
Supplemental Material

Chaos in Hamiltonian systems subjected
to parameter drift

Dániel Jánosi, Tamás Tél

S1 Snapshot elliptic points
We linearize (2) around x = ±1 by writing x = ±1 + δ and keeping only linear terms in δ to get

δ̈ = −2δ + (ε+ αt) cosωt, t ≥ 0. (S1)

This equation is valid for motions remaining in a small vicinity of x = 1 or x = −1 all the time. Its
homogeneous part describes a harmonic oscillation with eigenfrequency of modulus ω0 =

√
2, whose general

solution is c+eλ+t + c−e
λ−t with λ± = ±i

√
2. By looking for the particular solution in the from

δp = A cosωt+B sinωt+ Ct cosωt,

the coefficients turn out to be A = ε/(2 − ω2), B = 2αω/(2 − ω2)2, and C = α/(2 − ω2). Note that the
vanishing of the denominators at ω =

√
2 hints on a resonance which occurs when ω = ω0 =

√
2. The general

solution is thus

δ(t) = c+e
λ+t + c−e

λ−t +
ε

2− ω2
cosωt+ 2

αω

(2− ω2)2
sinωt+

α

2− ω2
t cosωt, (S2)

and the velocity is v(t) = δ̇(t). With initial conditions δ(0), v(0) coefficients c± become determined and take
the form

c+ =
i
√
2(δ(0)− δ∗E,0) + (v(0)− v∗E,0)

i2
√
2

, c− =
i
√
2(δ(0)− δ∗E,0)− (v(0)− v∗E,0)

i2
√
2

, (S3)

with δ∗E,0 = ε/(2 − ω2), v∗E,0 = α(2 + ω2)/(2 − ω2)2. By bringing the particular solution on the left hand
side, the general solution can be written as

δ(t)− δ∗(t) = c1e
λ+t + c2e

λ−t. (S4)

The quantity

δ∗(t) = δp(t) =
ε+ αt

2− ω2
cosωt+ 2

αω

(2− ω2)2
sinωt (S5)

should be considered as the instantaneous position (relative to ±1) of a time-dependent elliptic point. Its
velocity coordinate is

v∗(t) = δ̇∗(t) = − (ε+ αt)ω

2− ω2
sinωt+ α

2 + ω2

(2− ω2)2
cosωt. (S6)

We thus see that the shifts appearing in the parantheses of the coefficients c± are just the initial position and
velocity of the elliptic points. It is remarkable that the frequency about the moving elliptic point remains
ω0 =

√
2 at any time, the same as the eigenfrequency of the undriven (ε = α = 0) problem. Expressions

(S5), (S6) can therefore be considered to define a snapshot elliptic point, SEP:

δ∗E(t) = δ∗(t), v∗E(t) = v∗(t).
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On the stroboscopic map δ∗E(t = nT ) = δ∗E,n and v∗E(t = nT ) = v∗E,n. The expressions in (3) and (4) of the
main text are the phase space coordinates of the SEPs determined here taken with ω = 1.

The gray curve in Fig.S1 represents the trajectory of the SEP about x = 1 in continuous time. The
stroboscopic locations are marked with orange dots. Numerically obtained snapshot tori belonging to a few
time instances appear as continuous curves of different color. The analytically determined SEP is indeed
in their middle at any instant. These are small tori on the scale of the whole phase space, they do not
deform too much over such a short time interval. Their translation is, however, clearly visible with a slight
amplitude increase.

Figure S1: Snapshot elliptic points and snapshot tori in the phase space. The analytically obtained contin-
uous time coordinates of (3) valid about x = 1 is shown in gray, the stroboscopic locations given by (4)
are the orange dots for n = 0, · · · , 6 (ε = 0.01, α = 0.001). The red curves mark initial tori belonging to
t = n = 0, while green and blue curves represent their images taken with dynamics (2) plotted in green
(blue) after n=3 (6) iterations.

Let us consider now the motion of the SEPs in a combined scenario consisting of an increasing and a
decreasing ramp making a full return to the original driving amplitude possible. In more detail, this scenario,
applied also in Section S6, is characterized by a driving amplitude ε+ αt during the first n periods, but the
amplitude changes to ε + nT − α(t − nT ) = ε − α(t − 2nT ) in the interval nT ≤ t ≤ 2nT , i.e. during an
additional n of periods. On the increasing ramp, for 0 ≤ t < nT , (S5) remains valid leading to the SEP
position

δ∗E,n =
ε+ αnT

2− ω2
, v∗E,n = α

2 + ω2

(2− ω2)2
(S7)

by the end of the nth period. Relations (S5), (S6) suggest that for t ≥ nT the time dependence of the SEP
is

δ∗(t) =
ε− α(t− 2nT )

2− ω2
cos (ω(t− nT ))− 2

αω

(2− ω2)2
sin (ω(t− nT )), (S8)

v∗(t) = −ε− α(t− 2nT )

2− ω2
ω sin (ω(t− nT ))− α 2 + ω2

(2− ω2)2
cos (ω(t− nT )). (S9)

This solution would, however, yield the SEP coordinates

δ̃∗ =
ε+ αnT

2− ω2
, ṽ∗ = −α 2 + ω2

(2− ω2)2
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by time nT , different from (S7) in the velocity coordinate. The SEP is expected to be at any time a solution
of the differential equation (2), and should therefore be a continuous and differentiable function of time. A
way to find such a solution is based on realizing that a trivial rearrangement of (S4) as

δ(t)− δ∗(t) = c+e
λ+t + c−e

λ−t − C+e
λ+t − C−eλ−t = c′+e

λ+t + c′−e
λ−t (S10)

with arbitrary C+, C− shows that the elliptic nature of the moving point remains but the original position
δ∗(t) becomes shifted by C+e

λ+t + C−e
λ−t. Since λ± = ±i

√
2, these terms can also be represented as

D sin
√
2t+ E cos

√
2t with some real D and E. We can therefore assume that the time-dependent location

of the SEP is, for t ≥ nT ,

δ∗(t) =
ε− α(t− 2nT )

2− ω2
cosωt− 2

αω

(2− ω2)2
sinωt+D sin [

√
2(t− nT )] + E cos [

√
2(t− nT )], (S11)

v∗(t) = −ε− α(t− 2nT )

2− ω2
ω sinωt− α 2 + ω2

(2− ω2)2
cosωt+D

√
2 cos [

√
2(t− nT )]− E

√
2 sin [

√
2(t− nT )],

where in the argument of the trigonometric functions we have used that ωnT = 2πn. The coefficients can
be fixed by prescribing continuity, by requiring the values of δ∗(t = nT ) and v∗(t = nT ) to match those of
(S7). This leads to δ∗E,n = δ̃∗ + E, v∗E,n = ṽ∗ +

√
2D, which yields

D = α
√
2

2 + ω2

(2− ω2)2
, E = 0.

By substituting these into (S11), we obtain the position coordinate δ∗(t) of the SEP valid for nT ≤ t ≤ 2nT .
The coordinates of the SEP at time t = 2nT are then found to be

δ∗E,2n =
ε

2− ω2
+ α
√
2

2 + ω2

(2− ω2)2
sin
√
2nT = δ∗E,0 + α

√
2

2 + ω2

(2− ω2)2
sin
√
2nT , (S12)

v∗E,2n = −α 2 + ω2

(2− ω2)2
+ α

2 + ω2

(2− ω2)2
2 cos

√
2nT = v∗E,0 − 2α

2 + ω2

(2− ω2)2
(1− cos

√
2nT ). (S13)

The SEP coordinates are thus different from their initial values δ∗E,0, v
∗
E,0 at the end of the scenario in spite

of the return of the driving amplitude to its original value. This hysteresis disappears only in the limit
α→ 0, i.e. quasistatically slow scenarios.

With nonzero α rate, both the continuous time SEP trajectories and their stroboscopic locations are
qualitatively different on the decreasing ramp from those of the increasing one. Fig.S2 shows this for an
n = 4 step process. The continuous trajectory on the decreasing ramp (red curve) is much less spiral-like,
than the increasing counterpart. The sequence of stroboscopic points appears to be much more irregular
here than with positive α (as treated in Fig.S1), however, can be described with the simple formulas (S12)
and (S13).

The SEPs with phase space coordinates (±1 + δ∗E,2n, v
∗
E,2n) are plotted as orange dots in panel (c) of

Fig.S7 for ω = 1, T = 2π, where a hysteresis of the full snapshot phase space can also be seen.

S2 A snapshot hyperbolic point
Assuming that the motion remains all the time close to the origin, from the linearization of (2) we obtain

ẍ = x+ (ε+ αt) cosωt, t ≥ 0. (S14)

The homogeneous part of this equation describes an exponential instability with eigenvalues λ± = ±1, and
its general solution is c+et + c−e

−t. By looking for the particular solution in the form

xp = A cosωt+B sinωt+ Ct cosωt,
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Figure S2: Motion of the SEP about x = 1 in a scenario with full return to the original driving ampli-
tude ε = 0.02 (ω = 1). Green curve: trajectory of the SEP on the increasing ramp of length n = 4 for
α = 0.001 in continuous time . Red curve: trajectory of the SEP on the decreasing ramp for α = −0.001
in continuous time. Orange dots: analytic stroboscopic locations according to (4) on the increasing ramp,
and according to (S12) and (S13) on the decreasing one. Blue dots: numerically obtained SEP positions
initiated from x∗E,0, v

∗
E,0, and evolved under (2). We can see that the numerical result follows the analyti-

cal one quite well.

the coefficients turn out to be A = −ε/(1 + ω2), B = 2αω2/(1 + ω2)2, and C = −α/(1 + ω2). The general
solution is thus

x(t) = c+e
t + c−e

−t − ε

1 + ω2
cosωt+ 2

αω

(1 + ω2)2
sinωt− α

1 + ω2
t cosωt, (S15)

and the velocity is v(t) = ẋ(t). With initial conditions x(0), v(0) coefficients c± become determined and
take the form

c+ =
x(0)− x∗H,0 + (v(0)− v∗H,0)

2
, c− =

x(0)− x∗H,0 − (v(0)− v∗H,0)
2

, (S16)

with x∗H,0 = −ε/(1 + ω2), v∗H,0 = α(ω2 − 1)/(1 + ω2)2. By bringing the particular solution on the left hand
side, the general solution can be written as

x(t)− x∗(t) = c+e
t + c−e

−t. (S17)

The quantity

x∗(t) = xp(t) = −
ε+ αt

1 + ω2
cosωt+ 2

αω

(1 + ω2)2
sinωt (S18)

should be considered as the instantaneous position of a time-dependent hyperbolic point. Its velocity coordi-
nate is

v∗(t) = ẋp(t) =
(ε+ αt)ω

1 + ω2
sinωt+ α

ω2 − 1

(1 + ω2)2
cosωt. (S19)

We see again that the shifts appearing in the parantheses of coefficients c± are just the initial position of the
hyperbolic point and its velocity. It is remarkable that the eigenvalues about the time-dependent hyperbolic
point remain λ± = ±1 at any time, the same as the stability exponents of the undriven (ε = α = 0) problem.
Moreover, this also holds true for the eigenvectors. The one belonging to λ+ = 1 is (1, 1), the local unstable
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direction is thus the main diagonal, the other one is (1,−1) the local stable direction is the sub diagonal.
Expressions (S18), (S19) can therefore be considered to define a snapshot hyperbolic point, SHP:

x∗H(t) = x∗(t), v∗H(t) = v∗(t).

On the stroboscopic map x∗H(t = nT ) = x∗H,n and v∗H(t = nT ) = v∗H,n. The expressions in (5) and (6) of the
main text are the phase space coordinates of the SHPs determined here taken with ω = 1.

S3 Break-up of an outermost KAM torus

(a) (b) (c)

(d) (e)

Figure S3: (a) Tori of system (1) generated from initial condition x = 0.444236 (red), x = 0.5 (black),
0.65, 0.85 (blue), v = 0 (ω = 1). Blue dots represent a chaotic sea (generated from the initial condition
x = 0.4, v = 0) and is shown to be tangent to the outermost red torus. The red torus of Fig.6 is marked
here with a black line. (b) The stable manifold of x∗H,3 initiated from a segment of length dl = 0.1 plotted
at time zero (pink curve), along with the set of the initial tori shown in panel (a). The inset shows that
the pink and red curves have no common points yet. (c) The dl = 0.1 stable manifold of x∗H,4 plotted at
time zero (pink curve), along with the set of the initial tori of panel (a). The inset shows that the pink
and red curves intersect (but the pink and black ones do not), i.e. indicating that nc = 4 for the outermost
torus. (d), (e) Shape of the set of tori of panel (a) after n = 3 and n = 4 iterates. In panel (e) the red
torus comes close to the origin, proving that nc = 4. The applied scenario is: ε = 0.01, α = 0.001. In
panels (d) and (e) orange dots mark snapshot elliptic points of the appropriate time instances given by
(4).
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S4 The PRA field compared with initial tori

(a) (b) (c)

Figure S4: Level curves of the PRA field for periods n = 4 (a), n = nc = 5 (b), and n = 6 (c) overlayed by
the red initial torus of Fig.6. Dark regions mark irregular level lines of the PRA field. In panel (a) the red
torus lies among smooth level lines. It enters part of the dark region by n = nc, and this is more enhanced
by n = 6.

(a) (b) (c)

Figure S5: Colormap of the PRA field and the red torus with the same parameters than those of Fig.S4.
Here, irregular regions are indicated by the mixing of colors. As seen before, the red torus enters this ir-
regular region on panel (b), where n = nc = 5. The colorbars indicate the PRA value.
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S5 Scenarios with decreasing driving amplitudes
In scenarios taken with negative α rates torus break-up might take place, just like in scenarios with positive
rates. This is illustrated by Fig.S6 where we see part of the initial phase space belonging to ε = 0.04, the
end stage of the scenario at ε ≈ −0.0856, and the stationary case belonging to this driving amplitude. Panel
(b) illustrates the strong deformation of snapshot tori. This is the break-up instant for the yellow torus,
while the red one broke up 2 iterates earlier. The extension of the chaotic sea in this last stage is larger
than in the initial state (a) due to the break-up of large outer tori (e.g. the yellow one) surrounding the
stationary chaotic sea at ε = 0.04. In the stationary phase portrait belonging to the final value of the driving
amplitude, ε ≈ −0.0856 (c), the chaotic sea is also larger than in panel (a), clearly indicated by the red and
yellow trajectories being parts of the chaotic sea in this case. This phenomenon can be attributed to the
driving amplitude changing its sign during the scenario. In some other cases the size of the chaotic region
in the end state turns out to be larger than in the stationary case belonging to this driving amplitude, but
in our system, in these cases tori do not break up.

(a) (b) (c)

Figure S6: Snapshot phase portrait in a scenario with decreasing amplitude α = −0.001 (ω = 1). (a)
The initial phase space with stationary ε = 0.04 generated from 21 symmetrical initial conditions between
x = −1.4, · · · 1.4 (blue points), x = 1.35 (red torus) and x = −1.52 (yellow torus), while v = 0. (b) End
state of the scenario ε = 0.04 α = −0.001 after n = 20 iterates at final driving amplitude ε ≈ −0.0856. (c)
Stationary case belonging to ε ≈ −0.0856 visualized with the same set of initial conditions as in panel (a),
where we can see that the initial conditions for the red and yellow trajectories are now inside the chaotic
sea.

S6 Scenarios with full return of the driving amplitude
In scenarios containing an increasing and a decreasing ramp with the same magnitude of α leading to a full
return of the driving amplitude, a hysteresis takes place. The end state deviates from the initial state due to
the nonzero rate of change of the amplitude, and because the snapshot tori at the end of the increasing ramp
are not tori of the stationary case belonging to that driving amplitude. An illustrative example is given in
Fig.S7, where an increase of the extension of the chaotic sea can again be seen. Part of the inward extension
is due to the break-up of all tori existing originally in the white region between the blue band and the red
tori.
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(a) (b) (c)

Figure S7: Snapshot phase portraits in a scenario with full return of the driving amplitude (ω =
1). (a) The initial phase space with stationary ε = 0.02 generated from initial conditions x =
0.7, 0.8, 0.9,−0.6,−0.7,−0.8,−0.9 (red tori), 0.5 (blue dots representing a chaotic sea), while v = 0. (b)
Mid state of the full scenario, i.e. the end state of scenario: ε = 0.02, α = 0.0005 after n = 20 iterates at
maximum driving amplitude ε ≈ 0.0828. (c) End state after the decreasing part of the scenario taken with
rate −α, and starting with panel (b) as initial condition, after an additional n = 20 iterations back at the
initial amplitude ε = 0.02. In panels (b) and (c) orange dots mark the snapshot elliptic points of (4) with
n = 20, and of (S12), (S13) with 2n = 40, respectively.
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