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ABSTRACT

Based on the example of a paradigmatic area preserving low-dimensional mapping subjected to different scenarios of parameter drifts, we
illustrate that the dynamics can best be understood by following ensembles of initial conditions corresponding to the tori of the initial system.
When such ensembles are followed, snapshot tori are obtained, which change their location and shape. Within a time-dependent snapshot
chaotic sea, we demonstrate the existence of snapshot stable and unstable foliations. Two easily visualizable conditions for torus breakup
are found: one in relation to a discontinuity of the map and the other to a specific snapshot stable manifold, indicating that points of the
torus are going to become subjected to strong stretching. In a more general setup, the latter can be formulated in terms of the so-called
stable pseudo-foliation, which is shown to be able to extend beyond the instantaneous chaotic sea. The average distance of nearby point pairs
initiated on an original torus crosses over into an exponential growth when the snapshot torus breaks up according to the second condition.
As a consequence of the strongly non-monotonous change of phase portraits in maps, the exponential regime is found to split up into shorter
periods characterized by different finite-time Lyapunov exponents. In scenarios with plateau ending, the divided phase space of the plateau
might lead to the Lyapunov exponent averaged over the ensemble of a torus being much smaller than that of the stationary map of the plateau.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0031660

In an earlier paper,1 we explored some properties of low-
dimensional Hamiltonian systems subjected to parameter drifts,
based on time-continuous descriptions. Here, we are extending
the investigation to discrete-time dynamical systems described
by mappings. In this class, new features can show up due to
discontinuities arising in the dynamics, which can also be a
consequence of physical reasons. The phase portrait of sta-
tionary maps can dramatically change with parameters, and
even fully chaotic phase spaces might exist without any Kol-
mogorov–Arnold–Moser (KAM) tori. These all can have conse-
quences for the dynamics observable in the presence of parameter
drifts. Some features, e.g., different forms of foliations, can be
studied in more detail since numerical investigations are much
faster for maps than for differential equations.

I. INTRODUCTION

Area preserving or Hamiltonian systems subjected to parame-
ter drifts are of interest in a number of instances:

• adiabatic invariants with quasi-statically slow drifts,2–5

• Lagrangian coherent structures in flows of arbitrary time depen-
dence (see, e.g., Refs. 6–10),

• plasma physics, where via manipulating the time-dependent mag-
netic structure at the plasma edge, the shape of the chaotic sea can
be influenced,11–14

• ultracold atoms, where a control parameter can be swept and
experiments are also possible,15,16

• atomic scattering off a vibrating surface,17

• chemical reactions across anharmonically driven barriers.18,19

The literature is, however, still sparse compared with that on
dissipative systems, where a clear analogy can be seen with climate
change. In systems of arbitrary time dependence, the concept of the
snapshot attractor was introduced.20–27 Here, long-term investiga-
tion of single trajectories is inappropriate and a consistent picture
can only be obtained by launching trajectories from a large num-
ber of different initial conditions, i.e., following an initially extended
ensemble in the phase space. This way, the snapshot attractor is
the image of the ensemble in a given time instant, as illustrated in
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Refs. 20, 28, and 29. This approach has successfully been applied
to large-scale climate models (for recent applications, see, e.g.,
Refs. 30–33), turbulence-related experiments,34 and most recently to
epidemics.35

By taking over the observation that individual time series are
not representative, we have shown in Ref. 1 that ensembles should be
used in Hamiltonian cases as well, although these have to be selected
with care. One candidate providing good insight is based on ensem-
bles starting on KAM tori of the initial phase space. As time goes
on, these ensembles evolve, and as long as they can be considered to
be closed curves, we have proposed to call them snapshot tori. Being
exposed to parameter drifts, at some point, most of the tori start to
break up; i.e., they cease to appear as closed curves by experiencing
intense stretching.

A more careful investigation has revealed1 that chaotic seas
in such systems are also time-dependent. Inside them, orbits are
expected to exist with locally hyperbolic nearby dynamics, a prop-
erty valid while the orbit is changing in time. Such points we called
snapshot hyperbolic points (SHPs). Their stable and unstable mani-
folds were found to intersect in several points at any time: a snapshot
horseshoe or a snapshot chaotic saddle36 is created.

In this paper, we illustrate analogous features of conservative
systems described by mappings. Our illustrative example, the double
wedge,37–39 is chosen with the intention of also illustrating a possi-
ble feature of maps, a discontinuity arising in the dynamics because
of physical reasons. Apart from this feature, the map is paradig-
matic and exhibits generic properties, e.g., a divided phase space in
a broad range of parameters. After introducing the map, reviewing
its most important stationary properties and defining the parame-
ter drift in Sec. II, we demonstrate that in a map with a structural
discontinuity in the dynamics, a snapshot torus breaks up, ceasing
to be a continuous curve, when it crosses the discontinuity line in
the phase space (Sec. III). Among others, we also find the surpris-
ing property that the snapshot torus might remain continuous and
exist even in a parameter range where the stationary problem is
fully chaotic for certain scenarios at least. Another condition also
holds, which occurs when a torus collides with a stable manifold
of a hyperbolic point belonging to a later time instant. An analog
question was discussed in Ref. 1 in the analytic knowledge of the
location of a snapshot hyperbolic point. Such a case is, however,
extremely rare, and such a point cannot be identified in our map
system either. We point out how one can proceed in such a general
case and show that any element of a hyperbolic cycle of the sta-
tionary system can be a good candidate for playing the role of the
aforementioned hyperbolic point. As discussed in Sec. IV, this is the
dynamical condition being the precursor of the torus becoming sub-
jected to intense stretching. This condition, as well as the properties
discussed in Secs. V–VII, holds for two-dimensional maps with-
out any discontinuity in their dynamics as well. This is illustrated
with the example of the standard map subjected to an increasing
nonlinearity parameter in the supplementary material.

We show that the dynamical character of an ensemble initiated
on a torus can be monitored in discrete-time systems, too, by a quan-
tity called ensemble-averaged pairwise distance (Sec. V). For most
of the tori, there exists a crossover time after which the ensemble
starts exhibiting chaos-like dynamics. The slope of this quantity can
be considered an instantaneous Lyapunov exponent. The crossover

time depends on both the torus in question and the drift scenario
to which the system is subjected. The strongly non-monotonous
parameter dependence of the phase space pattern in the station-
ary problem might lead to the alteration of stronger and weaker
dynamical instability (larger and smaller instantaneous Lyapunov
exponents) along a single scenario in the presence of parameter
drifts (Sec. V). In Sec. VI, non-monotonous drifts are considered.
When the scenario ends in a plateau, tori seem to survive during
long periods in chaotic seas belonging to the plateau value. The Lya-
punov exponent averaged over the ensemble of a torus can be much
smaller than that of the stationary map of the plateau. In scenar-
ios with full return, pronounced hysteresis occurs. Investigating the
structure of snapshot chaotic seas (Sec. VII), we demonstrate that
the stable and unstable foliations remain inside of them, but a spe-
cial version, the so-called stable pseudo-foliation, is shown to be
able to extend beyond the instantaneous chaotic sea. A general for-
mulation of the dynamical condition for torus breakup can also be
given in terms of this foliation. Auxiliary information is given in the
supplementary material.

II. THE DOUBLE WEDGE

A. The fixed angle case

As a paradigmatic system, we choose the double wedge.37–39

Take two slopes facing each other, which form the same angle α with
the horizontal. On one of these slopes, we drop a ball that starts to
bounce perfectly flexibly. The motion of the ball is naturally followed
in discrete time by using the components of the velocity vector par-
allel (u) and perpendicular (w) to the slope, taken at the moments
when the ball collides with the slope. Frictional forces are negligible,
and the ball is considered point-like. Then, the relationship between
the velocity components un, wn of the nth collision and the compo-
nents un+1, wn+1 characteristic of the next collision can be derived
from the equations of oblique projection.37–39

The component w perpendicular to the slope is always taken
at the moment after the collision. To make the presentation clearer,
it is worth using dimensionless velocities and the square of the w
component instead. With the notation z = w2, the mapping is38,39

un+1 = un − 2
√

zn tg α,

zn+1 = zn

(1)

if u2
n+1 + zn+1 ≤ 1; otherwise the mapping is described by

un+1 = −un +
√

zn tg α −
√

zn+1 tg α,

zn+1 = −zn

(

1 +
1

2
sin 4α tg α

)

− u2
n

1

2
sin 4α ctg α

+ un

√
zn sin 4α + 2 cos2 α.

(2)

Switching between the two formulas occurs when the ball
jumps on the opposite slope.37–39 This can be formulated by defining
a line in the phase space,

u(z) = 2
√

z tg α −
√

1 − z, (3)
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and realizing that (1) and (2) hold when un ≤ u(zn) and un ≥ u(zn),
respectively. Line (3) expresses the condition where a structural dis-
continuity occurs in the dynamics, and we call it, therefore, the line
of discontinuity.

Plotting the perpendicular z as a function of the parallel u yields
a Poincaré map of the phase space. Its extension is restricted to a
specific range; this is the parabola z = 1 − u2 and the area below it
[see Fig. 1(a)].

The phase portrait is that of a mixed phase space for angles
45◦ < α < 90◦. The particular pattern, however, depends on the
angle in a strongly non-monotonous way; see Figs. 1(b)–1(f). If α is
less than 45◦, no macroscopic sized tori are found numerically, and
all initial conditions yield chaotic motion, as stated in Refs. 37–39,
and illustrated, e.g., in Fig. 1(f). The case of α = 45◦ corresponds to a
special chaos-free phase space in which only quasiperiodic motions
belonging to periodic or constant z values can occur [Fig. 1(e)].

For the 70◦ and 55◦ wedges, since all tori are above the line of
discontinuity (green curve), quasiperiodic motions only occur when
the ball bounces on opposite slopes. In the 50◦ case, because there
are tori under the green curve, the ball can bounce both on the same
and opposite slopes within a period of approximate return of three
bounces.

For bounces between the opposite slopes, there exists a single
fixed point with coordinates u∗ = 0 and

z∗ =
1

2 − cos(2α)
. (4)

This is the center point (marked with an orange dot) of the inner-
most tori in the panels, which corresponds to a movement in the real
space where the ball bounces between two exactly opposite points,
always arriving perpendicular to the slope. This periodic motion is
always unstable below 45◦ (the fixed point is part of the chaotic sea),
while above 45◦, the fixed point is elliptic.

There exists of course an infinity of higher order cycles in the
system; see Ref. 38 for example. Here, we give the coordinates of a
three-cycle with two points above the discontinuity line, like the one
found in Fig. 1(d), as a function of α. The leftmost element is located
at

u∗
0 = −

sin α

0
z∗

0 =
cos2 α

02
, (5)

where 02 = sin 4α tg α + 5/2, while the uppermost point is at
u∗

1 = 0, z∗
1 = 4z∗

0 and the rightmost one at u∗
2 = −u∗

0 , z∗
2 = z∗

0 . This
cycle only exists between angles 30◦ and 60◦.

B. Wedge with a changing angle

When turning to cases when the common angle of the wedges
changes with time, there are different options to make the mapping
non-autonomous. We take the simplest possible extension of the
model by allowing the angle to be time-dependent in the sense that
the fixed α value is replaced by a collision-number-dependent αn; in
other words,

α → αn (6)

is taken in (1) and (2) (see Fig. 2). The flight after the nth bounce
starts from a wedge of angle αn, and the formulas determine the
new velocity coordinates for when the particle arrives at the slope

FIG. 1. (a) The green discontinuity line (3) and how it divides the phase space
between mappings (1) and (2), with α = 50◦, the red parabola being the limit of
validity of the dynamics. (b)–(f) Phase portraits for angles α = 70◦, 55◦, 50◦, 45◦,
and 40◦. In each case, trajectories were started from nine initial conditions so that
u0 is always 0 and z0 = 0.1, 0.2, . . . , 0.9, and each starting point was followed up
to 1000 iterations. Note that the phase portraits are not monotonously dependent
on the angle.

for the n + 1th collision. After this, we change the angle from αn to
some αn+1 and let the particles fly afterward according to (1) and (2)
applied with αn+1.

As a consequence, in the nth iterate, the discontinuity condi-
tion (3) is replaced in the phase space (u, z) by

u(z) = 2
√

z tg αn −
√

1 − z. (7)
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FIG. 2. Schematic picture of the bouncing ball dynamics on the wedge with a
changing angle. The motions described by mappings (1) and (2) are attributed to
cases (a) and (b), respectively, with z = w2 taken in the formulas.

A more realistic extension of the model is described in Sec.
S1 of the supplementary material where the angle is changed dur-
ing the flight; i.e., after starting from a slope of angle αn, the next
bounce occurs on a slope of angle αn+1. Since the numerical prop-
erties of the two models hardly differ, as also illustrated by Fig. S1
of the supplementary material, we shall study the simple approach
corresponding to (6) throughout the paper. The stationary map-
pings (1) and (2) follow from the derivation given in Sec. S1 of the
supplementary material as a special case.

A scenario is a sequence of the angles αn, starting from some α0.
We shall typically fix the final angle αf, too, and apply a fixed, signed
increment 1α in N steps, the length of the scenario. This way, the
increment can be written as 1α = (αf − α0)/N. A scenario like this
will be denoted by the triplet [α0, αf, N].

We shall also need the inverse map. For a fixed angle, it is of the
same form as (1) and (2), just all u variables are to be replaced by −u.
In this new form, n of course means the index of the initial bounce in
the inverse, i.e., the last bounce in the direct dynamics. The inverse
of the non-autonomous map turns out to keep this property. Since,
however, the new angle value is set in the direct dynamics after the
flight is over, in the inverse, the dynamics should be taken with the
angle changed earlier, and accordingly, when applying the inverse

map in the nth iterate, the discontinuity line is given by (7) with αn

replaced by αn+1 and u by −u.

III. SNAPSHOT TORI AND IMPLICATIONS

A. Evolution of tori in different scenarios

In Ref. 1, it was shown that Hamiltonian systems with param-
eter drift are best described with special initial ensembles corre-
sponding to the tori of the stationary system, and the evolution of
these ensembles is worth following under the parameter drift. The
shape of these ensembles is called snapshot tori at every instant
before they break up. We apply the same method to the investigated
discrete-time systems.

Figure 3 shows a typical scenario, with a few snapshot tori fol-
lowed. One sees that the tori become more and more deformed as
time goes on. In Fig. 3(c), a new feature appears: the tori become cut
into several pieces. This is a mechanism characteristic to discrete-
time systems with a discontinuity in the form of their dynamics.
In the time-dependent system, the validity of the dynamics remains
limited to the area under the red parabola, and when the snapshot
tori move and deform, some of their parts would end up outside the
parabola if it was not for the aforementioned limitation. What hap-
pens instead is that these tendrils are abruptly cut off from the tori,
which thus cease to remain closed curves and, therefore, break up.
The cutoff parts then appear elsewhere in the phase space along the
edge of the parabola, facing inwards with their vertex. Three of the
larger cutoff tendrils can be observed in Fig. 3(c), as well as some still
intact tori in the middle. Additionally, it is worth monitoring, along
with the tori, the time evolution of chaotic seas as well. One observes
that their instantaneous shape, the so-called snapshot chaotic seas,
does not enter the cutoff tendrils of the snapshot tori (see Fig. S5 in
the supplementary material).

Figure 4 illustrates the strong dependence of the final state on
the scenario. The initial state is the same, α0 = 70◦ in all three cases,
the difference between panels (a) and (b) is the final angle with the
same number of steps, while the difference between panels (a) and

FIG. 3. Evolution of snapshot tori of the scenario [70◦, 50◦, 10]: (a) starting situation n = 0, (b) n = 5, and (c) n = N = 10. The initial conditions at α0 = 70◦ for the tori
are z0 = 0.4, 0.5, 0.6, 0.7, while u0 = 0 for all. One can observe tori cut into several pieces in the last picture with some cutoff tendrils, which are, however, not yet strongly
stretched.
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FIG. 4. The tori of Fig. 3 at the end of three different scenarios. (a) [70◦, 50◦, 5], (b) [70◦, 40◦, 5], and (c) [70◦, 50◦, 10]. The last picture is the same as Fig. 3(c), and one
could notice that the scenarios of (b) and (c) are only different in one parameter from that of (a).

(c) is just in the number of steps. It is evident that a change in
even one of the parameters of the scenario can lead to significant
differences in the final outlook of the snapshot phase space, a prop-
erty that can be better observed in this discrete-time system than in
continuous ones.1

Another remarkable feature, the dramatic difference between
the stationary phase space and that found with the parameter drift, is
illustrated by the next picture (Fig. 5). Here, snapshot tori are shown
to be present at angles where no macroscopic tori exist in the station-
ary case. Observe that in panel (b), the angle is α13 = 42◦, meaning
that the scenario has now entered the region where, in the station-
ary case, the whole phase space is chaotic. It is, therefore, remarkable
that up until this point, all of the snapshot tori have remained intact,
closed curves. We can see the ending of this feature at α15 = 40◦

in (c), where the tori start to become cut into pieces. Note that the
survival of tori under 45◦ is also exemplified in Fig. 4(b) but in a

scenario in which only a single step (the last one) falls below that
boundary.

B. The discontinuity condition

Figure 6 helps unfolding the condition for a snapshot torus
becoming cut into pieces. Here, the evolution of a single torus is
followed over a few steps along with the n-dependent line of dis-
continuity (7). In panel (a), the torus just comes close to the red
bounding parabola but does not touch it, while it has no common
points with the green discontinuity line either. One step later, in
panel (b), the torus crosses the instantaneous line of discontinu-
ity, meaning that its arcs above and below this line will be mapped
according to different formulas; therefore, the next image of the
torus appears as being cut into two pieces. As we go further into
the scenario, more and more pieces of the torus will be cut off this

FIG. 5. Snapshot tori of the scenario [55◦, 35◦, 20], with initial conditions z0 = 0.375, 0.4, 0.475 at α0 = 55◦ and u0 = 0 for all. The largest torus is close to the outermost
KAM torus, separating the chaotic sea from the torus-dominated regime. Panels (a)–(c) display the steps n = 9, 13, 15 of the scenario.
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FIG. 6. Snapshot tori evolving from the initial condition u0 = 0, z0 = 0.712 28 at α0 = 70◦ [approximately corresponding to the outermost KAM torus in Fig. 1(b)] displayed
at steps n = 10 in (a), 11 in (b), and 12 in (c) of the scenario [70◦, 50◦, 20]. The green curve is the time-dependent boundary between the mappings (1) and (2), given by (7).

way. It is thus not the crossing of the parabola but rather the crossing
of the discontinuity line that causes the breakup of the torus. There-
fore, we call this mechanism as the discontinuity condition of torus
breakup and denote its instant by n∗. Indeed, points on the line of
discontinuity (7) are mapped on the entire parabola arc z = 1 − u2

for any n, as follows from (7) and the non-autonomous form of (1)
and (2).

IV. THE DYNAMICAL CONDITION

In Ref. 1, a general condition was formulated for the discrete
time nc from where a torus starts to be subjected to strong stretch-
ing. This was called the geometrical condition and differs from the
discontinuity condition formulated in Sec. III, which is also geomet-
rical in nature. For this reason, to highlight the distinction between
the two, here, we call the condition defined in Ref. 1 the dynami-
cal condition. While the discontinuity condition refers to the start
of the torus being cut into different pieces, the latter is of different
nature: it states that after the crossover time nc, the torus starts to
get strongly stretched and entrained into the chaotic sea in the form
of thin arcs. This process and the two breakup conditions are visu-
alized in Fig. S5 of the supplementary material. The instant nc, as
defined in Ref. 1, signals the moment when the initial torus intersects
the stable manifold of a hyperbolic point belonging to that moment,
which is obtained by iterating a short interval about it backward nc

times. Since one obtains finite-time manifolds this way, the shape of
the manifold depends somewhat on the length dl of the short seg-
ment which the iteration starts with. We choose dl to be comparable
with the size of the chaotic sea existing about the hyperbolic point.
Ideally, the hyperbolic point should be such a point that keeps its
hyperbolic character throughout a scenario, as an analog of hyper-
bolic fixed points of the frozen-in case. In Ref. 1, such points were
identified and found to move in the phase space as time goes on and
thus termed snapshot hyperbolic points (SHPs). An analytic approx-
imation of one specific SHP was also possible there; however, that is
rather the exception than the rule, and indeed, we will not be able to
find analytic expressions for any of the SHPs in our system.

Here, we apply the dynamical condition to discrete-time sys-
tems. In the lack of an explicit formula for SHPs, we shall approxi-
mate them with hyperbolic points of the stationary system belonging
to angles corresponding to time instant nc. The images of the short
segment of length dl represent a kind of manifold whose shape might
change dramatically from instant to instant due to the parameter
drift. We, therefore, call such manifolds snapshot manifolds.

We have to take into consideration that, contrary to our expe-
rience with continuous-time systems, the nature—i.e., if the point is
elliptic or hyperbolic—of the (stationary) fixed points is not always
constant through the range of the angle values of the scenario. To
give an example, the period-one fixed point (4) is hyperbolic for
α < 45◦ where the whole phase space is chaotic, and elliptic for
α ≥ 45◦ where tori can be observed around it, as can be seen in
Figs. 1(b)–1(d). To successfully apply the dynamical condition, it is
necessary to initiate the construction of the snapshot stable mani-
fold in a region where the fixed point is hyperbolic and therein lies
the importance of the knowledge of the nature of fixed points.

An example of the validity of the dynamical condition with the
period-one fixed point is shown in Fig. 7 using the scenario [50◦, 30◦,
20]. Panel (a) displays at α0 = 50◦ the stable manifold (pink curve)
of the fixed point belonging to α8 = 42◦ obtained by iterating a short
segment [pink line in panel (b)] about this point backwards n = 8
times. The initial shape of the torus of interest [which is inside an
elliptic island in this case, see Fig. 1(d)] is plotted in blue in panel
(a), and one sees that these two curves have just intersected each
other and the dynamical condition is thus fulfilled. Panel (b) illus-
trates that the condition corresponds indeed to a situation when the
eighth image of the torus (blue curve) intersects the initial segment
of the stable manifold. The torus has indeed approached a hyper-
bolic point (and the surrounding hyperbolic region), and from here
on (for n > 8), it is subjected to strong stretching. We thus conclude
that the time instant of the dynamical condition is nc = 8.

The fact that the dynamical condition is similar to the one
shown here in maps without any discontinuity is illustrated with
the example of a non-autonomous standard map in Sec. S2 of the
supplementary material; see Fig. S3.
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FIG. 7. (a) The snapshot stable manifold (pink curve) of the hyperbolic fixed
point (4) of α8 = 42◦, iterated backwards n = 8 times to α0 = 50◦, where the
displayed stationary torus (blue curve) of the initial condition z0 = 0.65, u0 = 0
lies. The two curves intersect, indicating that this will be the critical moment nc
according to the dynamical condition. (b) The result of scenario [50◦, 30◦, 20] at
the n = 8th iterate, with the same torus seen stationary in (a). At this instance,
the torus comes closer than the end points of the pink segment to the hyperbolic
point fulfilling the dynamical condition. Also remarkable is that at α0 = 50◦, the
fixed point is elliptic, but the snapshot stable manifold exists, nevertheless, at this
angle.

The example of Fig. 7 also draws attention to a rather counter-
intuitive phenomenon, namely, that stable manifolds exist at the
initial state of the scenario (α0), in spite of the fact that the (station-
ary) fixed point is elliptic there; it has changed its nature by reaching
this angle. This indicates that the only thing that matters in this
regard is that the fixed point is hyperbolic in the region from where
the stable manifold is initiated irrespective of whether its nature
changes during the scenario.

In Fig. 7(b), several cutoff pieces of the torus can be observed,
which indicates that the breakup according to the discontinuity con-
dition had already happened. In our system, the trend is that usually,
the discontinuity condition is fulfilled first.

Since not all scenarios end under 45◦, it is necessary to find
other periodic cycles such that they are hyperbolic in the region
α ≥ 45◦ in order to apply the dynamical condition. The system’s
lacking another single fixed point necessitates that to this end, we
look for higher order cycles. It would be convenient to first use a
second-order cycle for our analysis. Its range of existence happens,
however, to be 0 ≤ α ≤ 45◦, meaning that it will not be of use for us.

Alternatively, we are going to work with a three-cycle the loca-
tion of whose leftmost point is given by (5). An example for the
dynamical condition provided by the uppermost point of this cycle
can be seen in Fig. 8 in a scenario with α0 = 67◦, αf = 52◦, and
N = 15. The nature of this cycle turns out to be the following. At
60◦, the cycles start out elliptic, but this quickly changes at around
59.25◦, from where it is hyperbolic before it reaches approximately
53.25◦, when it again turns elliptic up until 44◦, with a brief hyper-
bolic period between 52.5◦ and 51.5◦. The scenario investigated in
Fig. 8 ends at αf = 52◦; therefore, this is indeed a suitable angle for
the stable manifold to be initiated from since the cycle is hyperbolic
here. Again, we see that the discontinuity condition was fulfilled
first, and also that the stable manifold exists in Fig. 8(a). This is

FIG. 8. (a) The snapshot stable manifold (pink) of the uppermost point of the
three-cycle (5) of αf = 52◦ iterated backwards n = 15 times, intersecting the
stationary torus (blue) of the initial condition z0 = 0.6, u0 = 0 at α0 = 67◦. It
is remarkable that at this angle, the three-cycle does not even exist; however,
its snapshot stable manifold does. (b) The same torus (blue) at the end of the
scenario [67◦, 52◦, 15], intersecting the short pink segment around the uppermost
cycle point, thus illustrating the validity of the dynamical condition: nc = 15.

remarkable because the starting angle of the scenario is α0 = 67◦,
which is outside the range of existence of this cycle. Stable manifolds
can thus survive not only in ranges where the fixed point is ellip-
tic, but even in ranges where it does not even exist, reinforcing the
idea that the only thing that matters here is that the fixed point is
hyperbolic at the instant of nc.

In Sec. VII, we show why a precise identification of a snapshot
hyperbolic point is, in general, not needed for the formulation of the
dynamical condition. What is needed instead is the stable foliation
of the snapshot chaotic sea, which turns out to be an appropriate tool
in any system and can also be approximated by the stable manifold
emerging from properly chosen stationary cycle points.

V. DYNAMICAL INSTABILITY

The dynamical instability of stationary chaotic systems is typi-
cally characterized by the average growth rate of distances between
pairs of points initially lying very close to each other.40 In Ref. 1, it
was shown that this can be generalized for a snapshot torus by con-
sidering the quantity ρ(t) = 〈ln r(t)〉, which we will call ensemble-
averaged pairwise distance (EAPD) with r(t) being the distance of the
point pairs at time t averaged over the ensemble (which is denoted by
the brackets). It was also demonstrated that the dynamical instability
of time-dependent Hamiltonian systems, when followed through the
scenario of a snapshot torus, exhibits a pattern such that the distance
initially hardly changes; however, the growth rate turns exponential
when the snapshot torus breaks up. After this instance, the dynamics
is chaotic and the Lyapunov exponent read off from the exponential
range is unique in the sense that it characterizes the snapshot torus
and the scenario and can only be measured some time after the start
of the process.

A typical example of the double wedge system is shown in
Fig. 9 with two scenarios ending under 45◦. Now, the tori have two
breakup conditions: the discontinuity (n∗) and dynamical (nc) con-
ditions. Both these instances are displayed in the figure, as well as
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FIG. 9. Dynamical instability in the scenarios [50◦, 30◦, 100] and [50◦, 35◦, 100]
for the initial torus generated from u0 = 0, z0 = 0.65 for both. The positions of
both breakup conditions are marked with pink arrows for the upper and light blue
arrows for the lower curve, with nc visibly being close to the starting point of
the exponential growth in both cases. As expected, the breakup occurs later in
the second, slower scenario. The Lyapunov exponent λ characteristic of these
processes are clearly observable as the slopes of the fitted red lines.

the values of the Lyapunov exponents. As we can see, the trend that
n∗ < nc holds true here as well. One can also observe that it is nc that
appears to be the crossover time between a hardly changing phase
and an exponential growth since it is situated at the beginning of
the slopes. The reason for this is that while the discontinuity condi-
tion has parts of the torus cut off and thus making it break up, this
not necessarily means that points of the torus are subjected to strong
stretching [see Fig. 3(c), for example], which would lead to chaotic
behavior.

The dynamical instability can be monitored for any torus of
the initial phase space in the same scenario, as Fig. S4 in the
supplementary material demonstrates for the standard map. The
second curve in Fig. 9 illustrates that the crossover time nc and the
Lyapunov exponent of the exponential growth are different. In fact,
all particular EAPD curves depend not only on the torus on which
the ensemble is initiated but also on the scenario. For slower sce-
narios, nc is expected to be larger and—in the spirit of the theory of
adiabatic invariants2–5—is infinity for infinitesimally slow scenarios.
The fact that the crossover times nc found in our examples are on the
order of tens of the iterate illustrates that the scenarios are relatively
fast.

When investigating scenarios having a significant part within
the α > 45◦ range, one finds that a clearly observable fine struc-
ture emerges, as Fig. 10 illustrates. The outlook of the fine structure
turns out to be dependent on the nature of the cycles throughout

FIG. 10. Dynamical instability in the scenario [70◦, 30◦, 200] with the initial torus
generated from u0 = 0, z0 = 0.7. The angles (rounded to a whole number in
degrees) where the three- or four-cycles change their nature to hyperbolic (ellip-
tic) are marked by blue (orange) arrows. Red (yellow) lines are fitted onto the
steeper (flatter) parts and consequently correspond to larger (smaller) Lyapunov
values. It is remarkable that blue arrows are generally followed by larger Lyapunov
exponents, while orange ones are followed by smaller ones, revealing the nature
of fixed points as a governor of the fine structure of the dynamical instability of
snapshot tori.

the scenario. In demonstrating this in Fig. 10, we use two cycles:
the three-cycle whose definition was described in Sec. II A and its
nature in Sec. IV, and a four-cycle with three members above and
one below the discontinuity line. The leftmost member is given
by (5) with a different (and much more complicated) value of 02.
This four-cycle starts out hyperbolic from around 67◦–63◦, and then
it turns elliptic until 59◦ after which it remains hyperbolic until
its disappearance at about 56◦. The most important points where
the respective cycles turn hyperbolic are marked by blue arrows
in Fig. 10, whereas orange ones indicate the starting points of the
elliptic intervals. An important observation can be made based on
the positions of the arrows; namely, that the parts where the cycles
are elliptic are flatter (the Lyapunov value is smaller), while the
hyperbolic parts are steeper (with larger Lyapunov values). Thus,
the nature of stationary periodic cycles seems to leave its fingerprint
on the fine structure of the dynamical instability with hyperbolicity
accelerating and ellipticity slowing the process.

After the first (blue) arrow in Fig. 10, there is a small delay in the
distance growth. The cause of this is that the snapshot torus actually
has to come close to the hyperbolic point; i.e., the crossover time
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nc has to be reached, whose value in this scenario is 30, which is
about where the first slope starts. When comparing Figs. 10 and 9,
one finds that the average Lyapunov value (i.e., the one obtained
by fitting to the whole exponential section) and even those of the
steeper slopes found in the former are smaller than the ones in the
latter. This is in line with the interpretation explained above: under
45◦, the full stationary phase space is dominated by chaos and this
results in a consistent, much stronger exponential distance growth.

VI. SCENARIOS WITH A NON-MONOTONOUS

PARAMETER CHANGE

A. Scenarios with plateau ending

It is interesting to investigate scenarios in which a monotonous
change in the angle, considered up to now, is augmented with
another part. First, we choose the new part to be a plateau; i.e., the
scenario ends with a fixed angle, which remains unchanged up to
unlimited times. An interesting question is how the phase portrait
characteristic of this stationary angle becomes visible in the fate of
snapshot tori.

As a first example, we start with α0 = 70◦ and a relatively large
[but not the largest in Fig. 1(b)] torus. The final angle, i.e., the
plateau value will be αp = 55◦. Since the phase portrait belonging
to it, shown in Fig. 1(c), will be solely responsible for the time evo-
lution of the torus from here on, we superimpose a characteristic
feature of it when plotting the instantaneous shape of the snapshot
torus. This feature is the outermost KAM torus specified with some
finite numerical accuracy (green curve in Fig. 11) of the α = 55◦

case. It, therefore, signals the boundary between tori and the chaotic
sea on the plateau. Four characteristic instances are shown in Fig. 11.
Panel (a) exhibits the snapshot torus at the instance of reaching the
plateau: since an angle increment 1α = −0.5◦ is used, this is the
30th iteration. The snapshot torus is seen to be completely outside
of the green curve, i.e., inside the chaotic sea of the stationary phase
space of the plateau. The next panels show the points of the torus
(in blue) 5, 15, and 50 iterates later. Since the whole torus is located
inside the chaotic sea of the final state at n = 30, the dynamical
condition can be considered fulfilled at this instance; nc = 30. It is

remarkable that the breakup process of the snapshot torus appears to
take considerable time despite the fact that all of its points are inside
the stationary chaotic sea of the plateau. Note that in Fig. 11(a),
the torus is still intact; therefore, in this case, n∗ > nc holds. After
five more iterates [panel (b)], the torus just has a few pieces cut
down (according to the discontinuity condition), and remnants of
its structure are still observable after the 15th step on the plateau
[panel (c)] as well. For a full mixing, a much longer time is needed;
see panel (d). Since the snapshot torus turned out to be completely
in the chaotic sea upon arriving at the plateau, after longer times,
its points remain to avoid the elliptic island and spread out over the
chaotic sea. The situation is somewhat similar to what we saw in a
monotonic scenario ending below 45◦ (see Fig. 5) with the differ-
ence being that in that case, the phase space is uniformly chaotic at
the end. The divided phase space of our example leads to a much
more structured torus evolution than there.

The next example is similar, just the plateau is at αp = 50◦,
which possesses a much more divided phase space with four large
elliptic islands [see Fig. 1(d)], and the initial torus is larger. In anal-
ogy with the previous case, here, we plot in green the approximate
boundary of these four islands (three of which arise from a period-
3 quasiperiodic motion). The angle difference is 1α = −1◦, and the
plateau value is arrived at after 20 steps. As panel (a) of Fig. 12 shows,
the snapshot torus possesses points in all the islands and a few out-
side of them, too, at this instant. The fact that part of the snapshot
torus is located inside the large elliptic islands means that its points
will not be mixed even after longer times, as proven by the other
panels. In fact, even after 50 iterations on the plateau, long segments
of the snapshot torus appear as continuous curves.

These different time evolutions of snapshot tori lead to differ-
ences in the strength of dynamical instability on the ρ vs n curves;
see Fig. 13. In the first case (upper curve), we see that the expo-
nential increase starts immediately after arriving at the plateau. As
another feature, the saturation of ρ occurs not around zero, rather
at a slightly negative value, indicating that a full stretching across
the phase space is hindered by a small island in the middle [see
Fig. 1(c)]. The lower curve belongs to the scenario of Fig. 12. The
striking difference is that after an increase of ρ has started, the slope

FIG. 11. Scenario with a plateau at αp = 55◦. The preceding scenario is [70◦, 55◦, 30] with the initial condition u0 = 0, z0 = 0.55. The images of the blue torus are taken at
different times on the plateau; these are in order of labels (a) to (d): n′ = 0, 5, 15, 50. The green curve of the initial condition u0 = 0, z0 = 0.475, is practically the outermost
torus on the stationary phase space of the plateau [see Fig. 1(c)].
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FIG. 12. Scenario with a plateau at αp = 50◦, with the preceding scenario of [70◦, 50◦, 20] and the initial condition u0 = 0, z0 = 0.6. The images (a)–(d) are taken at
n′ = 0, 5, 15, and 50 steps on the plateau, respectively. The initial conditions of the green boundary tori are z0 = 0.695, 0.88 and u0 = 0 [see Fig. 1(d)].

is much lower and the λ value is significantly smaller. The reason
is that when evaluating ρ, the distance between all point pairs of the
original torus is considered, and because there are large islands at the
end state, containing points of the torus, pairs without an exponen-
tial divergence are also included in the average. When more torus
points fall into the chaotic sea when arriving at the plateau, the pat-
terns are different and the Lyapunov exponent can be larger as Figs.
S6 and S7 in the supplementary material illustrate.

A simple quantitative argument can be used to understand the
main features of the EAPD ρn after reaching the plateau. This is
based on the fact that points of the original torus are, upon arriving

FIG. 13. Dynamical instability of the plateau scenarios of Figs. 11 (upper curve)
and 12 (lower curve). As we can see, the Lyapunov exponent is much smaller on
the latter, which is due to parts of its snapshot torus being trapped in the elliptic
islands of the stationary phase space of the plateau.

on the plateau, either in the chaotic sea or in the quasiperiodic
islands of a stationary problem. We simply assume that the distance
of all pairs with at least one element in the chaotic sea follows the
rule

rc
n′ =

{

r0e
λn′

if n′ � n′
S,

rmax if n′ � n′
S,

(8)

where r0 is the distance of the point pairs when arriving at the
plateau, λ is the Lyapunov exponent of the chaotic sea in the station-
ary problem of the plateau, n′ is the number of iterations spent on
the plateau, n′

S is a saturation value after which pairs are stretched
practically across the whole phase space, and rmax (a quantity of
order unity) is their typical distance. Concerning pairs in the ellip-
tic islands, we simply assume that their distance practically does
not change: re

n′ ≈ r0. Since ρn is the average of all logarithmic dis-
tances ln rn of pairs, in this simplified picture, it has two terms only:
ρn′ = p ln rc

n′ + (1 − p) ln re
n′ = p ln (rc

n′/r0) + ln r0, where p repre-
sents the proportion of point pairs of the original torus with at least
one element in the chaotic sea at n′ = 0. Substituting (8), we obtain

ρn′ =
{

pλn′ + ln r0 if n′ � n′
S,

p ln rmax + (1 − p) ln r0 if n′ � n′
S.

(9)

This indicates that the value of the slope on the plateau is pλ. This is
close to the Lyapunov exponent of the stationary case only if practi-
cally the entire torus has arrived at the chaotic sea of the plateau. In
such a case, function ρn levels off close to unity as the upper graph
of Fig. 13 exemplifies. In other cases, e.g., the lower curve, the level-
ing off occurs at a much smaller value, reached along a much weaker
slope, both being proportional to p.

B. Scenarios with full return

Another interesting case to be investigated is the so-called
return-scenario, where after a monotonous parameter change with
1α, we apply the same scenario again, but this time using −1α,
and thus arriving back at the starting angle. Figure 14 shows a
typical example of return-scenarios, applied to the entire phase
space—including the chaotic sea—of α0 = 70◦ shown in panel (a).
The midpoint at 50◦, reached in 20 steps (1α is negative), can be
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FIG. 14. Hysteresis in a return-scenario. (a) The starting state of 70◦ is similar to that of Fig. 1(b). The initial conditions were chosen so that the tori (red) are about the same
distance from each other and to provide a clear representation of the chaotic sea (blue dots) as well. (b) End state of the scenario [70◦, 50◦, 20]. From here on, scenario
[50◦, 70◦, 20] is applied, and the end state can be seen in panel (c). It very much differs from the starting state, meaning that a hysteresis has taken place.

seen in panel (b), where several tori have already broken up accord-
ing to the dynamical and discontinuity conditions. Up to this point,
the scenario is just a typical monotonous parameter change consid-
ered in Secs. II–V. From here on, however, we switch the direction of
the parameter change while leaving all other aspects of the scenario
the same, meaning that the angle will now increase back to 70◦ after
the same number of steps (1α is positive). The end of this process
can be seen in panel (c). This, despite being at the same angle as the
starting state, very clearly differs from the phase space in panel (a),
meaning that the return-scenario results in a hysteresis of the phase
space. Out of the initial six tori, at the midpoint of the scenario—as
expected—a number (namely, 3) have already broken up; however,
it is remarkable that out of the remaining three, two have remained
closed curves until the end of the whole return-scenario as well. The
others are strengthening the chaotic sea, which in turn increases in
size. The presence of a hysteresis is a clear indication of the scenario
not being adiabatic.

VII. STABLE AND UNSTABLE FOLIATIONS OF THE

SNAPSHOT CHAOTIC SEA

Chaotic seas become snapshot chaotic seas when the system is
subjected to parameter drifts, while their shape is changing and their
extension is typically increasing as snapshot tori become broken up
and mixed into them. It is, therefore, useful to explore the stable
and unstable foliations of these novel type of chaotic seas, which
shed new light on the dynamical condition too, as we shall soon
demonstrate.

Traditional (stationary) chaotic seas are densely foliated by
these two types of foliations,40 which is approximated by the stable
and unstable manifolds of any hyperbolic cycle embedded into the
sea. The manifold of any given hyperbolic cycle is expected to run
approximately very close and practically parallel to those of the oth-
ers. Because of this, in spite of the fact that the chaotic sea is the

closure of all these manifolds, an appropriate visual impression can
be obtained by observing the manifolds of a single cycle point.

In cases with the parameter drift, if known, SHPs within the
chaotic sea can be used for the exploration of the foliations. With the
lacking of the knowledge of their precise location, a more qualita-
tive way can also be followed (which also holds in traditional cases):
consider a finite line segment running approximately parallel to the
anticipated direction of the stable (unstable) foliation and iterate it
backward (forward). The segment will be stretched and folded, and
after a sufficiently large number of iterations, it approximates the
foliation requested. An unprecise choice of the initial direction only
makes the convergence somewhat slower since the segment needs to
be turned into the appropriate direction during the first few steps,
but this is a minor effect as the convergence is expected to be expo-
nentially fast in the middle of the sea at least, where the dynamics is
uniformly hyperbolic.

Consider first the chaotic sea of a stationary case and mark in
it the points of a long chaotic trajectory. Locate a few line segments
in the middle of the sea. Iterate the segments backward (forward)
according to a scenario, along with the points of the chaotic sea.
The images of these points represent the backbone of the snap-
shot chaotic sea in states reached during the scenario (blue dots
in Fig. 15). The segments become stretched and folded and shade
(pink curves), after some time, the area defined by the blue points,
which can also be seen in Fig. 15. The shading is the consequence
of the fact that the original chaotic sea is dense, and this property
remains true when a scenario is applied: close to any blue points,
there are points of the foliations. One property changes; however,
points of originally quasiperiodic islands become entrained into the
sea in the form of white bands that increase in number and decrease
in widths.

The fact that the originally quasiperiodic regions become
mixed with the chaotic sea as time goes on shows that snapshot
chaotic seas are not dense. This leads to a remarkable property: when
making the same numerical experiment as above, just starting from
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FIG. 15. Snapshot stable (a) and unstable (b) foliations (pink lines) plotted along
with snapshot chaotic seas (evolved from stationary ones) arising by the end of
the scenarios [53◦, 63◦, 20] (a) and [67◦, 52◦, 30] (b) (blue dots). (These differ in
their initial states and lengths for visualization purposes only.) The foliations were
started from three vertical segments of length dl = 0.2 chosen in different parts
of the initial chaotic sea. The pink line has not yet fully shaded the blue-dotted
regions since the number of iterations is only 20 and 30 in these examples. White
bands can be seen entrained into the area covered by the snapshot chaotic seas,
signaling the breakup of tori.

a snapshot chaotic sea (instead of a stationary one), one finds that,
after some time, the approximate stable foliation extends outside the
snapshot chaotic sea of that instant: it develops tendrils, which leave
the blue-dotted region. This is a consequence of the fact that the ini-
tial segment crosses through both the snapshot chaotic sea and the
entrained white bands. Those parts of the segment that are originally
within the sea remain within, but the others stretch outside the sea.
We call, therefore, the foliation generated this way the stable pseudo-
foliation. An example for this is shown in Fig. 16(a). In contrast, the

FIG. 16. (a) Stable pseudo-foliation of a snapshot chaotic sea arising by the end
of the scenario [70◦, 50◦, 20]. This chaotic sea was then iterated back to its start-
ing state in 20 steps (blue dots), while simultaneously, the stable pseudo-foliation
(pink lines) was constructed by iterating three vertical segments of length dl = 0.2
by the same number of steps. Note that the pseudo-foliation leaves the snapshot
chaotic sea (blue-dotted region). (b) Unstable pseudo-foliation (pink lines) of a
snapshot chaotic sea. The snapshot chaotic sea arising by the end of the scenario
[70◦, 65◦, 10] was iterated over 30 additional steps with the same 1α = −0.5◦

as in the scenario, along with three vertical segments. This pseudo-foliation does
not leave the snapshot chaotic sea (blue-dotted region).

FIG. 17. The generalized dynamical condition for the same torus and scenario
as that of Fig. 8, using the stable pseudo-foliation. (a) The snapshot chaotic sea
(blue dots) at the end of the scenario [67◦, 52◦, 15] evolved from the initial chaotic
sea at 67◦, as generated from z0 = 0.1, 0.9, u0 = 0. A stable pseudo-foliation is
initiated within this snapshot chaotic sea from the pink segments, the location of
whose was chosen to represent all major parts of the snapshot chaotic sea while
not having any portions outside it. (b) The stable pseudo-foliation of the snapshot
chaotic sea at instant zero, obtained by iterating the pink segments backwards
15 times, plotted together with the investigated stationary torus (green) and the
chaotic sea itself (which has returned to its initial state).

unstable pseudo-foliation of a snapshot chaotic sea, however, does
not leave its area, as can be seen in Fig. 16(b). To generate the unsta-
ble manifold, one has to do forward iteration, a process during which
the snapshot chaotic sea grows (entraines tori) and thus does not let
the unstable foliation leave its area. The reason for the broken sym-
metry between the structure of stable and unstable pseudo-foliations
will be explored in a future paper.

This observation has an important consequence for the dynam-
ical condition of torus breakup discussed in Sec. IV. It is not
necessary to consider the stable manifold of a specific SHP (or an
approximant of it) and if it crosses the original torus, as any other
SHP would do. In fact, more generally speaking, it is best to consider
the whole stable pseudo-foliation of the snapshot chaotic sea. Thus,
a generalized formulation of the dynamical condition is that a torus
breaks up after nc iterates, in the sense that it will be subjected to
strong stretching from that time on when the stable pseudo-foliation
of the snapshot chaotic sea belonging to time instant nc first intersects
the initial torus. The advantage of defining the dynamical condi-
tion this way is that while providing a good approximation for the
value of nc, it does not require any knowledge of the SHPs whatso-
ever. Thus, this is a good formulation of the dynamical condition in
any Hamiltonian system with parameter drifts even those where no
analytic expressions for the SHPs exist, like the one studied here.
Figure 17 shows an example of this on the same scenario as that
of Fig. 8. We see that the foliation intersects the torus (for the first
time), meaning that nc = 15. Thus, for this scenario, the general-
ized dynamical condition provides the same result as the original
one. This is, however, not always the case: the two versions of the
dynamical condition might lead to slightly different ncs since the
construction starts from a segment of finite length dl, and only
a finite number of iterations are carried out. There is thus some
variance in the possible outcomes for nc.
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VIII. SUMMARY

When conservative systems described by mappings are sub-
jected to parameter drifts, snapshot tori originating from the
stationary system deform as time goes on, allowing for a similar
treatment of these systems to time-continuous ones described in
Ref. 1. In special cases, physical reasons might lead to a discontinu-
ity in the dynamics, leading to the cutting of the tori into pieces as
they hit the line of discontinuity, called the discontinuity condition.
While presenting this phenomenon as well, the following findings
of this study are applicable to any discrete system irrespective of the
presence of discontinuity in them. A critical event in the evolution
of the torus (or pieces of it) is when they enter a region of intense
stretching. From here on, the points originating from a stationary
torus become mixed into the snapshot chaotic sea. The dynamical
condition for the start of intense stretching translates to a crossover
time nc after which the ensemble starts exhibiting chaos-like dynam-
ics. Geometrically, this can be formulated as the intersection of the
original torus with the stable manifold of a snapshot hyperbolic
point (SHP). Since the precise locations of SHPs are not known
in general, approximate points can also be used, but the investiga-
tion of the foliations of snapshot chaotic seas provides the way for
a more general formulation. Specifically, it is the stable foliation of
the snapshot chaotic sea obtained by iterating a finite initial segment
backwards, termed the stable pseudo-foliation, which can be used as
a tool. This foliation extends beyond the instantaneous chaotic sea,
and the intersection of it with the initial torus provides the general-
ized dynamical condition. After the dynamical condition is fulfilled,
the stretching is so strong that the ensemble emanated from the
original torus exhibits exponential stretching on average, which can
be monitored by the so-called ensemble-averaged pairwise distance
(EAPD), denoted by ρ(t), the slope of which can be considered an
instantaneous Lyapunov exponent. The strongly non-monotonous
parameter dependence of the phase space in the stationary mapping
might lead to the alteration of stronger and weaker dynamical insta-
bility (larger and smaller instantaneous Lyapunov exponents) along
a monotonous parameter drift scenario. The dynamics of systems
with more general parameter drifts is rather complex and not yet
fully explored; however, one could expect that the main properties
found here, such as the breakup of tori and the deformation of the
chaotic sea, would remain the key features in those systems as well,
illustrated by the examples of scenarios ending on plateaus or with
full return.

SUPPLEMENTARY MATERIAL

See the supplementary material for the derivation of a more
general, although dynamically similar mapping, the case of the stan-
dard map as an additional example for conservative maps subjected
to parameter drifts, and additional figures on the temporal evolution
of chaotic seas as well as on plateau ending scenarios.
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