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We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield

of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many

applications, a few recent transient-chaos-related subjects are introduced in some detail. These

include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly

transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to

energy absorption or explosion. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4917287]

The appearance of chaos with finite lifetime is known as

transient chaos (for reviews see Refs. 1 and 2) and pro-

vides an example of a “nonequilibrium state” that is dif-

ferent from the asymptotic state, and cannot thus be

understood from the asymptotic behavior alone. In such

case, one observes a moving around of the system in an

apparently chaotic manner and then, often rather sud-

denly, a settling down to a steady state which is either a

periodic or a chaotic motion (but of different type than

the transients). Studying only the asymptotic behavior of

such dynamics would mean loosing the interesting, cha-

otic part contained in the transients.

I. INTRODUCTION

My first scientific encounter with transient chaos was at

the Dynamics Days conference, held at Twente, Holland, in

1985. For me, one of the highlights was the talk given by

Peter Grassberger on their not-yet-published results on sys-

tems exhibiting chaos over finite times only. In one of the

breaks of the meeting, I came across with his student and

coauthor, Holger Kantz, and had a short discussion. I remem-

ber, my main question was if the generation of their plots

shown in the talk required huge numerical efforts. I had to

ask this because, after a postdoc period, I was facing a return

to Hungary and could not count there on a particularly strong

computational background (in fact, the results of my first

papers on transient chaos, e.g., Ref. 3, were obtained using a

Commodore 64). In view of the encouraging answer received

from Holger, I did not see any reason for not following the

attraction I felt towards this phenomenon.

The most appealing features of the talk, and of its pub-

lished version, the Kantz-Grassberger paper,4 were that a

nonattracting set can have consequences observable in prac-

tice, and that such sets are of a very fragile fractal structure.

Nonattracting fractals which are in a mathematical sense sets

of measure zero can thus lead in physics to quantities that

can be actually measured in experiments!

It became clear for me only afterwards that nonlinear

phenomena like crises5 and basin boundaries6—discovered a

few years earlier—are also related to such nonattracting cha-

otic sets. This fact immediately illustrated the broad

applicability of transient chaos. Since then, even when my

research is not directly related to dynamical systems, I never

forget to think of transient chaos if a phenomenon does not

find an immediate explanation.

Some of the important morals following from the study

of transient chaos can be summarized as follows:

• The traditional view according to which chaos is a long-

term, asymptotic property might often be strongly restric-

tive since it excludes the investigation of transients which

might also be of chaotic nature. In fact, in physical terms,

asymptotic can only mean that the phenomenon lives on

times scales longer than the longest observational time

available. Phenomena with lifetimes shorter than this can

be just as relevant.
• The resolution of the paradox of physically measuring a

nonattracting set of measure zero, mentioned above, is

resolved by the fact that following chaos around such a set

over long but finite times requires the localization of only

a small neighborhood of the set (instead of its specifica-

tion with infinite resolution). This neighborhood is itself

of finite volume and, thus, observable.
• Transient chaos plays a similar role in the realm of chaotic

systems as an unstable equilibrium point in simple me-

chanical systems. It is especially well suited to character-

ize nonequilibrium processes preceding the approach to

steady states.
• Transient chaos is an example for a phenomenon where

long time single-particle and short time ensemble averages

are different. An ensemble of trajectories that stays around

the nonattracting chaotic set for a while yields averages

characterizing this set, different from the long time

asymptotics.
• In invertible systems, we are going to focus on here: the

nonattracting set77 is a chaotic saddle. Often, it can be

considered to be the union of an infinity of unstable hyper-

bolic (also called saddle) orbits. A chaotic saddle turns

out, however, to be globally less repelling than the compo-

nent saddle orbits one by one. The fractal structure thus

tends to stabilize the saddle dynamically.
• Changing some parameters might lead to an ever weaken-

ing repulsion of the saddle. Long term (permanent) chaos

arises thus as nothing but a limiting case of transient chaos.
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In Sec. II, we summarize some basic properties of tran-

sient chaos based on an easily understandable example. In

Sec. III, we briefly list typical occurrences of transient chaos

in the realm of dynamical systems. Sections IV–VII continue

this list with recent examples presented in some detail.

Section VIII provides a short summary and outlook.

II. BASIC PROPERTIES OF TRANSIENT CHAOS—AN
INTUITIVE VIEW

Transient chaos occurs even in very common every-day-

life examples: any system moving irregularly over a period

of time and then changing to a regular behavior might be a

candidate of transient chaos. For illustrative purposes, we

choose such an example, the dispersion of dye (or pollutant

material) in a fluid current.

In rivers, in the wake of pillars, piers, or groynes one of-

ten observes some kind of accumulation of surface floaters.

For very small tracers, the accumulation proves to be tempo-

rary, and the particle escapes the wake after some time.

Before this happens, it carries out an irregular motion in the

wake. The physical background for this is the shedding of

vortices from the edges of the obstacle which generates a

time-dependent stirring of the fluid within the wake. The

lifetime of a tracer within the wake can depend on when and

where it enters the wake. Very long lifetimes must be excep-

tional because the current is tending to transport everything

downstream.

A. Geometry and dynamics

It is a real surprise that nonescaping tracer orbits, orbits

bound to the wake forever, exist, which are of course unsta-
ble. Their number might even be infinite, nevertheless they

do not fill a finite portion of the wake.

Typical tracer trajectories do not hit exactly any of the

nonescaping orbits, but might become influenced by the lat-

ter. Such tracers follow some of the nonescaping orbits for a

while and later turn to follow another one. This wandering

among nonescaping orbits results in the chaotic motion of

typical tracers over the time span they remain in the wake

(downstream of the wake the effect of vortices die out, the

flow becomes nearly uniform, and chaotic tracer dynamics is

no longer available).

The union of all unstable nonescaping orbits is the cha-
otic saddle. The saddle forms a fractal set with a unique frac-

tal dimension. An example is shown in Fig. 1 where an

instantaneous picture of the chaotic saddle is shown in a

two-dimensional flow. The fragile nature of this set is

reflected by the lack of any line pieces: the chaotic saddle in

this representation is a cloud of points only (in contrast to

chaotic attractors which are filamentary).

Each nonescaping orbit is of hyperbolic (saddle) type,

and therefore the chaotic saddle as a whole also has a stable

and an unstable manifold. The stable manifold is a set of

points along which the chaotic saddle can be reached after

an infinitely long time. At a certain instant of time, it can

also be considered as the set of initial conditions leading to

particle motions that never leave the wake. The stable mani-

fold is thus also of fractal character but this set is filamentary

as Fig. 2(a) indicates.

The unstable manifold of the chaotic saddle is the set

along which particles lying infinitesimally close to the saddle

will eventually leave it in the course of time. Its instantane-

ous form is also a fractal curves, winding in a complicated

manner (Fig. 2(b)). When time changes, both the chaotic

saddle and its manifolds move.

An appealing feature of the advection problem8 is that

the manifolds (abstract mathematical objects in the theory

of dynamical systems) carry clear physical meaning here.

For the unstable manifold, this becomes clear by consider-

ing a droplet (ensemble) of a large number of tracers which

initially overlaps with the stable manifold. As the droplet is

advected towards the wake, its shape is strongly deformed,

FIG. 1. Instantaneous view of a chaotic saddle (red dots) in the wake of a

cylinder of radius unity (green line) in a two-dimensional model of the von

K�arm�an vortex street7 (flow from left to right) at a Reynolds number where

periodic vortex shedding takes place. Tracers started in any red point would

never escape the wake neither forward nor backward in time. Note that a

stretched horizontal scale is chosen for better visualization. Courtesy of G.

K�arolyi.

FIG. 2. Stable (left) and unstable

(right) manifold of the chaotic saddle

in the flow of Fig. 1 at the same instant

as there. Both manifolds are fractal

curves. The chaotic saddle (the set of

red points of Fig. 1) also appears as the

intersection of these two manifolds.

Courtesy of G. K�arolyi.
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but part of the ensemble comes closer and closer to the cha-

otic saddle as time goes on. Since, however, only a small

portion of particles can fall very close to the stable mani-

fold, the majority of the tracers does not hit the saddle and

start flowing away from it along the unstable manifold.

Therefore, we conclude that in open flows droplets of par-

ticles trace out the unstable manifold of the chaotic saddle

after a sufficiently long time of observation. The fractal

unstable manifold becomes thus a real physical observable,

something which can be photographed. The unstable mani-

fold stretches out from the wake far downstream, as seen in

Fig. 3. Droplet experiments trace out this object indeed.9,10

It should be kept in mind that far away from the obstacle

the fractal pattern is not an indicator of chaos in that region;

it is rather a fingerprint of transient chaos within the wake

transported far downstream by the nearly uniform flow

there.

The definition of the chaotic saddle and of its manifolds

was given above without any reference to a possible time-

periodicity of the flow and of the geometry of the obstacle.

In the particular case of time-periodic flows, the chaotic sad-

dle can be decomposed into unstable periodic cycles (simi-

larly as usual chaotic attractors) and the pattern of the saddle

and its manifolds repeat themselves with the period of the

flow. In the general case of aperiodic time-dependence, the

only difference is that there are no periodic orbits among the

nonescaping ones, and the patterns of the saddle and its

manifolds never repeat themselves. If the time-dependence

is strong enough and long lasting, these patterns can be seen

all the times. (The mathematical background for their proper

description is random dynamical systems,11 and snapshot
chaotic saddles.2,12,13) This is the explanation of the ubiquity

of filamentary unstable manifolds visible in experiments9

and in satellite images showing the oceanic or atmospheric

wakes of islands (for an example see Fig. 4). The unstable

manifold can also be seen as the main transport route since

tracers escaping the wake after a long time accumulate along

this set (see, e.g., Refs. 7, 14, and 15).

B. Characteristic numbers

1. Escape rate

When distributing a large number N0 of tracers upstream

the obstacle, most of them leave the wake eventually. Thus,

the probability p(t) of findings points staying still in the

wake after time t is a monotonically decreasing function.

How rapidly it decreases is an important characteristic of the

saddle. The decay is typically exponential

pðtÞ � e�jt: (1)

The positive number j is called the escape rate and turns out

to be independent of the choice of the initial distribution of

the N0 tarcers. The escape rate is thus a unique property of

the chaotic saddle. It measures the saddle’s strength of global

repulsion. Relation (1) is not necessarily valid from the very

beginning, it holds after some time t0 needed for the ensem-

ble to come sufficiently close to the saddle (t0 depends thus

on the initial condition).78 As a consequence, this depend-

ence also holds for the average lifetime �s of particles in the

wake. As an order of magnitude estimate of �s, however, the

reciprocal of j might be a good choice.

2. Topological entropy

The stretching dynamics of typical material lines can be

used to define topological entropy. A line segment of initial

length L0 is stretched more and more in the unstable directions.

Let L(t) denote the length of the line segment within the wake

after time t. After a sufficiently long time this length is

known16 to increase exponentially, and the growth rate is given

by just the topological entropy, h, according to the relation

LðtÞ � eht; (2)

valid for times longer than some t00. The traditional definition

based, e.g., on unstable cycles and the one given here are

equivalent in time-periodic dynamics. In aperiodic problems,

however, only Eq. (2) can be used for the definition of topo-

logical entropy. The positivity of h can be considered as a

criterion for the existence of (at least) transient chaos. A gen-

eralization of the concept of topological entropy, termed

expansion entropy, valid in any dimension, just appears in

one of the contributions to this focus issue.17

3. Natural measure of the saddle, Lyapunov
exponents, and dimensions

Just like on a chaotic attractor, there exists a natural

probability distribution on any chaotic saddle, too. This is

obtained by distributing an ensemble of points around the

saddle and following those with long lifetimes. The fre-

quency of visiting different regions of the saddle by these

trajectories defines the natural distribution. One can then

speak about averages taken with respect to this measure. The

largest average Lyapunov exponent �k on a saddle is positive.

FIG. 3. The fractal unstable manifold of Fig. 2 stretches out of the wake

(0.5< x< 1.5) far downstreams. Here, the linear range is much larger and

no distortion is applied. Courtesy of G. K�arolyi.

FIG. 4. Unstable manifold of a chaotic saddle traced out in a layer of marine

stratocumulus clouds in the wake of Guadalupe Island on June 11, 2000,

Courtesy of NASA, http://eosweb.larc.nasa.gov/HPDOCS/misr/misr_html/

von_karman_vortex.html.
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It is worth noting, however, that this is not a unique signal of

transient chaos since the Lyapunov exponent is positive even

on a single saddle orbit. A unique sign of chaos in such cases

(besides h> 0) is a nontrivial fractality. To this end, the in-

formation dimension D1 of the saddle is a particularly useful

tool. The Lyapunov exponent describes the local instability

of the saddle, while the escape rate is a global measure of

instability. In chaotic cases �k > j,2 which illustrates that

fractality stabilizes the saddle dynamically, as mentioned in

the Introduction.

C. Remarks

In the particular example of dispersion in fluid flows, a

few further remarks are in order. The precise dynamics of

the tracers depends on their size. Very small ones (relative to

the size of the obstacle), immediately follow the flow. This

implies that in incompressible flows (which are the most typ-

ical case) the dynamics is volume preserving, and therefore

attracting orbits cannot exists, all tracers must escape the

wake. For larger, but still small, sizes Stokes drag is active,

and the dynamics is dissipative, attractors might be present.

Even if so, they coexist with a chaotic saddle, and have typi-

cally small basins of attraction. The shapes of the saddle and

its manifolds remain very similar to those of Figs. 1–3.

There is an increasing current interest in Lagrangian
Coherent Structures (LCSs) of aperiodic flows. They can,

loosely speaking, be defined18,19 as material surfaces shaping

the tracer patterns, i.e., as skeletons for the dynamics of

tracer ensembles. LCSs exist in all types of aperiodic flows:

the elliptic ones are related to extended regions of trapping,

and the hyperbolic ones to regions of strong stirring. Among

the latter, repelling LCSs separate the fate of initially nearby

tracers, while attracting ones identify material surfaces along

which particles accumulate after some time. Although these

concepts were born outside the realm of transient chaos, it is

intuitively clear that in open flows, like flows around

obstacles, the repelling (attracting) LCS corresponds to the

stable (unstable) manifold of the time-dependent chaotic sad-

dle existing in the wake. What we see in Figs. 3 and 4 can

also be considered to be attracting LCSs. The remarkable

feature of material accumulation along manifolds made me

finish one of my talks, more than a decade ago, with the sen-

tence: “If you are after a good catch, go fishing along an

unstable manifold.” By now, plankton and larvae on the

ocean surface are shown to aggregate from different regions

onto such sets, and marine predator birds are found to track

LCSs, the analogs of unstable manifolds, in order to locate

food patches.20–22

III. OCCURRENCES OF TRANSIENT CHAOS

We illustrate with a series of short notes some phenom-

ena from the realm of dynamical systems which find (often

surprising) explanations in terms of transient chaos.

A. Periodic windows

Periodic windows are ubiquitous in the chaotic regime

of dissipative dynamical systems.23 In such windows, chaos

is present in the sense that there exists an infinity of periodic

orbits but their union is not necessarily attractive. Transient

chaos thus always occurs in such windows both inside the

period doubling regime, where the attractor is a cycle of

length 2n with an integer n, and outside these regimes where

transient chaos coexists with a small size chaotic attractor:

the topological entropy is positive everywhere in the win-

dow. Since the total measure of windows is known to be fi-

nite in the parameter space, just like that of strictly chaotic

parameter values, the probability to find transient chaos is
comparable to that of permanent chaos even in systems

known to be chaotic in a traditional sense.

B. Crises

Transient chaos can also be a sign of permanent chaos

to be born. More generally, all types of crisis configurations:

attractor destructions, explosions, or mergers5 are accompa-

nied with long lived transient chaos. Large attractors born at

crises incorporate into themselves the chaotic saddles exist-

ing before. Consequently, the dynamical properties of the

saddle are partially inherited by the large attractor. The aver-

age time trajectories of the large attractor spend in the region

where the saddle existed is practically the same as the recip-

rocal of the escape rate of transient chaos in the pre-crisis re-

gime. Transient chaos can thus provide a backbone of the
motion on composed chaotic attractors.

C. Fractal boundaries

Fractal basin boundaries6 are another common proper-

ties of dynamical systems. If two or more simple or chaotic

attractors coexist, trajectories may hesitate for a long time

before getting captured by one of the attractors. On fractal

basin boundaries such trajectories exhibit transient chaos. In

fact, fractal basin boundaries turn out to be stable manifolds
of chaotic saddles existing on the boundary.

D. Controlling chaos

The celebrated Ott-Grebogi-Yorke (OGY) method of

controlling chaos24 is based on the requirement that control

sets in if the trajectory visits a preselected target region. The

set of points never reaching this target region forms a fractal

subset whose escape rate determines the time needed to

achieve control. Thus, the OGY method converts the motion
on a chaotic attractor into a kind of transient chaos before

control sets in.

E. Chaotic scattering

For scattering processes in open Hamiltonian problems

the only way chaos can appear is in the form of transients,

because of the asymptotic freedom of the incoming and out-

going motion.23,25 Trajectories are then trapped in a given

region of the configuration space for a while, in which a cha-

otic saddle also exists. A detailed characterization of the

trapping process is based on the so-called delay-time func-

tion telling us how the time spent around the chaotic saddle

depends on the impact parameters of initial conditions. A

unique sign of chaotic scattering is the rather irregular
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appearance of the delay-time function. It is singular exactly
in points that lie on the saddle’s stable manifold.

F. Noise induced chaos

In systems subjected to external random forces, the form

of the attractor observed might depend on the noise intensity.

The phenomenon when a system with simple periodic attrac-

tors turns to be chaotic at sufficiently strong (but yet weak)

noise is called noise induced chaos.26,27 In such systems,

there is always a chaotic saddle coexisting with the simple

attractors in the noiseless case. At increasing noise intensity,
the saddle suddenly becomes embedded into a noisy chaotic
attractor, along with the original simple attractors.

G. Transport phenomena

Diffusion and other transport phenomena along a given

direction can be interpreted as consequences of chaotic scat-

tering and transient chaos. This deterministic way of describ-

ing transport phenomena in a single particle picture is based

on the idea of considering an open (scattering) system that is

of finite but large extent along a given direction. The phase

space is low-dimensional but of large linear size. An analysis

of the character of transient chaos leads to the observation

that the escape rate of the saddle can be connected with
transport coefficients.25,28,29 It is worth mentioning that other

characteristics of the chaotic process cannot be expressed

solely by means of macro parameters. It is the escape rate

alone that has a well defined large-system limit.

H. Complex dynamics preceding thermal equilibrium

Systems approaching thermal equilibrium can possess

only fixed point attractors in the space of macroscopic varia-

bles. If a dynamics preceding thermal equilibrium is com-
plex, it must be transiently chaotic. This is exemplified with

stirred chemical reactions in closed containers which are

found to exhibit, both theoretically and experimentally,30,31

long-lasting chaotic transients for sufficiently nonequili-

brium initial conditions.

I. Supertransients

Transient chaos also occurs in spatiotemporal dynamical

systems having high-dimensional phase spaces. These transi-

ents differ from their typical low-dimensional counterparts in

that the average lifetime can be extremely long before settling

down onto a final attractor which is usually nonchaotic.5,32

More qualitatively, the escape rate jðLÞ decreases and tends

to zero with the linear size L of the spatially extended system,

e.g., exponentially, or as a power of L.33 In large systems

with supertransients, the observation of the systems’ actual
attractor is thus very hard. A notable example is pipe flow

turbulence. Around the onset, turbulence is present in the

form of localized puffs only, and their lifetime, or the recipro-

cal of the escape rate, is found to increase superexponentially

with the Reynolds number.34 Puff turbulence is thus a kind of

transient chaos.

In Secs. IV–VII, we present a few recent applications of

transient chaos, all with some sort of special appeal.

IV. DYNAMICS OF DECISION MAKING

Decision making is strongly related to optimization and

is usually formulated in terms of N discrete logical variables

xi, which can be either true or false. The problem is typically

subject to a number M of constraints. The goal is to assign

truth values to the variables such that all constraints are satis-

fied. When the fraction M/N is in a critical domain, finding

optimal solutions to such constraint-satisfaction problems

may be hard. The complexity of problem classes can be

measured by the scaling (as function of N) of the time an

algorithm needs to find a solution. A hard class of problems

is called NP implying that all known algorithms that com-

pute solutions require, in the worst case, exponentially many

iterations expressed in terms of the number of variables N.35

The correctness of a given solution can, however, typically

be checked within a polynomial number of iterations. The

hardest problems in NP form the subclass of NP-complete

problems the solutions to which would enable one to trans-

form any NP problem into this subclass in polynomial time.

Applications of these NP-complete cases range from the

ground-state problem of Ising spin glasses, via protein fold-

ing and Sudoku puzzles, to the travelling salesman problem.

According to an interesting recent development of the field,

thanks to Ercsey-Ravasz and Toroczkai,36 constraint-

satisfaction problems can be translated into continuous-time

dynamical systems. As such, they can exhibit chaos. In this

exact mapping, each discrete logical variable xi is replaced

by a continuous variable siðtÞ 2 ½�1; 1�; i ¼ 1;…;N, where t
is a dimensionless time. The range is defined so that si¼ 1

(�1) corresponds to the true (false) value. Any constraint is

characterized by a function KmðsÞ; m ¼ 1;…;M (depending

on all the s-variables) whose value lies in ½0; 1�, and Km van-

ishes if and only if constraint m is satisfied. The construction

of Km is unique if the constraints are given in a canonical

form, the so-called conjunctive normal form.

The dynamics of variables si is given as a gradient

system

_si ¼ �
@V s; að Þ
@si

; i ¼ 1;…;N; (3)

where the potential, or cost, function V is a sum of the

squares of the constraint functions weighted with positive

factors amðtÞ > 0: V ¼
PM

m¼1 amðtÞKm
2. Potential V has an

absolute minimum at zero for any solution of the problem

where all Km vanish. For large N, function V might have,

however, several local minima away from zero. In order to

avoid the capturing of the dynamics in any of such minima,

Ercsey-Ravasz and Toroczkai chose the weighing factors am

to be time-dependent according to the dynamics

_am ¼ amðtÞKmðsÞ; m ¼ 1;…;M; (4)

with some positive initial value, say, amð0Þ ¼ 1. Since Km is

nonnegative, the auxiliary variable am increases in time (in

an approximately exponential manner) as long as the con-

straint is unsatisfied. If a local minimum due to constraint m
is unsatisfied, the exponential growth of am guarantees that

the local minimum becomes washed out. As a consequence,
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for cases with at least one solution, system (3), (4) has the re-

markable property that randomly chosen initial conditions

sið0Þ lead, with the exception of a set of measure zero, even-

tually to a solution with V¼ 0. Limit cycles do not exist, and

the system is shown36 to always find a solution s�, a fixed

point with jsij ¼ 1, of the optimization problem. This prop-

erty remains true even under noisy perturbations.37

If solutions exist, dynamics (3) and (4) can thus exhibit

chaos only in the form of transients. Furthermore, the diffi-

culty of the solution can be considered to be proportional to

the average time needed to find a solution. This opens the

way of considering the escape rate of the transiently chaotic
search dynamics to be a measure of the hardness of the prob-

lem instance.

As an example to illustrate the search dynamics, we

show a Sudoku puzzle38 and the characteristic time-

dependence of some of the s-variables in Fig. 5. In Sudoku,

one has to fill in the cells of a 9� 9 grid with integers 1 to 9

such that in all rows, all columns, and in nine 3� 3 blocks

every digit appears exactly once, while a set of given isolated

digits should also be taken into account (see left panel of

Fig. 5). These rules and the given digits determine both N
and M, the number of independent variables (each empty

cell is represented by at most 9 independent logical varia-

bles) and constraints, respectively. Sudoku puzzles are

designed to have unique solutions. The right panel of Fig. 5

shows the time evolution of the continuous-time dynamics of

the 3� 3 grid formed by rows 4–6 and columns 7–9. In each

cell, there is only one s-variable which converges to 1, the

one representing the solution, all the others converge to �1

since they correspond to false digits. The dynamics preced-

ing the asymptotic state is rather complex: all s-values

change irregularly, exhibiting long chaotic transients. The

solution can be seen to be found in this example after about

150 time units. In other runs even much longer search times

are found. In an ensemble of 104 randomly chosen initial

conditions, the probability that the dynamics has not found

the solution by time t follows the rule (1), and the escape

rate of the underlying chaotic saddle is obtained to be

j ¼ 0:00026 (1=j ¼ 3850).38

The authors of Ref. 38 also showed that the escape rate

of a puzzle correlates very well with human difficulty

ratings. Four categories predefined by the public: easy, me-

dium, hard, and ultra-hard turn out to be related to the escape

rate via a logarithmic law. g ¼ �log10j values correspond to

them in the ranges 0 < g � 1; 1 < g � 2; 2 < g � 3, and

3 < g � 4, respectively. Puzzles with g > 4 are not known.

A further interesting property of the escape rate of ran-

dom decision making problems is that in cases when the

number N of independent s-variables can change in a broad

range, the escape rate is found36 to decrease as a power of N

jðNÞ ¼ bN�b; (5)

with an exponent b � 5=3. The transient dynamics of deci-

sion making is thus supertransient. This law holds for a fixed

value of M=N ¼ 4:25 in the critical region, and illustrates

that the escape rate jðNÞ is a dynamical measure of optimi-

zation hardness (thus capable of separately characterising

individual instances), while M/N is a static one only. (In the

Sudoku problem, which is also high-dimensional, this means

that not only the number of the preselected digits is impor-

tant but also their positioning pattern.)

Equation (5) also implies that the scaling of the average

continuous search time (�1=j) is polynomial. Nonetheless,

the exponential scaling characteristic to NP-complete prob-

lems does not disappear, but appears when measuring the

number of integration steps needed (using adaptive Runge-

Kutta methods).

V. VOLCANIC ASH DISPERSION

The volcanic eruption of Eyjafjallaj€okull on Iceland in

2010 lead to concerns that volcanic ash would damage air-

craft engines, and the controlled airspace of many European

countries was closed resulting in the largest air-traffic shut-

down since World War II. The closures caused millions of

passengers to be stranded not only in Europe, but across the

world. Not much later, the Fukushima accident (2011) lead

to increased public concern regarding pollutant spreading

from industrial accidents. These recent events underlined the

need for investigating pollutant dispersion in the atmosphere.

Aerosol particles from different sources may be advected far

away from their initial position and may cause air pollution

episodes at distant locations.

FIG. 5. Transient chaos preceding the finding of the Sudoku solution in the search dynamics (3), (4). The puzzle given in the left panel is one of the hardest:

with the 21 given digits, it corresponds to N¼ 257, M¼ 2085. The time-dependence of the variables sa
ij (representing digit a, colored as in the color bar on the

right) in cell i, j is shown in the right panel. In each cell there are 9 running trajectories but many of them are on top of each other close to �1. Courtesy of M.

Ercsey-Ravasz and Z. Toroczkai.
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Current numerical capacity enables us to monitor indi-
vidual aerosol particles one by one. These trajectories turn

out to be chaotic, and an ensemble of trajectories can be

used to predict statistical properties, e.g., the average deposi-

tion dynamics.

In order to track individual aerosol particles with realis-

tic size and density, the equation of motion for the particle

trajectory rðtÞ is derived from Newton’s equation. Scale

analysis reveals that the horizontal velocity of a small aero-

sol particle takes over the actual local wind speed practically

instantaneously, whereas vertically the terminal velocity w
should be added to the vertical velocity component of

air.39,40 w depends on the radius r and density qp of the parti-

cle, as well as, on the density q and viscosity � of the air at

the location of the particle

r_¼ vðrðtÞ; tÞ þ wn; (6)

where vðr; tÞ is the wind field at point r and time t, and n is

the vertical unit vector pointing downwards. Realistic aero-

sol particles not falling out within hours are of radius of at

most 12 lm, and have a density of about qp ¼ 2000 kg/m3.

For them, Stokes’ law is valid during the full motion, and

hence the terminal velocity is w ¼ 2qpr2=ð9q�gÞ. As an

input to dispersion simulations, the reanalysis data of meas-
ured wind fields can be used, which are accessible, e.g., in

the ERA-Interim database.41 The wind velocity at the actual

location of a particle is calculated using spline interpolations

in both space and time.

Mount Merapi in Indonesia had long-lasting eruption se-

ries in 2010, from late October to November. As an example

of the outfall dynamics of aerosol particles, instead of a con-

tinuous eruption, we consider a single imagined volcanic ash

puff. It has an initially columnar shape of size 1	 � 1	 � 400

hPa (in the vertical, pressure coordinates are used), contain-

ing n0 ¼ 2:16� 105 particles of radius r¼ 5 lm centered at

Mount Merapi at the height of about 5 km (p0 ¼ 500 hPa),

and is emitted at 00 UTC on 1 November 2010.39 The par-

ticles spread and reach very different regions in the atmos-

phere since, entering into different vertical levels, they

become subject to different horizontal winds. 20 days after

the hypothetical emission, the particles cover a huge area

and are well mixed in the midlatitudes of the Southern

Hemisphere.

One measurable consequence of the aerosol dynamics

(6) is the outfall. The upper panel of Fig. 6 shows in brown

the location of all the deposited particles in the period 1–20

November 2010. There are large regions without any outfall,

and the overall pattern is filamentary.

A careful study of the particle dynamics leads to the

conclusion that long lived aerosol particles come close,

much before deposition, to a global atmospheric chaotic sad-
dle. The escape rate is found in our example to be j ¼ 0:103

day�1 (in harmony with an average lifetime of about 10

days). The existence of transient chaos is also supported by

the fact that topological entropies, as defined by (2), are

measured to be positive, on the order of 0.5 day�1.42 This

atmospheric saddle is an example for a case of aperiodic

time-dependence.

The dynamical systems’ view enables us to give a novel

interpretation of the outfall. The set of deposited particles on

the surface can be specified, in the language of transient

chaos theory, as the intersection of the unstable manifold of
the global atmospheric chaotic saddle with the surface.
Considering a shorter period, a single day (black dots in Fig.

6, upper panel), the filamentary nature of the outfall pattern

is more pronounced (an exact fractal is expected for an in-

stantaneous outfall pattern only). The lower panel of Fig. 6

indicates the location of the not yet deposited particles in a

given time instant: at noontime of the 18th day after the

eruption (12 UTC on 18 November 2010). Since the majority

of these particles are on their way towards the surface, they

practically trace out the unstable manifold of the saddle.

This figure thus corresponds to Fig. 3 but in a three-

dimensional setting, the coloring indicating the height, more

precisely the pressure level of the particles.79

It is remarkable that the escape rate as a function of the

particle radius r is found to range over about two orders of

magnitude although the radii vary over one decade only. The

dependence is thus strongly nonlinear. The best approximate

fit up to r¼ 12 lm appears to be exponential39

jðrÞ � expðkrÞ; (7)

with k � 0:46 lm�1, a very strong parameter-dependence in

this low-dimensional, but spatially extended dynamical problem.

VI. DOUBLY TRANSIENT CHAOS

After the appearance of our introductory textbook,43

Adilson Motter came to me and asked why we had claimed

that the dynamics of magnetic pendula was chaotic. My na-

ive answer was a hint on the easily observable irregular

FIG. 6. Dispersion of volcanic ash consisting of r¼ 5 lm particles of density

qp ¼ 2000 kg/m3 from the eruption of Mount Merapi (110:44	 E, 7:54	 S,

black asterisk) described in the text. The upper panel shows the outfall inte-

grated up to the 20th of November (brown dots). Black dots represent the

outfall during November 18. The lower panel illustrates the spatial distribu-

tion of the aerosol particles still in the air at 12 UTC on 18 November 2010.

Colorbar indicates the pressure level of the particles in hPa. It is worth not-

ing the high latitude of many particles (blueish colors) and that there is

hardly any material exchange between the two hemispheres over the time

scale of a few weeks. Courtesy of T. Haszpra.
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motion of the pendulum before settling down at some of the

magnets, and on the obvious fractality of the basin boundary

displayed in many publications (for example, see Fig. 7). But

the point was well taken, in such dissipative systems without

any driving all motion must eventually cease because of the

monotonous decay of the energy. We decided to carry out a

systematic investigation of the problem which leads to the

conclusion that transient chaos as presented in Sec. II is only

one option, another class, termed doubly transient chaos,44

also exists within which the dynamics is even more fragile

than in usual transient chaos.

A detailed investigation reveals that two trajectories in

different basins tend to separate from each other over a rela-

tively short period of time but they do so exponentially fast,

they thus possess positive finite-time Lyapunov exponents.

Fast separation takes place when the speed of the pendulum

is low, as it would be expected when an orbit approaches an

unstable fixed point embedded in usual chaotic saddles. The

dynamics, however, does not have any periodic cycle, long-

term instability can only be due to a few fixed points (of sad-

dle type). One observes, nevertheless, that during the period

of rapid separation the trajectories wander erratically in

the vicinity of a set that plays the role of a chaotic saddle.

This set can be estimated from the positions where the trajec-

tories separate exponentially from each other. However,

this set consists of only pieces of trajectories in the phase

space and—in contrast to usual saddles, e.g., the one shown

in Fig. 1—is not an invariant set of orbits. Moreover, this set

manifests itself only during the period of exponential separa-

tion, which motivates us to refer to it as a transient chaotic
saddle.

This view is supported by the observation of the individ-

ual lifetimes spent far away from any attractor obtained for

trajectories which started on a straight line with zero initial

velocity. This function is highly irregular, and appears to ex-

hibit a few isolated infinitely high peaks only (in contrast to

traditional systems where infinities sit on a fractal set). In

our case, subsequent magnifications indicate that the set of

long lifetimes becomes increasingly sparse at sufficiently

small scales.

This leads us to the conclusion that perhaps a time-
dependent escape rate would provide a proper characteriza-

tion of the dynamics. We define44 this as the instantaneous

rate jðtÞ of decay of the fraction p(t) of still unsettled trajec-

tories at time t

_pðtÞ ¼ �jðtÞpðtÞ: (8)

Numerical results indicate that jðtÞ is an exponentially

increasing function in this example. The survival probability

thus decays superexponentially, i.e., the escape dynamics

speeds up as times goes on.

In harmony with the time-dependence of the escape rate,

we find that the fractality of the basin boundary is scale-de-
pendent. Considering smaller and smaller scales, the fractal

dimension of the set separating the different colors is found

to decrease and tend to unity.44 This can indeed be seen

when considering subsequent magnifications of Fig. 7 as

illustrated by Fig. 8.

It is interesting to observe that the character of chaos

immediately changes when driving is added. By moving the

plate of the magnets up and down in a sinusoidal manner,

unstable periodic orbits immediately appear, and the long

term dynamics is governed by a usual chaotic saddle (in coex-

istence with periodic attractors). For small driving amplitudes,

the time-dependent escape rate (8) initially increases, but then

levels off at a finite constant value, and the crossover period

shrinks with the amplitude.

In summary, our principal results are that in undriven

systems: (i) the measured dimension of the basin boundaries

can be noninteger and the finite-time Lyapunov exponents

can be positive over finite scales but neither holds true

asymptotically; (ii) the basin boundaries have (asymptotic)

integer fractal dimensions; (iii) the survival probability out-

side the attractors changes dramatically, characterized by a

time-dependent escape rate; (iv) transient behavior is gov-

erned by a transient chaotic saddle that is prominent over a

specific energy interval. This doubly transient chaos appears

to be the generic form of chaos in autonomous (nondriven)

x

y

−3.0 1.0
−5.0

−1.0

−1.0

−3.0

FIG. 7. Part of the basin structure of a magnetic pendulum with three mag-

nets at the corner of a regular horizontal triangle of unit edge length around

the origin. A part of the plane of initial positions is shown, where points

with vanishing initial velocity are colored according to the magnet in which

neighborhood the pendulum settles down. Most observers would consider

this pattern to be fractal. Courtesy of G. K�arolyi.

FIG. 8. Blowing up the basin structure. Left panel: magnification of a small

square from the most fractal-looking lower left quadrant of Fig. 7. Right

panel: magnification of a small square of the left panel. The dilution of frac-

tality can be seen by naked eye. Courtesy of G. K�arolyi.
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dissipative systems, with the double pendulum and many

every-day phenomena as examples.

VII. DYNAMICAL SYSTEMS WITH ABSORPTION/
EXPLOSION

Certain physical problems related to wave dynamics in

the short wavelength limit can be represented by particles

moving along simple trajectories but carrying with them cer-

tain physical quantities which change in time according to

some rule. One example is the decay of sound intensity in

hall acoustics, which can be understood by considering

sound rays (particles) bouncing with constant velocity within

a billiard (the hall) which loose a portion of a quantity (the

energy) carried with them upon each collision with the wall.

This loss of energy corresponds to sound attenuation or

absorption in general. In such systems, it is not the particles
(matter) what escapes rather the energy content, a quantity

carried along with the particles.

The usual dynamical systems’ approach should some-

what be broadened for a proper description of such problems.

Consider a discrete-time representation ~xnþ1 ¼ f ð~xnÞ, a

proper Poincar�e map of a time-continuous flow. One can

fully reconstruct the continuous-time dynamics if the return

time distribution sð~xÞ [chosen as the time between ~x and

~x0 
 f ð~xÞ] is known and the sum of return times is followed

along the map trajectory.25 The novel feature is that besides

the return time, the evolution of an intensity-like quantity J
should also be monitored. This quantity can be represented

to change only upon intersections with the Poincar�e surface,

when its value becomes suddenly smaller. The amount of

this change is specified by the distribution Rð~xÞ of reflection

coefficients, a quantity assumed to be known on the Poincar�e
surface (just like sð~xÞ). Instead of the usual map f, one then

follows an extended map fext which implies extending the

map’s phase space ~xn by two further variables tn and Jn: the

time at intersection n with the surface, and the intensity just

before this intersection.45 The extended map thus reads as

fext :

~xnþ1 ¼ f ð~xnÞ;
tnþ1 ¼ tn þ sð~xnÞ;
Jnþ1 ¼ JnRð~xnÞ:

8><
>:

(9)

Instead of individual trajectories in the extended phase

space, it is worth studying here also an ensemble of trajecto-

ries, and their energy density qð~x; tÞ. In analogy with the

problem of room acoustics, we consider closed chaotic maps

f ð~xnÞ and find45 that for any smooth initial intensity distribu-

tion qð~x; t ¼ 0Þ there is an overall exponential decay, multi-

plied by a distribution qcð~xÞ depending only on the spatial

coordinates so that for long times

qð~x; tÞ � e�jtqcð~xÞ: (10)

Exponent j > 0 is called again the escape rate but, remem-

ber, it is a measure of the energy escape since there is no par-

ticle escape as map f is assumed to be closed.80 Both j and

qc are found to be independent of initial conditions. Writing

(10) as qcð~xÞ � ejtqð~x; tÞ shows that qc is kind of a limit dis-

tribution obtained by compensating for the energy loss by

homogeneously injecting energy exactly at the rate of j.

Density qc is therefore called the conditionally invariant

FIG. 9. Energy escape in a two-

dimensional billiard. Left panel: billiard

with partial reflectivity, the width of the

ray is proportional to its intensity (J).

The reflection coefficient R ¼ R� ¼ 0:1
in the gray boundary interval, at other

locations there is no absorption: R¼ 1.

Right panel: c-density with color cod-

ing. The corresponding escape rate is

j ¼ 0:058. Birkhoff coordinates ~x
¼ ðs; p ¼ sin hÞ are used, where s is the

arc length along the boundary and h is

the collision angle. Courtesy of E. G.

Altmann and J. S. E. Portela.

FIG. 10. Energy explosion in the same

billiard as in Fig. 9. Left panel: billiard

with a gain region in the middle (gray

disc, marked by g), the width of the ray

is proportional to its intensity (J). The

reflection coefficient upon collision

with the wall is R ¼ esg � 1, where sg

is the time the trajectory spends in the

gain region. Right panel: c-density with

color coding. The corresponding explo-

sion rate is �j ¼ 0:215. Courtesy of E.

G. Altmann and J. S. E. Portela.

097619-9 Tam�as T�el Chaos 25, 097619 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

157.181.170.50 On: Tue, 28 Jul 2015 16:45:58



density (c-measure) in analogy with a quantity introduced as

the density of points conditioned to escape after a long stay

only in usual open systems with transient chaos.46 c-density

qc can be normalized to unity over the phase space of map f.
The c-density is found to be a complicated fractal measure

with a nontrivial information dimension, as illustrated by

Fig. 9. The filamentary pattern suggests that this density is

concentrated on the unstable manifold of the intensity dy-

namics (as in usual transient chaos), and one can also find

the underlying chaotic saddle in the extended map.

Within this extended set-up one can even find a physical

interpretation for negative escape rates. Optical microcav-

ities provide a representative example of such systems.

Lasing modes are induced by the gain medium present in the

cavities and only long-living light rays are able to profit from

this gain. For strong enough gain, when the reflection coeffi-

cient is larger than unity: Rð~xÞ > 1, in certain regions at

least, the overall intensity qð~x; tÞ increases in time, in an ex-

ponential fashion.47 Equation (10) remains thus valid, just

with a negative j. Quantity �j can be called the explosion
rate. It is perhaps a surprise that the c-density does not lose

its fractal measure property as Fig. 10 demonstrates.

It is instructive to see that there exists a unified frame-
work valid both for absorbing and exploding cases that also

shows how j and the c-density are related. For invertible

f-dynamics, this can be written as a discrete-time Perron-

Frobenius-type equation45,47 (see also Ref. 48) acting on the

density function qn of the extended map at discrete time n as

qnþ1 ~x
0ð Þ ¼ ejs ~xð Þ R ~xð Þqn ~xð Þ

jDf ~xð Þj
: (11)

Here, Df ð~xÞ is the Jacobian of the Poincar�e map f at the

phase space coordinate~x (in the billiard examples, of course,

Df ð~xÞ ¼ 1). Iteration scheme (11) expresses, in a more

advanced form, the compensation mechanism mentioned

above in relation to (10): when compensating escape (explo-

sion) by injecting (extracting) energy via a multiplication with

ejsð~xÞ per iteration, a time-independent limit-distribution q1ð~xÞ
is reached. This only happens if j is the valid escape rate, and

then the limit distribution is the corresponding c-density:

q1ð~xÞ ¼ qcð~xÞ. Integrating (11) over ~x0 with the c-density on

both sides, and using the normalization of qc, one finds

hejsRic ¼ 1; (12)

where the average is taken with respect to the c-measure.

This expresses an intimate relation: j and qc are selfconsis-

tently adjusted so that the average of the compensated reflec-

tion coefficient ejsR should be unity (a sign of stationarity)

when the average is taken just with the c-measure. Quantities

j and qc can also be considered as the parameter making the

eigenvalue of the operator defined by (11) to be unity and

the eigenfunction belonging to this largest eigenvalue,

respectively. It is immediate from (12) that for R> 1, in suf-

ficiently extended regions at least (i.e., the case of explo-

sion), j must be negative.

One can also find45,47 a general relation between the

fractality of qc, the distributions sð~xÞ;Rð~xÞ, and properties

of the extended map. The information dimension D
ð1Þ
1 of the

chaotic saddle along the unstable foliation of two-

dimensional extended maps can be expressed as

D 1ð Þ
1 ¼ 1� j�s þ ln R

�k
; (13)

where the averages denoted by overbars are taken over the

chaotic saddle of this map. It is remarkable that the dimen-

sion can be expressed in such a simple way. Besides the

escape rate j and the positive average Lyapunov exponent �k
only the averages �s of the return times and ln R of the loga-

rithm of the reflection coefficients appear.81 This result is an

extension of the Kantz-Grassberger formula D
ð1Þ
1 ¼ 1� j=�k,

valid for the partial dimension in usual transient chaos. The

beauty of this generic and simple relation connecting fragile

(since D
ð1Þ
1 < 1) fractality and dynamics, which I first saw

during that 1985 Dynamics Days, certainly contributed to

my continuous attraction towards transient chaos.

VIII. OUTLOOK

I would like to end with a brief summary of further

transient-chaos related subjects, which might be at least as

interesting as the ones just presented in some detail above.

Leaky dynamical systems arise when artificial holes are intro-

duced into closed dynamics, and the study of the resulting

transient dynamics reveals relevant features of the closed dy-

namics, including Poincar�e recurrences.48 Almost invariant
sets are subsets of larger systems points of which remain

bound to this subset for a long time. They are thus natural can-

didates for characterizing Lagrangian coherent structures,19

and other environment-related phenomena.49 Transient chaos

theory can also be used to understand the origin of transients

and extreme events in excitable systems,50,51 long spatio-

temporal transients in chimera states,52,53 memory effects in

particle dispersion in open flows,54 and to gain a deeper

insight into the nature of turbulence.55 Recent developments

in classical chaotic scattering include the investigation of the

ray dynamics in optical metamaterials,56 of escape in celestial

mechanics57,58 and in medically relevant fluid flows,59,60 and

a basic understanding of the structure of chaotic saddles

underlying scattering in higher dimensions.61–64

Snapshot chaotic saddles and attractors exist in aper-

iodically driven system,65 and represent instantaneous states

of ensembles of trajectories. A novel observation of recent

years is that they are uniquely defined not only in noisy sys-

tems66 but also in the presence of smooth driving that might

even be a one-sided temporal shift of some parameters. This

property makes the concept very well suited for an applica-

tion in climate dynamics.67–69 The observed robust existence

of chaotic snapshot attractors over a wide range is a conse-

quence of the presence of transient chaos in the undriven sys-

tem: the dynamics on snapshot attractors might thus be

considered driving-induced-chaos (in analogy with noise-

induced-chaos).

Quantum aspects cannot be left without a very short

mention. Features related to open channels in quantum sys-

tems appear in properties such as the fractal distribution of
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eigenstates,70 the fractal Weyl’s law,71,72 and quantum trans-

port,73 including transport in graphene.74 The investigation

of these quantum properties is also subject of active recent

research (see, e.g., Refs. 48, 75, and 76).

My final conclusion can only be: Keep an eye on the
potential appearance of transient chaos since this phenom-
enon is an inexhaustible source of challenge and inspiration.
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