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Chaos in conservative discrete-time systems
subjected to parameter drift

Dániel Jánosi, Tamás Tél

S1 A more general non-autonomous map and comparison with the
simpler one

S1.a Ball remaining on the same slope
Two cases are considered depending on whether the ball hits the same slope on which it starts, or not; let
us begin with the first one. According to the laws of oblique projection, the relation between the data of the
nth and right before the n+ 1th collisions in orthogonal coordinates are

xn+1 = xn + vx,ntn, yn+1 = yn + vy,ntn −
g

2
t2n,

vx,n+1 = vx,n, vy,n+1 = vy,n − gtn,

where tn denotes the flight time. As the slope changes during the flight from αn to some αn+1, the ratios of
the position coordinates are (see Fig.2a):

yn
xn

= tgαn,
yn+1

xn+1
= tgαn+1.

Substituting here the x and y coordinates, one obtains

xn tgαn + vy,ntn −
g

2
t2n = xn tgαn+1 + vx,ntn tgαn+1,

from which a quadratic equation is obtained for the flight time tn:

g

2
t2n − (vy,n − vx,n tgαn+1)tn − yn

(
1− tgαn+1

tgαn

)
= 0.

The solution is:
gtn = vy,n − vx,n tgαn+1 +

√
Dn,

where Dn is the discriminant:

Dn = (vy,n − vx,n tgαn+1)2 + 2g

(
1− tgαn+1

tgαn

)
yn.

Expressing this with the mechanical energy εn = gyn + 1
2

(
v2x,n + v2y,n

)
, where εn stands for the energy per

mass at the nth bounce, we get

Dn = (vy,n − vx,n tgαn+1)2 + 2

(
1− tgαn+1

tgαn

)(
εn −

1

2

(
v2x,n + v2y,n

))
.
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The velocity components parallel (u) and normal (w) to the slope are expressed as:

un = vx,n cosαn + vy,n sinαn, wn = −vx,n sinαn + vy,n cosαn.

The inverse transformation is similar, and similar relations hold for the n + 1th collision as well. The
components of the impact velocity are:

ũn+1 = vx,n+1 cosαn+1 + vy,n+1 sinαn+1 = vx,n cosαn+1 + (vy,n − gtn) sinαn+1 =

=
cosαn

cosαn+1
un −

sinαn

cosαn+1
wn −

√
Dn sinαn+1,

w̃n+1 =− vx,n+1 sinαn+1 + vy,n+1 cosαn+1 = −vx,n sinαn+1 + (vy,n − gtn) cosαn+1 =

=− cosαn+1

√
Dn.

For elastic bounces the normal component just changes sign, while the parallel one does not change at all:
un+1 = ũn+1, wn+1 = −w̃n+1. Assuming that the new angle αn+1 has set in before the bounce and it is
thus fixed at the instant of the collision, the energy remains the same: εn = ε. In order to obtain an explicit
expression for wn+1, one has to express the discriminant Dn with components un, wn. After rearrangements,
we arrive at

w2
n+1 =

(
1

2
cos2 αn sin 2αn+1 ctgαn −

1

4
sin 2αn sin 2αn+1 − cos2 αn cos 2αn+1

)
u2n+

+

(
sin 2αn cos 2αn+1 − cos 2αn sin 2αn+1

)
unwn+

+

(
1

2
cos2 αn ctgαn sin 2αn+1 +

3

4
sin 2αn sin 2αn+1 − sin2 αn cos 2αn+1

)
w2

n+

+ 2

(
cos2 αn+1 −

1

2
sin 2αn+1 ctgαn

)
ε.

Dimensionless forms are obtained by measuring velocities in units of
√

2ε. With the new variable z = w2

the mapping reads as:

un+1 =
cosαn

cosαn+1
un −

sinαn

cosαn+1

√
zn − tgαn+1

√
zn+1

zn+1 =

(
1

2
cos2 αn sin 2αn+1 ctgαn −

1

4
sin 2αn sin 2αn+1 − cos2 αn cos 2αn+1

)
u2n+

+

(
sin 2αn cos 2αn+1 − cos 2αn sin 2αn+1

)
un
√
zn+

+

(
1

2
cos2 αn ctgαn sin 2αn+1 +

3

4
sin 2αn sin 2αn+1 − sin2 αn cos 2αn+1

)
zn+

+ cos2 αn+1 −
1

2
sin 2αn+1 ctgαn. (S1)

This from is valid as long as the yn+1 vertical coordinate of the next collision is positive, since a negative
value would indicate a location below the vertex, which is impossible. From here condition

u2n+1 + zn+1 ≤ 1

follows. This is formally the same as the condition formulated below (1), but when expressed with the initial
velocities un, zn, it is much more complicated.
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S1.b Ball jumping over to the other slope
Now consider the second case. Here, the governing equations are

xn+1 = xn + vx,ntn, yn+1 = yn + vy,ntn −
g

2
t2n,

vx,n+1 = vx,n, vy,n+1 = vy,n − gtn,
yn
xn

= tgαn,
yn+1

xn+1
= − tgαn+1,

where the upward direction is considered positive on the other slope, too (see Fig.2b). After substitution, a
quadratic equation is obtained for tn:

g

2
t2n − (vx,n tgαn+1 + vy,n)tn − yn

(
1 +

tgαn+1

tgαn

)
= 0,

whose solution is:
gtn = vy,n + vx,n tgαn+1 +

√
Dn,

where the discriminant Dn for this case reads as:

Dn = (vy,n + vx,n tgαn+1)2 + 2

(
1 +

tgαn+1

tgαn

)(
ε− 1

2

(
v2x,n + v2y,n

))
.

The transformation between slope-based parallel and normal velocity components has a similar form as in
the previous section for both the nth and n + 1th bounces. Using these, the impact velocities before the
n+ 1th bounce are:

ũn+1 =− vx,n cosαn+1 + (vy,n − gtn) sinαn+1 = − cosαn

cosαn+1
un +

sinαn

cosαn+1
wn −

√
Dn sinαn+1,

w̃n+1 =vx,n sinαn+1 + (vy,n − gtn) cosαn+1 = −
√
Dn cosαn+1.

The velocity components right after the bounce are obtained as in the previous case: un+1 = ũn+1, wn+1 =
−w̃n+1. After expressing discriminant Dn appearing in wn+1 with the appropriate components and using z
rather than w, the dimensionless form of the full mapping for this second case is obtained as:

un+1 =− cosαn

cosαn+1
un +

sinαn

cosαn+1

√
zn − tgαn+1

√
zn+1

zn+1 =−
(

1

2
cos2 αn ctgαn sin 2αn+1 −

1

4
sin 2αn sin 2αn+1 + cos2 αn cos 2αn+1

)
u2n+

+

(
sin 2αn cos 2αn+1 + cos 2αn sin 2αn+1

)
un
√
zn−

−
(

1

2
cos2 αn ctgαn sin 2αn+1 +

3

4
sin 2αn sin 2αn+1 + sin2 αn cos 2αn+1

)
zn+

+
1

2
sin 2αn+1 ctgαn + cos2 αn+1. (S2)

Note that the new mapping (S1), (S2) is more complicated than (1), (2), but the similarity in their
structure is much more evident here than earlier. In the limiting case of αn+1 = αn recursions (S1), (S2) go
over into the stationary mapping (1), (2).

It is worth comparing the results of the new dynamics (S1), (S2) with that of the simpler non-autonomous
mapping (1), (2) augmented with the time-dependent extension (6). Using the same scenario, the results in
the end state show only minor differences as visible in Fig.S1.

This reinforces the view that the essential results are not influenced by the choice of the mapping, and
thus the use of the simpler form is justified in the main text.

3



(a) (b)

Figure S1: Phase portraits at the end of scenario [70◦, 50◦, 10] with the simple mapping (1), (2), (6)
used in the paper (a) and the more complex one (S1), (S2) (b). Initial conditions for the tori are: z0 =
0.4, 0.5, 0.6, 0.7 and u0 = 0 always.

S2 Standard map subjected to parameter drift
The physical origin of the standard map is a simplified, periodically kicked rotator. This can be pictured by
considering a massless rod connected to a bob at one of its ends and to a rotating pole at the other, and
while the system is in rotation, the bob is subjected to a periodic kicking. If the location dependence of
this force is sinusoidal, then we call the resulting stroboscopic map the standard map which has the form

xn+1 = xn + vn, vn+1 = vn + a sinxn+1, (S3)

where x and v are the dimensionless arc length and peripheral velocity, while a > 0 is a dimensionless
amplitude parameter. The phase portrait of the standard map for a = 1 can be seen in Fig.S2.

Figure S2: The phase space of the standard map with the amplitude parameter a = 1. Two sets of ini-
tial conditions were iterated 5000 times; 41 evenly spread points between -4 and 4 in v, with x values of 0
and π, respectively. The red line signals the value v = 1.2 and helps identifying the initial torus taken in
Fig.S3.
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We make this map non-autonomous the same way we did in the case of the symmetric wedge; we consider
the switch

a→ an (S4)

in (S3). We also define the scenario similarly; we consider a starting point a0 and an endpoint af which is
reached after N iterations in increments of ∆a = (af − a0)/N . The scenario is then denoted as [a0, af , N ].
The origin of the stationary phase space is a single hyperbolic fixed point, from which a snapshot hyperbolic
point could evolve in the time-dependent system. This SHP, however, turns out to be nonmoving, (0,0) is a
usual hyperbolic point during the whole scenario. We can also consider this as a stationary fixed point, and
apply the method used in Section IV. The dynamical condition as formulated there corresponds to an instant
nc when some points of the tori first enter a close vicinity of the origin. There are no structural discontinuities
in this system, thus we have no discontinuity condition to speak of in this case. Figure S3 shows that snapshot
tori evolve similarly to those of the double wedge system; first they deform (Fig.S3a-S3b), then they break up
(Fig.S3c, nc = 15) and eventually their points spread out in the phase space (Fig.S3d), resulting in chaotic
motion. Note, that in the spirit of Section VII, the origin can also be considered as an exactly known SHP,
and therefore its stable manifold is an exact part of the pseudo-foliation of the snapshot chaotic sea.

(a) (b) (c) (d)

Figure S3: The evolution of the snapshot torus of initial condition x0 = π and v0 = 1.2 of the standard
map (in Fig.S2, this torus is indicated by its crossing of the red line at x = π) according to the scenario
[1, 6, 25]. The iteration numbers of the respective images are n = 10, 12, 15 and 25. It is apparent, that
the break-up event happens on the third image, a few blue points are already in the vicinity of the origin,
making the crossover time nc = 15. At iteration number 25, the break up is complete, most of the blue
dots are scattered in a chaotic region.

When monitoring the dynamical instability of the standard map, we apply the same method described in
Section V of the main text, i.e. we calculate the EAPD quantity and the instantaneous Lyapunov exponent.
Figure S4 shows the corresponding curves for two snapshot tori in the same scenario with their crossover
times also indicated. Since the only thing differentiating between these curves is the initial location of the
tori, we can conclude from the image that both the Lyapunov exponent and the crossover time for individual
tori does indeed depend on their initial condition even in the same scenario.
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Figure S4: Dynamical instability of two snapshot tori of the standard map with the applied scenario be-
ing [1, 11, 100] in both cases. The initial condition of the torus of the upper curve is x0 = π, v0 = 1.55 (a
large torus), while that of the lower one is x0 = π, v0 = 0.8 (a smaller torus). The crossover time and the
Lyapunov exponent after torus break-up are found to be nc = 15, λ = 0.83 and nc = 26, λ = 0.67 in these
cases. We see that both of these quantities depend on the chosen initial torus when the same scenario is
applied.

S3 Supplementary figures

(a) (b) (c)

Figure S5: The evolution of the snapshot chaotic sea along with snapshot tori. Displayed are steps 0, 9,
13 of the scenario [70◦, 30◦, 20] with initial conditions z0 = 0.9, 0.8, 0.7, 0.6, 0.55, 0.5, 0.45, 0.4, the first two
of which belong to the chaotic sea and u0 = 0 for all. In panel (b) only the discontinuity condition is ful-
filled and we can see that the snapshot chaotic sea does not enter the cut-off tendril, while in panel (c) the
scenario is past the point of the dynamical condition as indicated by the several thin arcs. The general
tendency is that white bands, here bounded by red torus pieces, originating from the quasi-periodic island
are entrained into the chaotic sea.
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(a) (b) (c) (d)

Figure S6: Scenario ending on the plateau of αp = 50◦, with the preceding scenario of [70◦, 50◦, 40] with a
torus smaller than in Fig.12 generated from the initial condition u0 = 0, z0 = 0.55. The images were taken
at n′ = 0, 5, 15, 50 steps on the plateau and the green boundary tori are the same as in Fig.12.

Figure S7: Dynamical instability in the plateau scenarios of Figures 11 (upper curve) and S6 (lower
curve). The Lyapunov exponent is much smaller on the latter, but slightly larger than for the scenario of
Fig.12 since more points of the original torus fall into the chaotic sea when arriving at the plateau in this
case (compare with Fig.13).
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