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In a conceptual model of global atmospheric circulation, the effects of annually periodic driving

are investigated. The driven system is represented in terms of snapshot attractors, which may

remain fractal at all times. This is due to the transiently chaotic behavior in the regular parameter

regimes of the undriven system. The driving with annual periodicity is found to be relatively fast:

There is a considerable deviation from the undriven case. Accordingly, the existence of a hysteresis

loop is identified, namely, the extremal values of a given variable depend not only on the actual

strength of the insolation but also on the sign of its temporal change. This hysteresis is due to a

kind of internal memory. In the threshold-dependence of mean return times of various extreme

events, a roughly exponential scaling is found. Climate sensitivity parameters are defined, and the

measure of certain types of extremal behavior is found to be strongly susceptible to changes in

insolation. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697984]

Conceptual climate models play a special role, since they

are well suited as testing grounds for different theoretical

ideas. The concept of snapshot attractors
1

(or, equiva-

lently, that of the more recently coined pullback attrac-

tors2) of dynamical systems has been suggested3,4 as a

promising tool to describe the variance of climate, due to

uncertainties in the parameters, in a novel way. To this

end, one should investigate an ensemble of trajectories,

all subject to the same realization of noise. After some

time, the ensemble traces out a snapshot attractor and

also determines a distribution on it. The attractor is

changing continuously in time. In general, a snapshot

attractor of a driven system is an object which attracts

any trajectories initialized in the infinitely remote past

within a basin of attraction.
3

A snapshot attractor can be

either a simple object or a fractal. Here, we show that the

concept of snapshot attractors can usefully be applied to

higher dimensional systems with strictly time-periodic

driving, too.

I. INTRODUCTION

As a conceptual model, we consider Lorenz’s model of

global atmospheric circulation (L84)5 with a driving of an-

nual periodicity.6 This low-order model is not only

appealing,7–14 but it can be derived from the quasi-

geostrophic equations governing the large-scale motion of

the atmosphere.6,8

As an early attempt to study the long-term variability in

Lorenz’s model with annual periodicity, Pielke and Zheng7

evaluated the power spectrum of various long model time se-

ries. Here, we shall focus on extreme event return time statis-

tics, climate sensitivity, and overall variability in view of

snapshot attractors.

Climate is commonly defined as a makeup of long-time

averages of meteorological measurements, e.g., temperature,

humidity, atmospheric pressure, wind, rainfall, etc. But, cli-

mate can also be defined as “the statistical properties of the

state of the atmosphere-ocean system, taken over an ensem-

ble of appropriate initial conditions.”15 Note that this ensem-

ble is exactly what is represented by a snapshot attractor.

Therefore, climate change can be seen as the evolution
of snapshot attractors. From a different point of view, we

can say that the climate is sensitive if under slightly different

conditions, the climate snapshot attractor takes substantially

different shapes.

In particular, we will consider measures of the climate

snapshot attractor in association with extremal behavior. A

key parameter that determines the state of the climate is the

strength of solar radiation, or solar forcing, called insolation

in brief. We also investigate climate sensitivity, or the sus-

ceptibility of the climate, to change the amplitude and the

mean value of the insolation.

Extreme events have already been studied in elementary

chaotic models.16,17 In our periodically driven model cli-

mate, we study extreme events and their return time statistics

as a function of the threshold level.

Extremes are also studied in terms of the extremal val-

ues of variables. We find a continuous annual variation of

the extremal values and a hysteresis loop in it. Hysteresis in

a different climatic situation has been found recently in aver-

aged quantities by Bordi et al.,18 e.g., in the transient

response of the mean surface temperature to the changing of

well-mixed green house gases.

The paper is organized as follows. Next, in Sec. II, the

model is introduced and explained. In Sec. III, snapshot

attractors are determined. Two-dimensional snapshot attrac-

tors are equivalent in this periodically driven case to slices

of a three-dimensional stroboscopic map. After investigating

the bifurcation diagram (Sec. IV), extreme events are stud-

ied; first, a memory hysteresis in the sense of Ref. 18 is iden-

tified (Sec. V A), and then extreme event return time
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statistics are presented (Sec. V B). In Sec. VI, we discuss the

issue of climate sensitivity and point out a basic difference

between sensitivity in the summer and winter periods. In

Sec. VII, we draw conclusions. A description and classifica-

tion of numerical sectioning techniques to create snapshot

attractors can be found in the Appendix.

II. MODEL

The model to be studied reads as follows:6

_x ¼ �y2 � z2 � axþ aFðtÞ;
_y ¼ xy� bxz� yþ 1;
_z ¼ xzþ bxy� z;

(L84)

where F(t) is a time-periodic driving:

FðtÞ ¼ F0 þ A sinðxtÞ: (1)

The physical content of L84 is that the solar forcing, repre-

sented by F, creates a temperature difference between the

equator and the pole, which, via geostrophic balance, influ-

ences most directly the wind speed of the Westerlies repre-

sented by x. As an effect of baroclinic instability, cyclonic

activity facilitates poleward heat transport, two modes of

which are represented by y and z.

For the parameter setting, we take the common choice:

a¼ 1/4 and b¼ 4.5 The equations appear in a dimensionless

form with the time unit corresponding to about 5 days. The

constant value of FðtÞ ¼ F0 ¼ 6 (8) was regarded by Lorenz

to be an appropriate value for permanent summer (winter),

and the system with this value exhibits only periodic (cha-

otic) attractors.

The periodic forcing (1) taken about the mean value

F0 ¼ 7 (Ref. 6) describes the variation of the insolated

energy over a year. Since one year is about T¼ 73 time units,

we set x ¼ 2p=73. Note that time t mod T¼ 0 in expression

(1) coincides with the September equinox. Midwinters and

midsummers correspond to t mod T¼T/4¼ 18.25 and 3 T/

4¼ 54.75, respectively. As for the physical origin of the

forcing, we note that F(t) may also contain—in association

with the greenhouse effect—the contribution of the varying

CO2 content.

The coupling amplitude A is set in the main body of the

paper to A¼ 2, the same value that Lorenz used in Ref. 6,

but for comparison, in Sec. VII we shall also consider other

values of A down to A¼ 1, in which latter case the extrema

of F(t) correspond to the Lorenzian winter and summer.

Figure 1 shows the time series of variable x over four

subsequent years. The most striking feature, also observed

by Lorenz,6 is that active and inactive summers follow each

other in a random sequence (the former occurring about four

times as often as the latter, as a longer simulation would

show), while the subsequent chaotic winters are not very dif-

ferent. This interannual variability was interpreted as a con-

sequence of the fact that by the periodic forcing, the two

coexisting periodic attractors (a period-1 and a period-4

cycle) of a permanent summer with F¼ 6 are coupled in a

chaotic or random manner.10

It has long been thought that a simple representation of

the full chaotic attractor is hopeless, since even the strobo-

scopic map (taken on a preselected day of the year) has a

three-dimensional chaotic attractor and is, therefore, difficult

to visualize. We show in what follows that snapshot attrac-

tors, or equivalent realizations of them, provide a useful tool

for a two-dimensional visualization of the climatic attractor.

III. SNAPSHOT ATTRACTORS

Stochastically or chaotically driven dissipative systems

of three variables possess three dimensional snapshot attrac-

tors.3,4,14 They are obtained by considering the instantaneous

coordinates of an ensemble of trajectories, followed from a

smooth distribution at time t0 ¼ 0 up to a certain time t� 1,

all trajectories subject to the same realization of noise or cha-

otic driving. Intersections of these 3D snapshot attractors

with a surface, i.e., 2D snapshot attractors, are the general-

izations of attractors appearing on Poincaré surfaces of inter-

section of autonomous systems with three-dimensional phase

spaces. Most typically, the attractor is chaotic whose fractal

pattern is changing continuously in time.14

The concept of snapshot attractors has been known for

many years.1,19–21 Here, we extend the concept to a system

with periodic driving.

In the L84 model, the traditional Poincaré surface is the

plane z¼ 0 with _z > 0,5 and we restrict ourselves to this tra-

ditional choice. In three-variable systems driven periodically

in time with period T, there exists, at any phase of the period,

a unique three-dimensional stroboscopic attractor that can be

FIG. 1. Time evolution of the x component of the L84 system with annually

periodic driving, over four years following consecutively in four panels

(F0 ¼ 7 and A¼ 2). The first time instant shown corresponds to 237.25 time

units (3.25 years), which is much longer than the dissipative relaxation time,

found to be about 30 time units. The time interval of each panel ranges from

midwinter to midwinter. Vertical dashed lines mark the March and Septem-

ber equinoxes. Winters are always chaotic, and more regular active and inac-

tive summers follow each other in a random manner.
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defined by a single long trajectory. Since, due to ergodicity,

this attractor can also be generated by an ensemble of trajec-

tories started in the remote past and stopped at some time t,
the stroboscopic attractor can, in this special case, also be

considered as a 3D snapshot attractor. The z¼ 0 section of

this attractor is a 2D snapshot attractor with coordinates x, y.

Numerically, we found it even more convenient to consider a

single long trajectory, store its x, y coordinates, and the time

when z¼ 0, and select afterwards all data points that belong

to time t mod T. Note that due to the periodicity of the driv-

ing, the evolving snapshot attractor indeed repeats itself after

T¼ 73 time units. The results can be seen in Fig. 2. In the

particular z¼ 0 Poincaré section any pair of (x, y) coordi-

nates are either both positive or both negative, which can be

easily explained in terms of the third equation of L84. In the

examples presented in Fig. 2, snapshot attractors live in the

first quadrant of the plane. Numerical techniques by which

snapshots can be constructed are presented and discussed in

the Appendix.

The most striking feature is the very large variability.

The largest x and y values and their occurrence probability

changes drastically with time. The accumulation of points in

a summer plot [Fig. 2(d)] in the middle of the picture and in

four strongly localized regions correspond to the observation

by the time series of Fig. 1 that summers are characterized

by nearly period-1 and period-4 cycles.

One might think that a driving whose period is nearly

100 times that of the basic time unit is so slow that the driven

system is simply scanning through the states corresponding

to the attractors of the undriven problem. Snapshots in Fig. 2

are taken at two pairs of time instants when the driving, ei-

ther increasing ( _F > 0) or decreasing ( _F < 0), hits the value

of F¼ 8 [Figs. 2(a) and 2(b)] or F¼ 6 [Figs. 2(c) and 2(d)].

If the above conjecture was true, the two attractors with

F¼ 8 (or F¼ 6) should be identical. Their strong difference

(and also the nonexistence of an exact stroboscopic fixed

point and period-4 attractors during summer) shows that the

annual driving is still fast enough to make the dynamics

much richer than without driving.

A point of interest is that none of the snapshot attractors

is regular—not only the examples displayed in Fig. 2 but

none throughout the period of a year, as shown in the movie

of the supplementary material.22 This is interesting in view

of the extended periodic windows appearing in the bifurca-

tion diagram in the range 5 � F � 9 that the value of F(t)
scans. For a better understanding of this, details of the bifur-

cation diagram in Fig. 3, and its construction will be dis-

cussed next.

IV. BIFURCATION DIAGRAM

A bifurcation diagram, by definition, represents

attractor-type solutions only. However, a picture of transient

behavior can give further insight. Such a picture can be

obtained by using an ensemble of trajectories, too.

When long chaotic transients are present, the straightfor-

ward construction of the bifurcation diagram may be diffi-

cult. In the following, three stages of constructing the

bifurcation diagram are described, in the first stage, conven-

iently, obtaining a picture of chaotic transients.

Fig. 3(a) was constructed by using an ensemble of N ¼
104 trajectories, randomly initialized in 0 < ðx; yÞ < 2 with

z¼ 0 for each fixed value of F, with which it is anticipated

that most of the coexisting attractors can be found. The en-

semble is followed up to 20 iterations on the z¼ 0 Poincaré

FIG. 2. The z¼ 0 Poincaré sections of snapshot attractors at chosen times of

the year, associated with (a) t¼T/12, F(t)¼ 8, (b) t¼ 5 T/12, F(t)¼ 8, (c)

t¼ 7 T/12, F(t)¼ 6, and (d) t¼ 11 T/12, F(t)¼ 6. Each of the snapshots is con-

stituted by N ¼ 104 intersection points. A number of almost 2� 103 such

snapshots have been constructed over a period of one year, which facilitate

the creation of a sufficiently smooth movie of the evolution of the 2D snapshot

attractor (enhanced online). [URL: http://dx.doi.org/10.1063/1.3697984.1]

FIG. 3. Bifurcation diagram and preliminary stages of its construction. (a)

“Extended” bifurcation diagram containing signs of transient chaos as well:

x vs F obtained from the 20 times iterated Poincaré maps of ensembles of

trajectories. (b) The density of the ensemble along the x axis is indicated by

gray scale colors, with lighter shades for smaller densities. White (black)

corresponds to a density of zero (� 300 points) in a bin of the histogram. (c)

Bifurcation diagram, x vs F, using several long trajectories. All coexisting

attractors are represented.
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surface, and finally, the x coordinates of trajectory endpoints

are plotted only. This method leaves some long chaotic tran-

sients and permanently chaotic motions undistinguishable.

Since by iteration 20, many trajectories have not yet left the

chaotic saddles underlying transient chaos, this diagram can

be considered as an approximant to an “extended” bifurca-

tion diagram containing all chaotic sets (i.e., attractors and

saddles) and the periodic points.

Some points approach certain attractors faster than some

others. Therefore, when simulating the time evolution of an

ensemble up to a finite time (20 Poincaré steps in our case),

the projection of the ensemble onto the x-axis is inhomoge-

neous. The density in this distribution is gray coded in Fig.

3(b). A density larger then a threshold value, e.g., 150

points/bin, can identify permanent structures, such as peri-

odic cycles. Points that contribute to much smaller densities

exhibit transient chaos.

In order to proceed with the construction of the com-

monly defined bifurcation diagram in the third stage, a large

ensemble would be very expensive to simulate further on,

and instead the structures present after 20 iterations are

sampled. To this end, the threshold density of a two-

dimensional distribution of the ensemble over the x-y plane

(200 bins in xmin < x < xmax and ymin < y < ymax) is set to 20

points/bin, and from each bin one point is randomly selected

for an additional simulation of over 1000 dimensionless time

units, and the last 100 points of intersection with the Poin-

caré surface are plotted. Ten other initial conditions are also

chosen randomly to capture possibly coexisting chaotic

attractors. Once periodic cycles are identified, it is investi-

gated how far they extend in terms of F, by following the

attractor, with an increment of DF ¼ 0:002. This procedure

resulted in the bifurcation diagram shown in Fig. 3(c). In

this, and also in the diagram of the distribution in panel (b), a

solid gray curve indicates the maximal x coordinates for

each value of F, as can be seen in the diagram in panel (a).

We have found that transient chaos is indeed present in

the whole span of F 2 ½5; 9�. Most of the time, it is due to the

coexistence of periodic attractors and so the existence of a

basin boundary and the associated chaotic saddle. One such

saddle (red) with its stable (blue) and unstable (green) mani-

folds is displayed in Fig. 4. It is found for F¼ 6, when a

period-four and a period-one cycle coexist (indicated by

markers). The saddle lies at the intersection of its stable and

unstable manifolds.23,24 The latter manifold resembles the

snapshot attractor at t¼ 11 T/12, F(t)¼ 6, as in Fig. 2(d).

That is, a fractal snapshot attractor of the driven system is

similar to the unstable manifold of the chaotic saddles of the

undriven system, which is populated by escaping trajectories

approaching periodic cycles. The fact that none of the snap-

shot attractors is completely regular is due to the finite time

scales of escape and a relatively fast driving.

For other fixed values of F, other periodic cycles might

coexist, which imply nonattracting chaotic objects similar to

the saddle in Fig. 4. The regime of coexisting period-one and

period-four cycles discovered by Lorenz span a wide range,

about [5.3,6.7], before period-doubling cascades take place

at both ends, which end up in chaos. In the range of about

[5,5.2], different regimes change each other, when transient

chaos is due most of the time to coexistence of periodic

attractors again, or sometimes, as an interesting effect,25

transient chaos occurs without coexistence of attractors, as

also noted in Ref. 11. The case of F¼ 5 is an example for

the latter, and it happens to be the case that the transient is

very long—longer than the time span of simulation (1000

time units). After the period-doubling cascade just before

F¼ 7, permanent chaos ceases to exist abruptly via a crisis.

In the forthcoming range, up to about F¼ 7.5, a period-two

cycle either coexists with one [(e.g., F¼ 7.3) or more (e.g.,

F¼ 7.45)] higher-period cycles, or exists on its own. Beyond

this, it coexists with permanent chaos (e.g., F¼ 7.6, 7.9).

The Lorenzian chaotic winter attractor at F¼ 8 is again a

single global attractor. The bifurcation diagram of Fig. 3(c)

provides much more detail than the one sketched by Lorenz

in Ref. 6, in particular, it illustrates the abundance of peri-

odic windows.

V. EXTREME VALUE STATISTICS

A. Hysteresis in extreme values

When a process produces a stationary distribution,

extreme value statistics is concerned with the tail of this dis-

tribution. In our model, in any phase of the year, such a sta-

tionary distribution is well defined, with a finite maximum of

its domain.26

Over the period of a year, these maxima create an enve-

lope curve of the 3D snapshot attractors projected on any

axis. For convenience, we can also consider the z¼ 0 section,

i.e., the 2D snapshot attractors, as shown in Fig. 2 (see also

FIG. 4. Chaotic saddle (red) and its stable (blue) and unstable (green) mani-

folds on the z¼ 0 Poincaré surface for F¼ 6, represented by over 2� 104

points. For the construction of these, a trajectory is regarded to have escaped

from near the saddle, if it approached one of the periodic points (large dots)

with a separation less than e ¼ 0:15 (blank circles around the periodic

points). Initially, an ensemble of 322 � 1002 > 107 points is taken on a rec-

tangular array in the region shown. The unstable (stable) manifold is

approximated by the endpoints (initial points) of trajectories which have not

escaped up to 18 iterations, and the saddle, as the intersection (set) of its sta-

ble and unstable manifolds, is approximated by the midpoints of the nones-

caped trajectories (at iteration number 9).12,25
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corresponding movie file). These envelopes are called

dynamic envelopes, in contrast with the set of maximal x
coordinates of the undriven system shown in Fig. 3, which

we refer to as static envelope.

The dynamic envelopes in the x and y directions of the

3D attractors [thin gray lines in Figs. 5(a) and 5(b), respec-

tively] are obtained by an ensemble of 107 trajectories. The

resolution of these curves in time is the same as the step size

of integration, 0.005 time units. These envelopes are thus

numerically approximated, and resolved in time, very

accurately.

The dynamic envelopes in the x and y directions of the

2D snapshot attractor [thick black lines in Figs. 5(a) and

5(b), respectively] are obtained—because of the constraint

corresponding to z¼ 0—with only 104 points. These enve-

lopes exhibit larger fluctuations than the 3D envelopes, since

they are generated based on a smaller number of points. The

envelope is the more likely to appear as a fluctuating curve

using an ensemble of a fixed number of points, the less fre-

quent are the associated extremes, i.e., the thinner is the tail

of the distribution over the snapshot attractor. For reference,

we provide examples of snapshot distributions, which are

obtained by projecting the 3D snapshot attractors onto the y
axis. Fig. 6 shows such distributions corresponding to the

instants of snapshots in Fig. 2. As can be seen in panels (a)

and (d) of these two figures, corresponding to the upper

branch of the y envelopes, long and thin tails of the distribu-

tions and a few widely scattered points in the Poincaré sec-

tions, respectively, describe rather rare extremes. On the

contrary, in panels (b) and (c) of the said two figures, corre-

sponding to the lower branch of the y envelopes, short and

bulky tails of the distributions and sharp edges of the 2D

snapshot attractors, respectively, describe more frequent

extremes. These figures, thus, indicate that the extreme value

statistics, and, consequently, the size of the fluctuations of

the envelopes is strongly season- or F-dependent: The curves

are fairly jagged/smooth for the increasing/decreasing

branches. For comparison, the curves of maximal x and y
coordinate in the bifurcation diagrams [as seen in Fig. 3(c)

for x], i.e., the static envelopes, are also shown in Fig. 5 with

thick gray lines.27

A basic observation with regard to the dynamic enve-

lopes is that they feature a hysteresis loop, i.e., they exhibit

separate branches when F increases or decreases. Note that

the static envelope is by definition without any hysteresis.

Let us compare the static envelopes with the dynamic

envelopes of the 2D snapshot attractors. The mere presence

of the hysteresis in the dynamic one indicates a strong differ-

ence between the driven and the undriven systems. The devi-

ation appears to be most pronounced for F > 5:8 for F
increasing. For decreasing F, the dynamic and static enve-

lopes happen to be rather close to each other for F > 7:3.

An interesting feature can be extracted from the y enve-

lopes. The 2D static and dynamic envelopes have shoulders

at about F¼ 8.8 and 8.6, respectively, in Fig. 5(b). They cor-

respond to a sudden appearance of an island [like the one

seen e.g. in Fig. 2(b)] in the chaotic attractor and in the

snapshot attractor, respectively, at the height of about

y¼ 2.5, the latter with a decreasing F. The disappearance of

the island occurs via a merging into the mainland and this

would not yield a shoulder in the envelope. For increasing F,

as no isolated island from a mainland emerges, no other

shoulders can be seen in the dynamic envelope. The differ-

ence between the clearly distinguishable shoulders suggest

that the dynamic envelope is related to the static one with a

delay in F, which is about DF ¼ 0:2 around F¼ 8.8.

FIG. 5. Dynamic and static envelopes describing extrema in the x (a) and y
(b) directions. Thin gray line: dynamic envelopes of the 3D snapshot attrac-

tor; thick black line: dynamic envelopes on the Poincaré surface z¼ 0 (2D

snapshot attractor, same simulation parameters as for Fig. 2). The difference

for increasing/decreasing F indicates in both cases a hysteresis. Thick gray

line: static envelopes of the attractors and chaotic saddles of the undriven

system at z¼ 0. Arrowheads placed on branches of the envelopes indicate

the direction along the hysteresis loop; for better visibility, the colors of the

arrowheads are the reverse of the colors of the envelopes that they belong to.

Color-matching vertical arrows point to shoulders of the envelopes.

FIG. 6. Histograms by the projection of 3D snapshot attractors onto the y
axis at instants corresponding to snapshots in Fig. 2. The insets display mag-

nified views of the tails of the maxima.
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Based on these observations, the following simplified

model helps understand the existence of a hysteresis. Con-

sider a short range of F where the static envelope is a straight

line with some slope. Assume that the height of the dynamic

envelope is simply the height of the static envelope taken by

DF > 0 earlier (later) when moving towards larger (smaller)

values of F. Thus, two branches of the dynamic envelope

arise, as Fig. 7 illustrates. It is also clear form this figure that

the sign of circulation around the loop depends on the slope

of the static envelope: the circulation is positive for a nega-

tive slope.

The real hysteresis is much more complicated than what

follows from this simple model. The basic features are the

following. (1) The delay in F is time-dependent. Assuming a

fixed temporal delay s, the delay DF following from Eq. (1)

is not constant, but rather it depends on t, i.e., on the phase

of the driving. For relatively small finite values of s the (non-

zero) minimum values of DF will be near the maximal and

minimal driving amplitudes, F ¼ F06 A. (2) Also the tem-

poral delay s can depend on the dynamical regime passed

by, and, thus, on the phase of forcing. (3) A further compli-

cation is that the memory of the system cannot be character-

ized simply by a phase-dependent temporal delay s, but

rather an integral over the recent past.

The presence of driving prevents transiently chaotic tra-

jectories to reach their periodic or chaotic attractor of the

undriven case, as by the time they might come close to such

an attractor along the saddle’s unstable manifold, this object

is already altered.28 Thus, the hysteresis cannot be derived
from the undriven case.

The full hysteresis loop is thus much more complex than

that of Fig. 7. The origin of it is the temporal delay or mem-

ory, and can therefore be called a memory hysteresis. Such a

hysteresis has been found recently18 in a global circulation

model, e.g., in the diagram of the mean surface temperature

and the CO2 concentration when the latter is increased and

decreased periodically at a given rate. In fact, Fig. 3 of Ref.

18 is similar to our Fig. 5. Note, however, that the hysteresis

found here is not in thermodynamical averages, but rather in

extreme values. This implies that the extremal values of a

given variable depend not only on the actual value of the

insolation but also on the sign of its temporal change.

The existence of the hysteresis loop can also be argued

on general grounds. The geometry of a snapshot attractor is

determined by the history of driving. The influence of the

past is gradually declining, that is, the snapshot attractor is

determined by the most recent past. When the driving is peri-

odic, two snapshot attractors that belong to the same instan-

taneous value of the driving, but with opposite signs of

change have different histories, and therefore they are

expected to have different geometries. The difference should

be the largest in the middle of the parameter range of driv-

ing, and gradually vanishing towards its minimum and maxi-

mum values. Such behavior has been confirmed in a Hénon-

type map: ðxnþ1; ynþ1Þ ¼ ðd þ ax2
n=ð1þ xnÞ4 þ yn; bxnÞ, with

a¼ 3, b¼ 1/2, and d 2 ½0:7; 1:1�, shifted with an increment

Dd ¼ 0:05 in a to-and-fro periodic manner. Given that snap-

shot attractors have a memory, hysteresis is expected to

occur very generally in periodically driven systems.

B. Peak-over-threshold analysis of extreme events

For practical purposes, besides the maximal extreme

values, the likelihood of certain extreme events, e.g., peak-

over-threshold events, is also sought for. For example, an

extreme event can be that the model cyclonic activity is

greater than a magnitude of 1.8, that is,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
> 1:8: (2)

Fig. 2 illustrates that on the z¼ 0 plane, the line y¼ 1.8 is

always close to the upper edge of the attractor, and events

beyond this line are rare indeed. In dynamical systems terms,

the likelihood of events is seen as a measure of certain parts

of the snapshot attractor. In our example, this is lðr > 1:8Þ.
Due to driving, the measure depends on time. With the use

of an ensemble, which is followed in 3D, the measure is

approximated by the proportion of points in the ensemble

that satisfy condition (2). A time series of this measure, that

is the likelihood of extremes, is shown in Fig. 8, whose pat-

tern repeats itself—like the driving—annually. Threshold

excesses of the time series indicate momentarily likely

extreme events. Values of 25 percent might even occur,

FIG. 7. Schematic diagram illustrating the existence of a hysteresis in a sim-

ple model when the dynamic envelope arises as a delayed version of the

static one with a positive (negative) delay of magnitude DF for increasing

(decreasing) F. The slope of the static envelope is negative in case (a) and

positive in case (b).

FIG. 8. Time series of the likelihood of extreme cyclonic activities, lðA2 ¼
2; tÞ as defined by condition (2). N ¼ 106 points represent the evolving 3D

snapshot attractor. The simulation is started at t¼ 0, and a period of one year

is shown, from midwinter to midwinter, after a long time period is discarded.
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which are due to the appearances of rather densely populated

parts of the snapshot attractor in the regime r > 1:8.

The return times of likelihoods exceeding a certain

threshold, i.e., peak-over-threshold events, is practical and

also insightful to consider. It is certainly expected that return

times grow with elevated threshold, which is confirmed by

the diagram in Fig. 9. In this diagram, several other types of

events are also considered, like

x < 0; x < 0:5; x > 1:6; and x > 1:8: (3)

A roughly exponential scaling prevails in limited ranges of

threshold values, in agreement with the boundedness of the

time series (Fig. 8). The average exponent of scaling

(	 13:8) appears to be basically independent of the particu-

lar type of extreme event considered, suggesting that it is a

global property in connection with a global structure in phase

space.

VI. CLIMATE SENSITIVITY

It is interesting to investigate this conceptual climate

model at another driving amplitude, and to compare the

results with those of the previous one, gaining an insight this

way into climate sensitivity.29,30 We change the driving am-

plitude from A¼ 2 to A¼ 1, by keeping all other parameters

fixed. Since F0 ¼ 7, the lower turning point at F¼ 6 does

not reach the small-F chaotic regime extending only up to

F 	 5:2, and points can thus continue coming closer to the

periodic attractors of the undriven case until winter sets in

again. This process is reflected by the shape of the snapshot

attractors (Fig. 10). Before winter, the snapshot attractor is

hardly a fractal indicating the near completion of the decay

process towards periodic orbits (a). Then, the chaotic winter

fattens up the fractal (b), which sees it through the March

equinox (c), but by the end of summer, the attractor is almost

regular again (d).

The dynamic envelope of extremes also reflects this in

Fig. 11. A loop of hysteresis is present again, with a strong

decline of the envelope curves for increasing F. Note that the

sign of circulation in the loop here is the opposite to that of

Fig. 5.

The likelihood of extreme events of type (2) as shown in

Fig. 12 also indicates strong differences. Half the year cen-

tered around midsummer, the likelihood almost vanishes. It

is remarkable, however, that the largest peak overall with

A¼ 1 might be as large as the one with A¼ 2.

FIG. 9. Mean return times �tr versus varying threshold of peak-over-thresh-

old type extremes in the likelihood of extreme events, as defined by condi-

tions (2) and (3). All of the considered time series are periodic; nevertheless,

because of the nontrivial behavior within a period, the scaling may be

approximately exponential over limited ranges of the threshold. A solid

straight line of slope 13.8 can be fitted to all of the curves over various short

ranges of the threshold.

FIG. 10. Snapshot attractors with a reduced driving amplitude A¼ 1, at cho-

sen times of the year, associated with (a) t¼T/12, F(t)¼ 7.5, (b) t¼ 5 T/12,

F(t)¼ 7.5, (c) t¼ 7 T/12, F(t)¼ 6.5, and (d) t¼ 11 T/12, F(t)¼ 6.5 (enhanced

online). [URL: http://dx.doi.org/10.1063/1.3697984.2]

FIG. 11. Dynamic and static envelopes of 2D snapshot attractors (similar to

that in Fig. 5) for z¼ 0, with a reduced driving amplitude A¼ 1. Thick black

line: dynamic envelopes and thick gray line: static envelopes. Arrowheads

placed onto branches of the envelopes indicate the direction of circulation;

for better visibility, the colors of the arrowheads are the reverse of the colors

of the envelopes that they belong to.
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The character of the return time statistics (Fig. 13)

hardly changes by reducing the amplitude. In particular, the

exponential scaling is characterized by the same exponent, in

agreement with the conjecture that it is determined by simi-

lar fractal objects in phase space.

A more detailed description of sensitivity can be given

by considering time-dependent extreme value properties.

In this section, we select one of the different definitions

of extreme events (2) and (3) and use condition x > 1:8
throughout. The measure lðtÞ 
 lðx > 1:8; tÞ corresponds to

the likelihood of finding extremal wind speeds of the Wester-

lies in L84 as a function of time. Fig. 14 shows the difference

in lðtÞ, i.e., Dl, between A2 ¼ 2 and A1 ¼ 1, which reveals

large differences also in wintertime. The peaks of Dl indi-

cate climate sensitivity to changes of the amplitude of the an-

nual insolation cycle.

In general, considering any physical observable Q 6¼ 0

of the climate model, its sensitivity to a change in parameter

A can also be expressed by means of the generalized

susceptibility

v ¼ 1

QðA1Þ
DQ

DA
; (4)

where DA ¼ A2 � A1 and DQ ¼ QðA2Þ � QðA1Þ. This quan-

tity can be considered as a function of (dimensionless) time,

v ¼ vðtÞ, or also as a quantity based on an average. In this

latter case, Q is replaced by its average, �Q, taken over the

full year or over different seasons.

The time-continuous version vðtÞ, with Q taken as the

measure lðx > 1:8Þ, A2 ¼ 2, and A1 ¼ 1, is also shown in

Fig. 14. Particular values of vmean for the annual, winter, and

summer periods are evaluated, and the results are summar-

ized in Table I. Another, shorter period 247 < t < 256 is

also considered, in which the largest sensitivity is expected,

bracketed by dotted vertical lines in Figs. 8, 12, 14. Winter is

taken here as the interval between the September and March

equinoxes and summer as the complementer interval, brack-

eted by dashed vertical lines in the same figures.

It should be emphasized that vmean is not the mean of

vðtÞ. Also, the measure of vðtÞ can be misleading with occa-

sionally small values of QðA1; tÞ. In fact, lðA1; tÞ nearly van-

ishes for a finite period of time at about t¼ 273, and the

range of the diagram is set so that corresponding exceedingly

large values of vðtÞ are not featured in Fig. 14. The mere dif-

ference Dl ¼ lðA2; tÞ � lðA1; tÞ is also included in Fig. 14,

which gives an absolute measure of sensitivity.

In Table I, all differences and so susceptibilities are pos-

itive, i.e., the extremes become more frequent with increas-

ing insolation amplitude; although the time-dependent

difference or susceptibility can also be negative (see Fig.

14). Sensitivities are the largest in the distinguished short pe-

riod indeed. It is remarkable that summers are more sensitive

than winters.

A susceptibility of the variance of quantity Q taken over

some period is obtained in a similar fashion as

FIG. 12. Time series of the likelihood of extreme cyclonic activities,

lðA1 ¼ 1; tÞ as defined by condition (2), at A¼ 1.

FIG. 13. Mean return times �tr versus varying threshold of peak-over-thresh-

old type extremes in the likelihood of extreme events, as defined by conditions

(2) and (3), with A¼ 1. The solid straight line has slope 13.8, as in Fig. 9.

FIG. 14. The difference Dl ¼ lðA2 ¼ 2; tÞ � lðA1 ¼ 1; tÞ of time series sim-

ilar to those seen in Figs. 8 and 12 but now for lðx > 1:8; tÞ (thin gray line).

Dividing this by lðA1; tÞ results in the time-dependent susceptibility vðtÞ (thick

black line). In a range around t¼ 273, the value of v is larger than 8.

TABLE I. Susceptibilities (differences �20), for the mean and variance of

variable lðx > 1:8Þ, evaluated over different time intervals, with a change

of amplitude from A¼ 1 to 2.

Interval Annual Winter Summer Short period

vmean ðD �QÞ 0.69 (0.93) 0.50 (0.80) 0.97 (1.05) 2.00 (2.56)

vvar ðDrÞ 0.56 (0.47) 0.01 (0.01) 3.13 (1.12) 5.34 (1.64)
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vvar ¼
1

rðA1Þ
Dr
DA

; (5)

where rðAÞ ¼ ð �Q2ðAÞ � �QðAÞ2Þ1=2
and Dr ¼ rðA2Þ

�rðA1Þ. With Q ¼ lðx > 1:8Þ (and A1 ¼ 1;A2 ¼ 2), annual,

winter, summer, and short term variance susceptibilities are

given in the second line of Table I. They show that there is a

strong increase in the summer variance, but hardly any

change in the winter variance.

The common definition of climate sensitivity is based

on the doubling of the, say, preindustrial CO2 content of the

atmosphere.29 Increasing the amplitude A of insolation, as

done above, is not in line with this definition. Instead, F0 is

more appropriate to be increased. Also, the increase of A
from 1 to 2 might be too large of a change. In order to cater

for these two points, we examined sensitivity by changing A
and F0, both, by smaller positive increments of

DA ¼ A2 � A1 ¼ DF ¼ F0;2 � F0;1 ¼ 0:2. The results of this

are presented in Fig. 15. We find that the sensitivity is the

strongest in a particular period of the summer, as indicated

previously. The sensitivities are found to remain practically

constant over an interval 1:2 < A2 < 1:8;F0 ¼ 7. For

A2 ¼ 2;F0 ¼ 7, and F0;2 ¼ 7:2, A¼ 2, however, there is a

sudden increase in modulus. This can qualitatively be

explained by the fact that the driving in these cases enters a

range of permanent chaos existing for F < 5:2, after passing

through a long regular regime (5:2 < F < 6:6) with transi-

ently chaotic behavior. The regime F < 5:2 is not yet

reached at the other parameters (cf. Fig. 3).

VII. CONCLUSIONS

We have investigated the effect of periodic driving on a

conceptual climate model. In spite of the temporal simplicity

of the driving, 2D snapshot attractors proved to be useful

representations of the dynamics and show fractal features

throughout the annual cycle, which owes to the fact that tran-

sient chaos and chaotic saddles are ubiquitous in the consid-

ered parameter regimes.

The effect of fast chaotic driving in the same model has

been studied in Ref. 14. Interestingly, the shape of the snap-

shot attractors with fast chaotic and annually periodic driving

was found to be very similar. The abundance of extreme

events is also a common feature in the two cases, and more

quantitatively, the statistical properties are similar as well. In

particular, for the likelihood of extremes, a peak-over-thresh-

old analysis exhibits an approximately exponential increase

of mean return times for a limited range of threshold values,

although the scaling is less clear in the periodic case.

As a new feature, the model exhibits a hysteresis loop in

the extreme values. This is the consequence of an internal

memory of the dynamics, suggesting that care must be taken

in dealing with the response of climatic extremes. Such

events might not only depend on the actual driving strength

but also on the history.

To characterize climate sensitivity, we worked out sus-

ceptibilities both for the measures of certain extremal events

and also for their variance. Evaluating them with temporal

averages in different intervals provides new insight into the

dynamics of extremes. Although winters are more chaotic in

the model, summer susceptibilities are found to be much

larger both for averages and variances.

Because of the simplicity of the model, one cannot

expect that the numerical value should be in agreement with

climatic data. We hope, however, that our qualitative results

point to a direction for future research to do with general cir-

culation models.
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APPENDIX: SECTIONING TECHNIQUES TO CREATE
SNAPSHOT ATTRACTORS

Snapshot attractors of driven three-variable systems can

be constructed numerically in various ways under different

conditions. Techniques may be distinguished according to

whether: the system is driven periodically or aperiodically; a

single long trajectory or an ensemble of trajectories is used.

Here, we provide definitions and details of a few techniques,

each of which is coded by letters. For comparison undriven

systems are also included, in which case snapshot attractors

coincide with traditional attractors. A block diagram of clas-

sification is also provided in Fig. 16 for the applied

techniques.

S: Intersections of a single long trajectory of an

undriven system with a surface, called a Poincaré surface of

intersection, are taken (a standard and simple technique).

E: An ensemble of trajectories of an undriven system

are followed mapping subsequent points of intersection with

the Poincaré surface. Since the return times of the trajecto-

ries to the surface may be different, the ensemble is viewed

at discrete “times”—iteratively. Due to ergodicity, E results

in the same attractor as S.

EZ: An ensemble of trajectories subject to general driv-

ing is followed in the 3D space. After some transient, at any

chosen time instant the Poincaré section of the 3D snapshot

attractor can be simply approximated by retaining trajecto-

ries only whose endpoints stay within a “thick slice” given

by a finite dz tolerance around the sectioning surface. Using

a finite number of trajectories, however, the measure on the

Poincaré surface is not faithfully reproduced numerically,

due to the varying “speed” with which trajectories cross the

surface.

ET: The times and coordinates of crossing are exactly

determined by means of interpolation onto the sectioning

surface, and those trajectories are selected to represent a

snapshot attractor whose crossing time fall in a particular dt
short window of time. This way we avoid the numerical

problems of EZ.

SZ: If the driving is periodic, instead of an ensemble,

snapshot attractors can be constructed by a single long trajec-

tory too. The trajectory is viewed stroboscopically, and a

thick slice with a finite tolerance dz can be taken. First, this

suffers from the same problem as EZ. Second, with longer

period of the driving, a proportionally longer simulation is

needed to construct a snapshot which is constituted by the

same number of points. Third, if the stroboscopic condition

is imposed before sectioning, the stored data from one long

simulation is not suitable to represent snapshots at any other

phase of the driving, which would be necessary for creating

a movie reviewing a complete period (like those of the mov-

ies to Figs. 2 and 10).

ST: The said drawbacks of SZ can be overcome by

first sectioning the trajectory by, e.g., z¼ 0 on the fly in

the process of a long simulation, and then from the stored

(x, y) intersection coordinates and crossing time data snap-

shot attractors can be constructed corresponding to any

phase of the driving. To do this, a short window of time of

length dt is considered, centered around the chosen phase

of the period, and those data points are retained to form a

snapshot for which the crossing times t mod T fall into this

window of time. As for a movie which shows the time-

dependence of the snapshots, a sequence of consecutive

phases are considered. Snapshots in different windows are

constituted generally by different numbers of points.

Another algorithm which produces slightly different snap-

shots is much more inexpensive, however. When a large

number of points is supposed to constitute a snapshot by

the above described technique, it is convenient to retain

groups of a fixed number, say, N ¼ 104 points instead. As

for a sequence of n snapshots, the data points, ðxi; yiÞ;
i ¼ 1;…; nN, are ordered according to the crossing times ti

mod T, and then they are assigned to groups, j ¼ 1;…; n,

such that the integer parts of i/N equal j. With this, the

sizes of the associated windows of time are different. For

optimal numerical performance, several long trajectories

might have to be considered.

Snapshots from the resulting movie using technique ST

can be seen in Fig. 2. It has been visually checked that results

with ST and ET indeed agree.
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