decades of resolution. This is the case, for example, for the
plankton growth,10 or for the deactivation process of the
ClO-rich polar air by the NO2-rich air in the mid-northern
latitudes, which can suppress the depletion of ozone.4 Our
treatment can be carried out in this case with an exponent
g(«5d* ) replacingD, whereg~«! is defined as the slope of
the lnN(«) vs ln(1/«) curve ~see Fig. 5!:

g~«!52
d ln N~«!

d ln «
.

The exponentg is a quantity which would be the fractal
dimensionD if the exact scalingN(«);«2D holds with a
constantD. Equations~3!–~11! remain valid if we substitute

D→g~d* !.

Note, however, that, in contrast to the case of a clear fracta-
lity, the use of our theory in this case requires the knowledge
of the steady state widthd* and the assumption thatB is
close to its steady state valueB* so thatg(d* ) stays ap-
proximately constant over time. We observe that the expo-
nentg, relevant for reactions, can be different from the exact
dimension of an underlying fractal set, even when such a
quantity exists~see Appendix B!.

Conclusions: Starting from a particle-based ‘‘micro-
scopic’’ picture, we derived, by applying elementary rules of
the fractal geometry, a novel type of rate equation in which
the production term does not follow the principle of
‘‘mass-action’’56 well known from thermodynamics. In fact,
these processes are much further away from thermal equilib-
rium than traditional reactions since they do not fill the con-
figuration ~or phase! space. The problem treated here pro-
vides a clean example of a feature we believe to be general:
whenever a transport process is concentrated on a fractal set
in the configuration space, the correspondingtransport equa-
tion deviates substantiallyfrom the one known from irre-
versible thermodynamics.
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APPENDIX A: EQUATION OF MOTION FOR INERTIAL
PARTICLES

For small spherical particles of finite size, the particle
velocity v5dr /dt ~r is the position of the particle! typically
differs from the fluid velocityu. The equation of motion is
given by Newton’s second law: the force causing the relative
acceleration dv/dt2du/dt @du/dt[]u/]t1(u•¹)u# be-
tween the particle and the fluid is due to the viscous friction
and, in the gravitational field, due to buoyancy. The former,
the so-called Stokes drag, is proportional to the velocity dif-
ferencev2u, and vanishes for pointlike particles. The latter
is proportional to the density difference%particle2%fluid . The
dimensionless form of the equation of motion reads25,26,39,57

dv

dt
2a

du

dt
52

v2u

St
2wn. ~A1!

Here St.0 is the Stokes number, the dimensionless decay
time due to the Stokes drag,w ~positive for heavy particles!
is the dimensionless buoyancy force acting in the vertical
direction, andn denotes the vertical normal vector pointing
upward. The coefficienta.0 expresses the fact that a finite
size particle brings into motion a certain amount of fluid
proportional to its volume. The noninertial particle dynamics
is recovered when the particle radius vanishes, which corre-
sponds to the limit St→0. In this limit, the advection dynam-
ics is governed by

v5
dr

dt
5u~r ,t !.

The general inertial dynamics~A1! possesses a four-
dimensional phase space (x,y,vx ,vy) even for planar sta-
tionary flows, whereas for the noninertial particle dynamics
the phase space is two dimensional. The inertial dynamics is
dissipative, even in incompressible flows, and the phase
space volume contracts at the rate22/St, which is always
negative, in contrast to the noninertial case which is volume
preserving. The fractal object in the full phase space must
have a dimension less than 2, if one wishes to keep its frac-
tality in the projection onto the configuration space of the
flow.

APPENDIX B: DIFFERENCE BETWEEN g„«… AND
FRACTAL DIMENSION

An illustrative example where the exponentg~«! differs
from the fractal dimension is the case of point particles ad-
vected by a flow in which chaotic and regular motions coex-
ist ~the so-called nonhyperbolic dynamics!. A transverse in-
tersection between a line and the filamental fractal associated
with such a chaotic motion can be modeled by a Cantor set
constructed as follows. In the first step, an interval is re-
moved from the middle of the unit interval. An interval is
removed from each of the remaining two intervals in the
second step. The third step removes intervals from the
middle of all remaining interval, and so on. In contrast to the

hyperbolic chaotic systems, the relative size of removed in-
tervals at each step is not constant, but, for example, is in-
versely proportional to the number of steps in the
construction.58 In this case, the limit set in the two-
dimensional space is a fractal set of dimension two. How-
ever, the exponentg at resolution« is smaller than 2 and can
be approximated by

g~«!'22
1

ln~1/«!
.

The exponentg converges very slowly to the exact dimen-
sion 2 and it is quite different from the limiting value, even
for unrealistically small scales, as shown in Fig. 6. A similar
behavior for the exponentg is also expected in the presence
of small dissipation due to inertial effects.42,43 If a reactive
process takes place in such a nonhyperbolic advection dy-
namics,D in ~3!–~11! must be replaced by the exponent
g(«5d* ) in a self-consistent manner.

1E. R. Abraham, Nature~London! 391, 577 ~1998!; A. Bracco, A. Proven-
zale, and I. Scheuring, Proc. R. Soc. London, Ser. B276, 1795~2000!; A.
P. Martin, K. J. Richards, A. Bracco, and A. Provenzale, Global Bio-
geochem. Cycles16, 1025~2002!; A. P. Martin, J. Plankton Res.22, 597
~2000!; Prog. Oceanogr.57, 135 ~2003!.

2E. R. Abraham, C. S. Law, P. W. Boyd, S. J. Lavender, M. T. Maldonado,
and A. R. Bowie, Nature~London! 407, 727 ~2000!.

3S. Edouard, B. Legras, F. Lefevre, and R. Eymard, Nature~London! 384,
444 ~1996!.

4A. Wonhas and J. C. Vassilicos, Phys. Rev. E65, 051111~2002!.
5G. Metcalfe and J. M. Ottino, Phys. Rev. Lett.72, 2875~1994!.
6I. R. Epstein, Nature~London! 374, 321 ~1995!.
7O. Paireau and P. Tabeling, Phys. Rev. E56, 2287~1997!.
8M. Menzinger and P. Jankowski, J. Phys. Chem.90, 1217 ~1986!; M.
Menzinger and A. K. Dutt,ibid. 94, 3410 ~1990!; F. Ali and M. Menz-
inger, ibid. 101, 2304~1997!.

9Z. Neufeld, Phys. Rev. Lett.87, 108301~2001!; Z. Neufeld, C. López, E.
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