
This article was originally submitted as one contribution to a prospective Focus Issue tentatively entitled f'What Have We Learned from One­
dimensional Maps?" Consequently, the article focuses more on the authors' own results than would an appropriately complete suroey of the statistical 
properties of lD maps. However, in view of the postponement oj this Focus Issue, in order to avoid undue delay in the publication 0/ these results, the editors 
have decided to publish the article in its present form. rather than asking the authors to redo the article entirely. 

Statistical properties of chaos demonstrated in a class of one-dimensional 
maps 

Andras Csordas 
Research Institute for Solid State PhysiCS of the Hungarian Academy of Sciences, P. O. Box 49, 
H-1525 Budapest, Hungary 

Geza GyCirgyi 
Institute for Theoretical Physics. Eotvos University. Puskin u. 5-7, H-I088 Budapest, Hungary 

Peter Szepfalusy 
Institute for Solid State Physics, EotvDs University, Muzeum krt. 6-8, H-J088 Budapest, Hungary 
and Research Institute for Solid State Physics of the Hungarian Academy of Sciences, P. O. Box 49, 
H-1525 Budapest, Hungary 

Tamas Tel 
Institutefor Theoretical Physics, Eotvos University, Puskin u. 5-7, H-I088 Budapest, Hungary 

(Received 4 February 1992; accepted for publication 16 November 1992) 

One-dimensional maps with complete grammar are investigated in both permanent and 
transient chaotic cases. The discussion focuses on statistical characteristics such as Lyapunov 
exponent, generalized entropies and dimensions, free energies, and their finite size 
corrections. Our approach is based on the eigenvalue problem of generalized Frobenius-Perron 
operators, which are treated numerically as well as by perturbative and other analytical 
methods. The examples include the universal chaos function relevant near the period doubling 
threshold. Special emphasis is put on the entropies and their decay rates because of their 
invariance under the most general class of coordinate changes. Phase-transition-like phenomena 
at the border state of chaos due to intermittency and super instability are presented. 

I. INTRODUCTION AND SUMMARY 

The most well-known role one-dimensional (hereafter 
ID) maps played in the development of the theory of cha­
otic phenomena is connected with the different routes to 
chaos and the related metric universality. 1 In higher­
dimensional dissipative systems, scenarios like period dou­
bling, the quasiperiodic route, and intermittency were 
found to exhibit scaling properties which could be led back 
to those of certain ID maps near the threshold to chaos. 
Furthermore, substantial research was expended on I D 
chaos in its developed state and a richness of statistical 
properties has been revealed, which constitute the main 
concern of this paper. The significance of ID maps is un­
derscored by the fact that new ideas about general chaotic 
systems are often tried out and exemplified on ID maps in 
the literature. A further motivation for studying ID maps 
is that many higher-dimensional systems in the limit of 
strong dissipation approximately reduce to ID dynamics. 
This is supported by a variety of experimental evidences.2 

Near the threshold to chaos on its chaotic side the effective 
dissipation can be that strong that eventually a fully cha­
otic I D map with universal characteristics emerges on 
small length and long time scales. Thus a link between the 
transition to chaos and the fully developed chaos can be 
established. 

We shall concentrate on multifractal-like statistical 
characteristics providing a detailed description of certain 

chaotic features. Scaling of a uniform covering of the at­
tractor is characterized by the fractal dimension. The nat­
ural invariant measure on the attractor generated by the 
dynamics might have very rich local scaling properties.3 To 
describe them, besides the fractal dimension, a full spec­
trum of dimensionlike quantities is required. Measures 
with nontrivial spectrum of dimensions are termed multi­
fractals.4,s Although chaotic attraetors of 1D maps gener­
ally do not exhibit nontrivial fractal properties, their dy­
namical characteristics like the path probability 
distribution of the symbolic codes do. Symbolic codes are 
coarse grained representations of trajectories, such that the 
phase space is divided into finite cells and a discrete valued 
symbol is associated with each of them. Following the tra­
jectory, the information in which order the cells are visited 
is contained in the sequence of symbolic codes. The prob­
abilities of allowed sequences in the space of the symbolic 
codes taken with respect to the natural measure define a 
special multifractal called dynamical multifracta1.6 Such 
dynamical multifractals are described by the spectrum of 
generalized entropies.7,8 Similarly, the fluctuation of finite­
time Lyapunov exponents9,10 defines another spectrum 
connected with the inherent instability of the chaotic mo­
tion. 

Different types of thermodynamical formalisms"-13 

provide a natural framework for the description of the 
above-mentioned phenomena and statistical characteris-
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32 Csordas et al.: Properties of chaos in maps 

tics. Within these statistical descriptions relevant charac­
teristics of chaos can be obtained in analogy with tradi­
tional equilibrium statistical mechanics. In this paper 
special emphasis will be put on the free energy equivalent 
to the generalized entropies, for they are invariant under a 
most general class of coordinate changes which may also 
contain singularities. We shalI also be interested in how 
rapidly quantities derived from symbol sequences of finite 
length approach the entropies, i.e., in finite-size corrections 
to the limiting values. In contrast to other dynamical mul­
tifractal spectra where nonanalytic behavior-sometimes 
calIed phase transition l4-19-is not uncommon, in the en­
tropy spectrum they turn out to be rather rare and show up 
at the border states of chaos.20-

23 To understand such sit­
uations we recall that unstable periodic orbhs are dense on 
the invariant set on which the chaotic motion takes place. 
GeneralIy, the Lyapunov exponents for alI the unstable 
orbits are bounded from below and above by two positive 
finite numbers. Situations, when for a chaotic system one 
of the bounds is infinity or zero, or when the given system 
can be transformed into such a system, will be calIed bor­
der states of chaos. (In higher-dimensional systems one 
should consider in this context the largest Lyapunov expo-
nent.) 

In contrast to the above cases where chaos is perma­
nent, many dynamical systems exhibit chaotic behavior in 
their transients.24 Signals produced by them look chaotic 
for a certain time before reaching stationarity, which can 
be chaos and reguiar motion alike. In these cases, invariant 
objects exist in phase space, different from attractors, 
calIed chaotic repelIers, which are Cantor sets of measure 
zero. With the exception of these points alI initial condi­
tions lead to trajectories which eventualIy leave the interval 
of interest. Trajectories starting close to a repelIer produce 
long, transiently chaotic signals. The multifractal proper­
ties of the invariant set play an important role in determin­
ing the dynamical properties of transient chaotic systems. 

We restrict our attention to complete (permanently or 
transiently) chaotic maps on the interval. To understand 
its definition let us consider piecewise monotonic maps de­
fined on an interval I. Consider, furthermore, the subinter­
vals which are the preimages of the monotonic branches 
and introduce a symbolic dynamics by attaching different 
symbols to each of them. We say the map is complete if alI 
the possible symbolic code combinations are alIowed by the 
dynamics on the invariant set. This is the case only if the 
inverses of the monotonic branches are defined on the en­
tire interval 1. Then denoting by m the number of mono­
tonic branches, the topological entropy is equal to In m. To 
be specific, we choose complete chaotic maps with one 
increasing and one decreasing monotonic branch with In 2 
as the topological entropy. With this restriction of consid­
ering complete maps only, the complications caused by 
nontrivial grammatical rules, i.e., by the exclusion of cer­
tain symbol sequences, are absent and a presentation that 
focuses on the essential points becomes possible. The dis­
cussion of properties which are connected with pruning of 
the grammar" is thus beyond the scope of the paper. 

It is an organizing principle of our description that alI 

the characteristics exhibiting invariance properties are re­
lated to eigenvalues of certain generalized Frobenius­
Perron operators.z6-28,22 The operator formalism provides 
us with a practical tool for computing characteristics of 
chaos with high accuracy. 

This paper is organized as follows. Section II is de­
voted to complete maps generating permanent chaos. After 
a brief summary of the elements of the statistical descrip­
tion (natural measure, correlation decay), a general clas­
sification of such maps is given which will be used through­
out the paper. It is shown that all complete maps can be 
reached by means of a conjugation and a transformation 
transverse to it. Next, through the finite size correction to 
the Kolmogorov-Sinai entropy the entropy decay rate is 
introduced as a new dynamicai characteristics. A central 
object of the theory is the Frobenius-Perron equation de­
scribing the time evolution of probability densities on the 
attractor. For maps lying in some sense close to exactly 
solvable ones, analytic results can be obtained by means of 
a perturbation expansion of the Frobenius-Perron equa­
tion. This method is then outlined with technical details 
relegated to Appendix A. Illustrative results are given for 
maps related to the tent map via the transformation trans­
verse to conjugation, provided the transformation deviates 
little from the identity but otherwise it can be of arbitrary 
form. As another application we present properties of the 
universal chaos function which is relevant near the period 
doubling threshold of chaos. In Sec. III complete maps 
generating transient chaos are investigated. The notion of 
the natural measure and of the related conditionally invari­
ant measure is discussed first. The density of these mea­
sures are shown to be obtainable from extensions of the 
classical Frobenius-Perron equation. Next, fractal proper­
ties of the strange set are investigated and brought in rela­
tion with other generalizations of the Frobenius-Perron 
equation. As an example, it is shown how the dimensions 
of the universal period doubling attractor can be deter­
mined by considering it as a repeller of an auxiliary map. 

The thermodynamic formalism of both permanently 
and transiently chaotic maps of complete type is summa­
rized in Sec. IV. It is shown how entropies, the free energy 
associated with the lengths of subintervals, the generalized 
Lyapunov exponents, and dimensions can be obtained 
from the growth rate of different partition sums. They can 
be expressed via the largest eigenvalue of different gener­
alized Frobenius-Perron operators. The approach to the 
asymptotic limit is also discussed which is related to the 
largest and second largest eigenvalues of suitable operators. 
Results obtained from the perturbation expansion of the 
spectrum of the generalized Frobenius-Perron operator are 
given in terms of a general transverse transformation for 
classes of complete maps. Finally, singular behaviors, so­
called phase transitions, in the characteristics are investi­
gated with special emphasis on the entropies. It is shown 
that entropies exhibit phase transitions in intermittent and 
in extremely unstable cases, both representing border states 
of the chaotic phase. 

In the outlook we summarize those features of chaos 
generated by complete 10 maps which remain valid in 
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more complicated ID cases and in higher-dimensional sys­
tems, too. It is pointed out that ID maps also show up in 
the statistical mechanics of ID lattices which can be stud­
ied by means of the methods discussed here. This is illus­
trated on the example of the random field ISing chain in 
Appendix B. 

11. FULLY DEVELOPED CHAOTIC MAPS 

The study of chaotic iterations is based on the fact that 
trajectories are asymptotically distributed according to a 
unique probability density function, the density of the nat­
ural measure. The evaluation of characteristics of chaos are 
led back to manageable averages, or which are so at least in 
some asymptotic sense. A simple type of such maps are the 
fully developed chaotic ones, which fill an interval with 
most chaotic iterations. Such maps emerge in parameter 
controlled maps not only as the final stage of the evolution 
of the attractor,3 but also at the band merging29 and crisis30 

points, if appropriate iterates of the original map are con­
sidered. In particular, the universal chaos function31 be­
longs to this category, too. 

A. Elements of the statistical description 

We investigate chaotic iterations generated by single 
humped ID maps of the interval /=[0,1] 

(I) 

Maps generating fully developed chaos (FDC) 32 are spec­
ified by the properties that the function I(x) is piecewise 
differentiable, it is two-to-one on the interval I, it increases 
in [O,X] and decreases in [x,l] monotonically, 1(0) 
=/(1)=0 and l(x)=1 (see Fig. I). It is assumed that 
the map does not have any stable periodic orbits in I, 
rather it generates ergodic trajectories for almost all initial 
conditions within the interval. The definition further re­
quires that there exists a unique invariant ergodic measure 
1', which is absolutely continuous with respect to the Le­
besgue measure, and thus there is a probability density 
function P(x). Only such measure, called the natural mea­
sure, will be considered throughout this section. 

Ergodicity implies that the time average of a function 
A(x) can be represented by a weighted average over the 
interval 

1 N J ;'~m., N n~o A (xn) = 1 A (x )P(x )dx. (2) 

The above relation should hold for the composed function 
A(f(x» as well, hence, 

II A(x)P(x)dx= L A(f(x»P(x)dx. (3) 

Since that relation is valid for a general A (x), we can write 

P(x) = L 8(x- l(y»P(y)dy=JIP(x), (4) 

which defines the linear operator if. The integral operator 
can also be written in the form 

HP(x') = ~ 
xef- (x') 

P(x) 

If'(x) I' 
(5) 

where I-I (x') stands for the set of the preimages x of x'. 
For FDC maps each x' < 1 has two preimages. Equation 
(4) is oft<;,n called the Frobenius-Perron equation and the 
operator H bears the same name. Note that for FDC maps 
with quadratic maximum P(x) has singularities of order 
- 1/2 at the endpoints of the interval I. Acting on a gen­
eral probability density the Frobenius-Perron operator de­
fines the recursion 

(6) 

which is the time evolution of the distribution function if 
the points x are evolved by the map (I). 

The invariant density allows us to write the average 
characteristics of the iteration in integral form. The Ly­
apunov exponent is measuring the average divergence rate 
of nearby trajectories 

I;' IdXn+11 J L= lim N £., In -d- = P(x) In If'(x) Idx 
N_()() n=O Xn I 

(7) 

(' denotes derivative throughout this paper). Besides, cor­
relation functions characterize the decay of memory along 
the iteration. The correlation of functions A (x) and B(x) 
is defined by 

CAB(n) = II P(x)A(x)B(f(n)(x»dx 

-II P(x)A(x)dx L P(x)B(x)dx. (8) 

For chaotic iterations the correlation function is expected 
to have a decaying component. It is easy to show, that the 
n dependence of the correlation function can be traced 
back to n applications of the Frobenius-Perron operator, 
since the first term on the right-hand side of (8) equals 

L B(x)fin[A(x)P(x)]dx. (9) 

The time behavior of the correlation function can thus be 
determined by investigating the spectral properties of if. 
The existence of the unique invariant density P(x) implies 
that the eigenvalue largest in modulus is Ao= I. Assume, 
that there is a second largest real eigenvalue I All < I, then 
one obtains that for n _ 00 

(10) 

It is worth defining an asymptotic correlation decay rate 
r via r =-lnIAII. 

B. Classification of FDC maps 

Equivalence classes of FDC maps are defined by 
smooth coordinate transformations, called conjugation.33 

Ifin Eq. (I) both Xn and Xn+1 are transformed by the same 
u(x) function, which is invertible and u(O)=O, u(l)=l, 
then the transformed map is 
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g(x) =u(f(u-'(x»). (II) 

The function u(x) must be piecewise differentiable and we 
will call it uonsingular if 0 < u' (x) < 00. Note that singular 
transformations can create or eliminate critical points, 
where the derivative of the map vanishes. Characteristics 
of chaos invariant under such transformation are of special 
interest, such as the Lyapunov exponent, correlation decay 
rate, and as we shall see it later, the generalized entropies 
and their decay rates. 

Consider first symmetric maps, defined by f(x)=f(l 
-x). In the special case when the probability density is 
also symmetric, P(x) =P(I-x), we speak about double 
symmetry. The archetype for the latter family is the piece-
wise linear tent map having uniform invariant density 

(12) 

Each map f D of double symmetry is related to the tent 
map by conjugation with u(x) = I-u( I-x). Then for f f) 

the invariant measure of the interval [O,x], i.e., 
J&P(x)dx=/L(x) equals u(x). For instance, u(x) =2/ 
1T arcsin -(x gives the quadratic logistic map 

f Q(x) =4x(l-x), PQ(x) (13) 

All double symmetric maps possess the maximal possible 
Lyapunov exponent L D=ln 2, and the decay rate of typi­
cal correlation functions is rD=ln 4. 

An operation transverse to conjugation can also be de­
fined34,35 such that if applied to a double symmetric map it 
results in a symmetric map and the difference between the 
original and the transformed probability densities has odd 
symmetry. As an example, the maps obtained from the tent 
map fLare implicitly defined as 

f(x)=fL(x)-v(f(x)), P(x)=1+v'(x), (14) 

where vex) is a symmetric function, vex) =v( I-x), with 
v(O) =0. Further requirements on v(x) are provided by its 
connection to P(x). As the second expression shows, v' (x) 
measures the deviation of the invariant density from unity 
and obviously cannot be less than - I. We will call (14) 
the transverse map for short, This is an important class of 
maps, because all FOC maps, symmetric and nonsymmet­
ric ones alike, are conjugated to a map of the form (14). 

As an example let v(x) =dx(l-x), Idl <; I, leading to 
the piecewise parabolic map 

fpp(x) = (2d)-'(d+ 1- ~(d-1)2+4dll-2xI), 

Ppp(x) = l+d(l-2x). (15) 

The two extreme values for d represent qualitatively dif­
ferent cases. For d = - 1 the map has an infinite initial 
slope, thus the dynamics near the origin is very fast ex­
panding. For d= 1 the phenomenon of weak intermittency 
emerges,36,37 namely, f' (0) = I, and despite this an ergodic 
invariant measure still exists, see (15). It is worth empha­
sizing that for general v(x) the two extreme situations oc­
cur for v' (0) = -1 and v' (0) = 1, respectively. 

In the following we will use the fact that each FOC 
map is conjugate to a map for which the natural invariant 
measure is the Lebesgue measure. Indeed, if we use the 
invariant measure of the interval [O,x] of f, i.e., /L(x), as 
conjugating function, we get 

](x) =/L(f!iL-' (xl)), ji(x) =X. (16) 

We will call that map the equivalent Lebesgue map of 
fix). For our purposes it will be important that 
If' (x) I >1. On Fig. 2 the schematic topological structure 
of the space of FOC maps is displayed. 

C. Symbolic dynamics, the Kolmogorov-Sinal 
entropy; and entropy decay 

So far we introduced characteristics of the chaotic be­
havior of the continuous dynamical variable x, like its 
probability density, the Lyapunov exponent and correla­
tion function. Further insight is gained into the complex 
nature of chaos by studying the coarse grained, or, sym­
bolic dynamics.38 A central quantity characterizing the lat­
ter is the Kolmogorov-Sinai (KS)39-4' entropy, a positive 
finite value of which is often considered as a criterion for 
chaos. 

Let us start out from the partition of /into 1.\1) = [O,x) 
and I\')=[x,l]. Write f-k(I)'» for the set of points 
mapped to I)')(j=O,1) by k application of the map f. 
Then the subintervals of the partition in the nth generation 
are 

where Ok is either 0 or 1, and i=~Z~, ak2k-'. The subin-
, 1 t':r(n).,211 _1.. •. . " .. ,.. 
lervals 1..1 r' 1'=0· are an nonovenappmg pretmages or 1 ror 
FOC maps and they provide full coverage for I. Such in­
tervals are called cylinder sets in the mathematical litera­
ture. For FOC maps the number of subintervals increase 
by the same integer factor 2 in subsequent generations, 
such hierarchy of branching is called complete. Note that 
there is a one-to-one correspondence between an orbit in 
symbol space a,' "an and the integer i. The interval lin) is 
just the set of initial conditions which generates the sym­
bolic orbit associated with ij so the stationary probability of 
the orbit P(a," 'an) is the invariant measure of that inter­
val, denoted here by /Lln)=/L(Iln». The partition is a gen­
erating partition.41 Thus the KS entropy is given by 

K= lim Kn, 

(18) 

There is another sequence of entropies through which one 
can directly extract a characteristic time associated with 
symbolic dynamics. In the general case symbolic dynamics 
has infinitely long memory, Thus an error is committed by 
truncating the memory at the kth step, which we do by 
prescribing that the probability of an orbit longer than k 
factorizes as 
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FIG. L Fullv develoned chaotic man with a smooth maximum. (a) 
G-r~ph-ofth~-;'na-~-. 6,)~ A few generatiO'ns of partitions, I~n), n= 1, 2, 3, as 
introduced in Sec. II C. 

Note that the conditional probability P(anlan_k" 'an_l) 
depends only on the past up to the kth step, other argu­
ments are neglected. For n<,k the probability Pk(al" 'an) 

is equal to P(al" ·an). The path probability Pk character­
izes the truncated process. We can associate an entropy 
with the truncated symbolic process42-44 

K~= lim Kk,m 

For n>k we have 

where Kk is defined via (18), whence 

Kr=(k+ i)Kk+(-kKk• 

(20) 

(21) 

(22) 

Thus Kr ~ K and the difference between them measures the 
effect of neglecting memory in the symbolic dynamics. Be­
low we demonstrate that the truncated entropies converge 
to the KS entropy in a typical chaotic ID map exponen­
tially, a result which has been rigorously proven for some 
types of maps.45 We also show how the decay rate can be 
calculated. Equation (22) allows us to write K:;- in terms of 
subinterval measures 

K"- '" n - £.., 
p 

(23) 

At this point it is useful to convert to the eq£ivalent Le­
besgue map (16). That has the subintervals I}n+I), with 
their lengths ~n+ I) being their invariant measure. For 
n ~ 00, K:;- converges to the KS entropy K, which now 
equals ob~iously the Lyapunov exponent, and. expansion in 
terms ofl}n+l) yields the leading correction" 

rr p rn+1) 3 I (1"(x(n+I»)2 
Kn:::::K+ 24 ~ 1'(x~n+l) (p ), (24) 

where x}n+ I) is in the interval i}n+ I). Due to mixing the 
terms under the sum decouple asymptotically, and one ob­
tains 

K~:::::K+bJn> 

with 

I n= ~ (~n+I»3::::: II <7(n), (x))-2 dx. 

(25) 

(26) 

Note that the above integral exists due to the fact that the 
equivalent Lebesgue map I does not have a critical point, 
i.e., II' (x) I> O. We introduce a new quantity, the entropy 
decay rate defined by 

I 
r= - lim - In In> 

n ..... co n 
(27) 

which tells us how rapidly Kn converges to K. As a forward 
reference, the decay rate r is twice the Renyi entropy of 
order 3, r=2K(3). The exponential convergence of K:;­
means that the general asymptotic form of Kn is 

I 
Tt' .....,Tt'.L_fd-LRp-yn.L ..• ) 
..... n....., ... • I n'~ .. , ..-... I " (28) 

where terms decaying with rates larger than r were ne­
glected. Whereas Eq. (28) might warrant a detailed dis­
cussion even at that stage, we restrict ourselves here to a 
few comments and as to details references are cited. The 
finite size corrections in (28) provide supplementary sta­
tistical characteristics on the system beyond that given by 
the KS entropy. The quantities r and A can also be given 
the interpretation of different types of complexity,23,46,47 
On Fig. 3, K and r are depicted for the case of the piece­
wise parabolic map (15). Note that in the weak intermit­
tent limit, d= I, the entropy decay rate r becomes zero, 
which is a sign of a dynamical phase transition (see Sec. 
IV C). We mention that the correlation decay rate [see Eq. 
(10)] is also zero at intermittency, in accordance with 
Refs. 36 and 37. 

D. Perturbed maps 

Double symmetric maps have invariants common with 
the tent map (12) and in some respect they can be consid­
ered as trivial ones. Although by the introduction of the 
transverse transformation on double symmetric maps (14) 
invariant probability densities of general FDC maps can be 
obtained, other properties such as correlation and entropy 
decay as well as generalized entropies and characteristics 
treated later in this paper are not easy to analyze. The 
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qualitatively new behavior of maps deviating from double 
symmetric ones is, however, expected to be highlighted by 
a perturbative approach.3'.37.48.49 

The basic idea of perturbation theory is similar to the 
one used in quantum mechanics, since in our case the ques­
tion of determining a quantity is also often lead back to the 
spectral problem of an appropriately chosen operator. The 
main example treated in this section is the Frobenius­
Perron operator, and subsequently various generalizations 
of it will be discussed. The operators corresponding to the 
tent map often have known spectra in a conveniently cho­
sen function space. Then we perturb the map so as to move 
off double symmetry, construct the operator for the per­
turbed map, and finally calculate the perturbed spectrum 
and eigenfunctions order by order. Some technical details 
of the method can be found in Appendix A. 

Concentrating on the Frobenius-Perron operator, its 
largest eigenvalue should stay constantly unity for any per­
turbation preserving the property of FOC, and the corre­
sponding eigenfunction is just the natural invariant density 
for the perturbed map. The next-to-Ieading eigenvalue 
gives the correlation decay rate. 

The perturbative method is illustrated here on the 
transverse maps (14), where we take u(x) for a small per­
turbation. Thus the map is 

[(x) =[ L(X) -u(f L(X)}+O(u'), (29) 

and the invariant probability density is given in (14) ex­
actly. First order perturbation theory gives for the corre­
lation decay rate 

r= -Inl"d =In 4+1[u"(0) -4u'(0)] +O(u'). (30) 

For comparison we also give the Lyapunov exponent, the 
entropy decay rate together with its amplitude to lowest 
nontrivial orderY Using the notation 

r= L u'(x)' dx, (31 ) 

we have for the Lyapunov exponent and the entropy decay 
rate 

(32) 

y=ln4-3r+,,·, (33) 

where corrections are of 0(v3
). We also can show that for 

u(x) =0 B as defined by Eq. (28) vanishes, which is in 
accordance with the absence of relaxation in the tent map, 
where K~ =In 2 for all n. It can be seen that the loss of 
double symmetry results in the decrease of the Lyapunov 
exponent L, while the correlation decay rate r may in­
crease depending on the form of u(x). Thus neither of the 
two indicators alone gives full information about the de­
gree of stochasticity, demonstrating that the classification 
of deterministic disorder is a many-parameter problem, 
and one cannot speak about a single scale of randomness. 
Symbolic dynamics has lead to another characteristic rate 
y, which is different from both the Lyapunov exponent and 

v 

, , , 
" 

i 

---f----.. --- OS 
I, fl fQ 

,', 
I 

FIG. 2. Schematic plot of the space of FDe maps. The "surface" of 
symmetric maps is spanned by the double symmetric (OS) maps, and 
those transverse to the tent map (til, see Eq. (14). All nonsymmetric 
maps can be obtained by conjugation from the symmetric "surface." A 
sheet of equivalent maps, related by conjugation, ~ also depicted. Each 
such sheet contains one equivalent Lebesgue map /. 

the correlation decay rate. In fact, symbolic dynamics give 
rise to a continuum of rates as we shall see in the thermo­
dynamic treatment. 

Another application of perturbation theory is demon­
strated on the biquadratic map3'.48 

f BQ(£'X) = 1- (1-£) (I-Zx)'-€(I-2x)4, (34) 

which shows FOC for -3/4 < £ < 1. This map is conjugate 
to the transverse map (14), if we take u(x) 
=£(2'lT) -I sin 'lTX. Thus the lowest-order results on invari­
ants in terms ofu(x) [see, e.g., Eqs. (32) and (33)] can be 
applied.34 The invariant density is 

PBQ(£,x) ='IT-
1(x(1-X))-lI'[ I +£(x-1/2) 

3e £1 
+4( 1-5x+4x') + 16(160x1-Z16x' 

+60x+ I) +0(£4)]. (35) 

Knowing P BQ( £,x), the form of the transverse transforma­
tion and the conjugating function, which together connect 
the map (34) to the tent map, can be determined to the 
same order. 

E. The universal map of fully developed chaos 

Whereas fully developed chaos can be perceived as a 
state remote from the onset of chaos in parameter con­
trolled 10 maps, it emerges on different length scales at 
infinitely many parameter values, also near the onset. A 
notable sequence of such states consists of the band split­
ting points, where the attractor of 2m

-
1 intervals split into 

2m pieces.33,29 This series can be considered as the mirror 
image of the period doubling sequence of attracting orbits 
reflected about the threshold point; here the period super­
imposed on the chaotic state doubles. The common accu­
mulation point is approached by both sequences as char-
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acterized by the Feigenbaum's universal ratio SF 
=4.669 .... 1 By iteration and scaling the maps at the band 
splitting points can be brought to FDC form. For finite m 
those maps will depend on the specific form of the under­
lying parameter controlled map, in the limit m _ co, how­
ever, one obtains a universal FDC map 1*.31 That map lies 
on the unstable manifold of Feigenbaum's fixed point func­
tion, and is the farthest from it among chaotic maps. 

In the case of the logistic map rx (1-x) the first band 
splitting point m = 1 at rl = 3.678 ... corresponds to a biqua­
dratic FDC map (34) with E= -0.295 .... In the limit 
m _ co the universal FDC map is obtained as 

00 

2: aj=O. (36) 
1=1 

The coefficients aj are decreasing fast, thus the biquadratic 
form can be taken as a first approximation, which is sup­
ported by higher order calculations, too, and we have E* 

= -0.262 .... 32 Therefore, from the invariant characteris­
tics calculated in this paper in lowest nontrivial order for 
the transverse map (14), we can read off the first approx­
imation for the universal FDC map. We have the approx­
imate universal value for the parameters r (31), the Ly­
apunovexponent (32), and the entropy decay rate (33) 

P:::::8.63 X 10-3
, L*:::::0.688, y*::::: 1.338. (37) 

The last two numbers also play the role of the amplitudes 
in the asymptotic scaling forms for the invariants of 
parameter-controlled maps along the band merging se­
quence, i.e., Lm:::::L*/2m, Ym:::::y*12 m. 

111. TRANSIENT CHAOS 

Signals exhibiting chaotic behavior on a finite time 
scale are called transiently chaotic. This phenomenon is 
associated with the existence of a fractal set in phase space 
which has, in contrast to chaotic attractors, a measure-zero 
basin of attraction. Such nonattracting chaotic sets repell 
trajectories from any finite neighborhoods of them, and the 
strength of this repulsion is inversely proportional to the 
average lifetime of chaos. (For a review see Ref. 24.) 

One-dimensional maps are well suited for studying 
transient chaos not only since they provide the simplest 
examples but also because they model very closely what is 
going on along the unstable manifolds of strange chaotic 
sets in higher-dimensional systems with one-dimensional 
unstable manifold. In particular, the concept of the natural 
and of the so-called conditionally invariant measure, their 
properties and relation to each other can best be under­
stood in ID maps. In contrast to permanent chaos, non­
trivial fractal features of the strange set show up already in 
one-dimensional transiently chaotic dynamics. 

Transient chaos is generated by complete one­
dimensional maps if a nonlinearity parameter exceeds the 
value belonging to the fully chaotic configuration (bound­
ary crisis). 30 An interval I is mapped then under the dy­
namics xn+ I = [(xn) partially outside itself, which implies, 
in general, a strong expansivity of the map. It is to be 
stressed that such maps can, in fact, be found in experi-

ments on transient chaos.50 As an important class we shall 
consider here single humped functions, as illustrated in 
Fig. 4. It is irrelevant how the map looks for [(x) values 
outside I. In fact, there might be one or more attractors far 
away but if there is no feedback from these regions, the 
transient chaotic behavior is completely specified by the 
function f defined on I. The invariant set under [ is a 
Cantor-set-like object and called chaotic repeller. 51-55 

The cylinder sets play an essential role in characteriz­
ing transient chaos, too. 56 Just as previously, they are de­
fined at the nth level as the nth preimages of the support 
interval I and are denoted by lin), i=0,1, ... ,2n-1. The 
novel feature is now that they do not cover the interval, 
rather for n _ co they approach a fractal set, the repeller. 

A. Fractal dimension and the natural distribution on 
repellers 

The fractal dimension is one of the most essential char­
acteristics of chaotic repellers. It is remarkable that this 
number can be obtained as a particular parameter value in 
a generalized Frobenius-Perron equation. Let us consider 
first the original Frobenius-Perron equation (6) applied to 
a map [(x) generating transient chaos. Since the proba­
bility flows now out of the interval, any initial function will 
generate a decreasing series: The stationary density will be 
identically vanishing on I. In order to find convergence 
towards a finite limiting function the outflow is to be com­
pensated. A local compensation can be done by raising 
f' (x) to some power d less than 1. Considering the recur­
sians 

)' Qn_I(X) 
Qn(x')= =t 1['(x)l d, 

xej (x') 
(38) 

one finds that for very small values of d the iteration might 
even lead to an increasing series of Qn(x). Consequently, 
there must be an intermediate value of d at which the series 
of functions Qn converges to a finite continuous function on 
I for any nonsingular Qo. It has been shown26 that this 
particular value coincides with the fractal dimension Do of 
the repeller 

(39) 

Equation (38) also provides a fast and accurate method for 
evaluating fractal dimensions of strange sets generated by 
one-dimensional maps. Numerically, One tries different val­
ues for d until a convergence sets in. Fortunately, the con­
vergence, if present, is exponentially fast and the limit can 
be reached with good accuracy after a few steps. 

Based on the analogy with the original Frobenius­
Perron scheme, one expects that the limiting function 
Q(x) of Eq. (38) has an important meaning. In order to 
clarify this one has to define first the natural measure for 
chaotic repellers. Below we give a practical definition 
which can easily be used for constructing the natural mea­
sure in numerical simulations. In Sec. III B we show that 
the density of this measure on cylinder sets can be obtained 
from another extension of the Frobenius-Perron equation. 
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FIG. 3. The KS entropy and the entropy decay rate r for the piecewise 
parabolic family given by Eq. (15). 

Finally, we shall see that the function Q(x) is related to a 
coarse grained measure obtained by washing the natural 
measure out in boxes of equal size. 

Since randomly chosen trajectories escape the interval 
I with probability one, the chaotic repeller or a tiny neigh­
borhood of it can only be tested by using an ensemble of 
trajectories. The natural measure describes how often tra­
jectories in the ensemble visit different pieces of the chaotic 
set. The algorithm given for constructing this measure is 
the following. 52 Distribute a large number of points on I 
(uniformly) and follow the trajectories starting out of 
them until they escape I. Only trajectories staying inside I 
sufficiently long are kept and even these are truncated: 
Some steps from the beginning and from the end are cut 
off in order to have their points lying really close to the 
repeller. A histogram made out of these points on a 
uniform grid of size E then provides a way of looking at 
the natural distribution which is subject to an error of 
order E. 

As an illustrative example we use the logistic map at a 
parameter value which generates transient chaos. Figure 5 
shows the approximate invariant measure on a repeller. 

B. Escape rate and the conditionally invariant 
measure 

The escape rate51 measures the strength of repulsion 
around the strange set. The number of survivors in an 
arbitrary neighborhood of the set decreases as time goes on 
and the decay is expected to be exponential for large n, i.e., 
to follow the rule exp( -Kn). The quantity K is the escape 
rate, its reciprocal value can be considered to be the aver­
age lifetime of chaos. In one-dimensional maps, the total 
length of the cylinders at level n is just proportional to the 
number of trajectories staying inside I for at least n steps. 
Therefore, one has 

2n_t 

L I!n)_e(-Kn), (40) 
i=O 

where lin) stands for the length of cylinder lin). 
We now introduce the conditionally invariant mea­

sure57 which is strongly related to the natural one. The 
conditionally invariant measure (or c-measure for short) is 
defined on any region containing the repeller, and describes 
how trajectories escape this region. Consider the condi-

tional probability'7 that a given region is visited by trajec­
tories (with random start in I) which do not escape I in m 
steps. Note that certain trajectories exit already at the next 
step. Their last points are, therefore, far away from the 
repeller and fill in the gaps between cylinders. Conse­
quently, the conditional probability is defined on the entire 
interval I. The limit to which this conditional probability 
converges for m ~ 00 yields the conditionally invariant 
measure. 

The c-measure can be considered as one maintained by 
pumping new points into the system exactly according to 
the rate they escape it [formally, by multiplying the num­
ber of points everywhere by a constant, exp(K), in each 
step], so that an invariant distribution is obtained by means 
of a global compensation. The distribution tells us how 
often certain regions are visited in the system which is 
subject to the aforementioned flux of points. 

It is easy to construct the conditional probability dis­
tribution for trajectories of minimal length m in the basic 
interval. One simply takes the algorithm used to construct 
the natural measnre but does not discard the last steps of 
long living trajectories. Fortunately, the procedure con­
verges exponentially fast. Figure 6 shows the result for our 
illustrative example. 

To connect the conditionally invariant measure with 
the natural one let us restrict"·58 the density of the 
c-measure to cylinders of level n. This, of course, requires 
a normalization such that the total measure on the cylin­
ders is unity. The measures fl.i n) of intervals lin) charac­
terize then the motion of trajectories which end in one of 
the cylinders of level n. For n sufficiently large, these are 
the trajectories exhibiting long lived chaotic transients. 
Therefore, it is obvious that the limit of the conditionally 
invariant measure J.LJn) obtained for n _ 00 can be consid­
ered as the exact natural measure on the repeller. 52 

For a deeper understanding it is essential that the den­
sity P(x) of the conditionally invariant measure can be 
obtained also by analytic means. As shown in Refs. 57 and 
59 the density follows from the iteration scheme 

Pn_ 1(x) 

Pn(x') =R ~ If'(x) I' 
xe/ (X') 

(41) 

By iterating any nonsingular positive initial function Po(x) 
on I, the series Pn(x) will diverge or die out unless the 
coefficient R takes the value 

R=e". (42) 

With this R the series Pn(x) converges towards a finite 
continuous P(x) which is independent of the choice of the 
initial function, provided it is nonsingular. One, thus, si­
multaneously finds both escape rate and density P(x) from 
an eigenvalue problem. 

Technically, the density P(x) of the c-measure is the 
analog of the invariant density of FDC maps, and averages, 
correlation functions, etc., can be computed by means of 
P(x), after restricting it to the cylinders. 58 

By iterating (41) one clearly sees that a singularity 
builds up at the maximum of f(x) but it is outside of I. 
This shows that the density of the conditionally invariant 
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measure is, in general, a nonsingular function on close 
neighborhoods of chaotic repellers. Consequently, the dy­
namical system can typically be considered to be hyper­
bolic. (We call a map hyperbolic if there is an iterate of f 
for which the modulus of the slope is everywhere larger 
than unity.) This hyperbolicity of chaotic repellers will be 
assumed in what follows if not stated otherwise. Since the 
density does not change with the refinement, the asymp­
totic scaling in n will be governed by the length scales 
alone. Thus One finds the simple statement that the mea­
sure ILi n) of a cylinder is proportional to its length, more 
precisely 

(n) {(n)/" ".n) _eKn{(n) J.Li ,...... j ~ I) I' 

j 
(43) 

This relation will play an essential role in what follows. In 
particular, measure ILi n) is the probability to find trajecto­
ries of length n having a given type of symbolic codes. 
When computing the entropies for transiently chaotic tra­
jectories one can thus use the ILin),s as the path probabili­
ties. These properties of the natural and c-measures have 
widely been used in studying transient chaos in higher­
dimensional systems.60,6' 

Let us finally return to the relation between the limit­
ing function Q(x) of (38) and the natural measure. As we 
saw, the exact determination of the natural measure goes 
via an ever refining cylinder set. In practice one is often 
interested in a coarse grained measure obtained by vashing 
the natural measure out on a grid of size <<1(1, with < fixed. 
It turns out'6 that this coarse grained measure possesses a 
nonsingular covering curve (see Fig. 5) which is then pro­
portional not to the density P(x) of the conditionally in­
variant measure but rather to the function Q(x) obtained 
from (38) as n goes to infinity. 

Exceptionally, chaotic repellers might be nonhyper­
bolic when, e.g., one branch of f(x) happens to have a 
smooth maximum, which is mapped in two steps into the 
origin.6' The density P(x) of the c-measure is then singular 
in the endpoints very much in the same manner as the 
natural measure in nonhyperbolic FDC maps. Such cases 
will be discussed in Sec. IV A and IV C. 

C. Multifractal properties 

Equations (38) and (41) can be considered as two 
different solution to the problem of how the outflow of 
probability described by the Frobenius-Perron equation 
can be compensated around a chaotic repeller. In Eq. (38) 
the exponent of f' (x) was chosen to be different from 
unity, while in Eq. (41) a global prefactor was introduced 
by keeping the original exponent. One might also try to 
apply these two types of compensation simultaneously. 
This means that for any exponent different from Do there 
exists a unique prefactor so that the new iteration scheme 
converges towards a finite limiting function. For repellers 
one can always choose the prefactor in the form of exp (Kq) 
with an arbitrary real q. The corresponding exponents were 

(a) 

/ 

fIx) / i/ 
V 

x 

(b) 

l,
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FIG. 4. Typical map generating transient chaos on some interval I. Note 
that points lying outside the two subintervals Ij/) and IP) escape I after 
one time unit. Points which do not exit in n steps are contained in the nth 
preimages of I, and exhibit chaotic behavior, on time scale n. Cylinder 
sets up to level 3 are shown in the lower part of the figure. 

found 63-65 to be related with the order-q generalized di­
mensions D(q) (Refs. 4 and 5) taken with respect to the 
natural measure. More precisely, 

If'(x) Iq (q I)D(q) 
(44) 

is a compensated recursion leading to a finite limiting Q. 
This recursion can be used to determine D(q) with high 
accuracy. 

From the point of view of dynamical systems, natural 
measures are the most essential ones. There exist, however, 
entire classes of invariant measures different from the nat­
ural one which Can play an important role when consider­
ing maps appearing in other physical context. 

An interesting family of invariant measures on repel­
lers, and on attractors of FDC maps, obtained by iterating 
the map backward in a random manner. Different distri­
butions arise because of different ways of backward itera­
tion. To each value x belong two preimages (if the map is 
single humped) denoted by f;'(x) where r=1 if the pre­
image belongs to subinterval 161

), and r=2 otherwise. The 
probability for taking branch 1 or 2 is to be decided. We 
suppose this depends on the actual position only and de­
note by Pt (x) the probability for choosing branch 1. Ob­
viously, p,(x)=I-p,(x). The resulting distribution is a 
multifractal, the dimensions of which were shown65 to be 
obtainable from the recursion scheme 
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(45) 

The associated nonnatural measures might be the physi­
cally relevant ones in applications beyond the scope of dy­
namical systems (see Appendix B). 

D. The period doubling attractor as a repeller 

As an example, we show here how the fractal proper­
ties of the Feigenbaum (or period doubling) attractor can 
be studied by means of the methods worked out for com­
plete maps. It is a relatively recent observation 66 that the 
Feigenbaum attractor as a geometrical object appears also 
as a repeller of a map fN which can be expressed via uni­
versal quantities. The function fN for the quadratic map 
family consists of a straight line branch fu(x) =aFx with 
a F = - 2. 5029 ... being a universal scaling exponent and a 
somewhat curved branch fu(x) =apg(x). The function fu 
is defined on the interval 1= ( 1/ a F, 1) (Fig. 7). 

Cylinders generated by the preimages of I provide also 
a coverage of the attractor. One must, however, be careful 
when trying to study metric properties, since the natural 
measure of the repeller is not the same as that of the at­
tractor! The natural meaSure on the attractor is generated 
by the forward iterates ofthe maximum point under map g. 
It is easy to check that this trajectory visits equally often all 
cylinders of level n, consequently, the natural measure on 
the attractor must be the same in all cylinders. This can 
also be obtained by iterating map f u backward with equal 
probabilities. 

The most important quantity is the set of dimensions. 
One can determine D(q) from the eigenvalue equation 
(45) with PI=p,=1/2. By using high order polynomial 
expansions for g(x), the generalized dimension of the pe­
riod doubling universal attractor could be determined by 
this method with ten digits accuracy. 67 A method yielding 
even better accuracies is based on a zeta function con­
structed from the primitive cycles of the map fu. 68 

IV. THERMODYNAMIC FORMALISM 

Based on classical mathematical papers,"-13 the ther­
modynamic formalism for chaotic systems has recently be­
come a common tool both for mathematicians69

-
74 and for 

physicists.75
-

87 Here we show how the basic concepts work 
in one-dimensional maps exhibiting fully developed and 
transient chaos. For this class an explicit form of Ruelle's 
Frobenius-Perron operator can be found providing a pow­
erful method for computing characteristics, like the free 
energy, the Renyi entropies, and their decay rates. Because 
nonhyperbolic cases are also treated, different kinds of ei­
genvalue problems and operators are found, generalizing 
thus the "classical" results. As a consequence of nonhy­
perbolicity, nonanalytic behaviors, phase transitions, show 
up in the characteristics. The ones found in the entropies 
seem to be of a very general nature which can also be found 
in higher-dimensional cases and in systems not directly 
related with chaotic phenomena, too. 

, 
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FIG. 5. Natural distribution for map Xn+ I = 1-2.05x~ obtained on a grid 
of size 0.002. The number of initial points distributed uniformly on I was 
107, and the first 10 and the last 30 steps of trajectories were discarded. 
The truncated trajectories contained about 106 points ensuring a very 
good statistics. 

A. Thermodynamical quantities 

In analogy with different multifractal spectra, one 
might wish to make a direct characterization of the mea­
sure distribution of the cylinders by raising the measures to 
a certain real power (3 and summing them all up at level n. 
An exponential scaling is expected for the partition sum2l 

Zp.n({3) '" I fl-in)P _e-PF"(P)n, 
i 

(46) 

for n~ 00, where Fp({3) is a kind of free energy. This no­
tation is motivated by an analogy between the binary code 
associated with a given cylinder at level n and the mi­
crostate of an Ising chain of length n. {3 plays the role of the 
inverse temperatures fl- (nl is the Boltzmann factor and F p 

corresponds to the free energy per spin of the Ising chain 
with typically long-range and multispin interactions. In 
what follows it will be understood that fl- is the natural 
measure. 

A similar quantity can be defined through another par­
tition sum S6 

(47) 

where F({3) is a different free energy, which characterizes 
the length scale distribution of the cylinders. [In the case of 
hyperbolic systems -(3F({3) agrees with the topological 
pressure introduced in the mathematical literature. 11-13] 

For hyperbolic maps the measure is proportional to the 
length [see Eq. (43)] and the two free energies are then 
related as 

(48) 

In permanently chaotic cases (K=O) they coincide if the 
map is hyperbolic otherwise the difference between the free 
energies is a measure of nonhyperbolicity. 

It is a recent development that these free energies can 
be obtained from the largest eigenvalues of a generalized 
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FIG. 6. The conditionally invariant measure for map xn+! = 1-2.05x~ 
obtained by discarding the first 10 steps of trajectories and plotting the 
distribution of all points which stay inside the basic interval. Parameter, 
initial conditions, and box size are the same as in Fig. 5. 

Frobenius-Perron (GFP) operator H((3) (Refs. 26-28, 
22, 66, and 82-87), which is the transfer matrix of the 
infinite Ising chain mentioned above. The operator H h((3) 
of map hex) acts on any function Q(x) defined on I as 
follows 

Q(x) 

Ih'(x) 1/3" 
(49) 

The spectrum of this operator depends on the function 
space from which Q(x) is chosen. Here and in the follow­
ing we shall concentrate on functions which are generated 
by subsequent applications of Hh to a nonsingular positive 
Qo on I. The largest eigenvalue ;,.bh

) ((3) belonging to this 
class can be obtained from the relation 

(50) 

for n ~ 00, where Q(x) is the corresponding eigenfunction. 
Based on the observation that the slope of the n-fold 

iterated map rex) in cylinder i is inversely proportional 
to the length lin), one can show27,66,82 that the free energy 
F((3) is connected with the largest eigenvalue of the GFP 
operator of map I(x) as 

(51) 

It is worth emphasizing that this result holds for both 
hyperbolic and nonhyperbolic and for both permanently 
and transiently chaotic maps. 

Equations used in Sec. III are special cases of Eqs. 
(49) and (51). Iteration schemes (38) and (41) can be 
viewed now as expressions of the general relations 

F(Do)=O and F(1)=K, (52) 

respectively. 
Analogously, one obtains the free energy F ~ ((3) of an 

FDC map I(x) from the largest eigenvalue of the GFP 
operator which we take now with the equivalent Lebesgue 
map lex) defined by Eq. (16):22 

(53) 

This follows from the fact that the cylinder lengths of I are 
just the natural measures of the corresponding cylinders of 
the original map [, and the measures are invariant under 
conjugations. 

It is instructive to see another operator,22 expressed 
completely in terms of the original map I(x), which also 
yields ;,.bf ) ((3) as its largest eigenvalue in the class of func­
tions defined above. This operator H f((3,(3) acts as 

(54) 

where P(x) is the density of the invariant measure. It is 
worth noting that the extra weighting factors pi3(x) ensure 
the correct scaling of the natural measure in the outermost 
cylinders, where in nonhyperbolic cases a singularity 
shows up, and the measure is thus not proportional to the 
length. This result is expected to also hold in the case of 
both hyperbolic and nonhyperbolic repellers when P(x) 
stands for the density of the c-measure. 

The free energy F~(q) is related to the Renyi entropy 
K(q) (Refs. 7 and 8) that have been introduced as dynam­
ical invariants which give a more detailed description of 
the dynamics than the single KS entropy alone. Applying 
the general definitionsS which contains a sum of the qth 
power of the path probabilities, one finds K(q) to be 
closely related to the growth rate of the partition sum 
Z~,n(q). In particular, 

K(q) = qF~(q). 
q-I 

(55) 

In other words, apart from a trivial factor, the order q 
Renyi entropy is equal to the free energy F ~ (q). Provided 
K(q) is analytic around q= I, the order I Renyi entropy is 
found to be the KS entropy defined in (18). We shall see, 
however, that analyticity might break down, therefore, it is 
better to accept K( I) to be by definition the KS entropy. 

A more detailed description of the hierarchic structure 
of chaos can be given if instead of (46) or (47) a partition 
sum ~J.tln)'lln)P is considered containing both the lengths 
and the measures of cylinders. Since essential difference in 
the scaling behavior of these quantities can be found in the 
outmost cylinders only, the partition sum goes, in leading 
order, as the nth power of the largest eigenvalue of an 
operator H f (q+(3,q), where the operator Hf(r,s) is de­
fined by 

Hf(r,s)Q(x) =P-'(x)Hf(r) [P'(x)Q(x)]. (56) 

Here Hf(q) is the GFP operator (49) taken with map I, 
and P(x) stands either for the invariant density or for the 
density of the c-measure. Instead of working out the cor­
responding bivariate thermodynamics62,79,SS-90 in detail, we 
shall concentrate on two important special cases. 

First, let us introduce the spectrum L(q) of local Ly­
apunov exponents.9,10 Since 1/lln) is the local expansion 
factor in cylinder lin), a weighted average of their qth 
power taken with respect to the natural measure defines an 
order q expansion rate L (q) via 
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FIG. 7. A schematic plot of the universal map fu. The invariant set of fu 
is the period-doubling attractor. In reality, the branch a,.g(x) is much 
closer to a straight line. For comparison, the Feigenbaum fixed point 
function g(x) is also shown. 

2: l}n)-qlt}n) __ eQL(q)n. 

; 
(57) 

The case g-O corresponds to the average Lyapunov 
exponent L(O) =K1 +K. Next consider H j (1-g,1) which 
is a generalization for nonhyperbolic maps of the operator 
introduced by Fujisaka and Inoue.28 Because of (57), the 
largest eigenvalue of this operator is exp(gL(g) -K). 

The generalized dimensions D(g) (Ref. 4) taken with 
respect to the natural measure fulfill the relation' 

" len) -r(q) (n)q I 
£.. i f.Li-- (58) 
; 

when T(g)=(g-I)D(g). Consequently, the order g gen­
eralized dimension can also be obtained from the special 
choice T*(g) for which the largest eigenvalue of H ~g 
-T*(g),g) is just exp( -Kg). Since the sums (57) and 
(58) contain length scales, the quantities L(g) and D(g), 
just like the free energy F({3) [Eq. (47)], are not invariant 
under singular coordinate transformations. Note~ however, 
that by replacing the length scales lin) with any (nonnat­
ural) invariant measure vin) of map I(x) one could intro­
duce a bivariate partition sum taken over cylinders with 
nonzero measures };j p}n)Qv}n)f3, and quantities derived 
from equations similar to (57) and (58) would then be 
invariant under any conjugation. 

When comparing operators H({3) and H(r,s), one can 
clearly see that the quantities F({3), K({3), L(1-{3), and 
D(g={3) can be independent in nonhyperbolic cases. The 
difference between the&e spectra can also be viewed as the 
difference in the action of the GFP operator iI j on func­
tion spaces with different singularities at the outmost 
points of I. [The latter are induced by the weighing factors 
pI3 and P' in Eqs. (54) and (56), respectively.] In hyper­
bolic cases, however, P(x) is a nonsingular positive func­
tion on I, the spectra of the operators mentioned above 
coincide, and from the largest eigenvalue one finds 

and 

{3F({3) =K{3+ ({3-1 )K({3) =K- (1-{3) L( 1-{3), 
(59) 

{3F({3)IP~q_(q_I)D =Kg. , (60) 

The last relationship is expressed in the language of recur­
sions as Eq. (44). We note, however, that even in nonhy­
perbolic cases these relations hold in certain regions of the 
inverse temperature. 

A perturbation theory can be worked out for all the 
Frobenius-Perron type operators introduced above in a 
similar manner as presented in Sec. II D and in Appendix 
A. In particular, the entropies have been computed near a 
map with known properties.2o,22 For the maps (14) the 
first correction reads 

K(g) =In 2-g(r/2)+ .. ·, (61) 

where r is given by (31). A high-order calculation is il­
lustrated in Fig. 8 together with the result of the numerical 
simulation, 

An equivalent description is given by the dynamical 
multifractal spectrum g(A) which is connected to (g 
-1)K(g) by means of a Legendre transformation6,QI,92 

(g-I)K(g) =min (gA-g(A», 
A 

In leading order for the maps (14) one obtains2o 

(In 2+r12-A)2 

2r 
g(A) :::::In 2 

(62) 

(63) 

This shows that r is just the halfwidth of the spectrum 
near its maximum. By using the value (37) for r*, one 
obtains the dynamical multifractal spectrum valid for the 
universal FDC map. 

B. Approach to the thermodynamic limit 

The manner in which quantities obtained from cylin­
der properties at level n tend to the asymptotic expressions 
F({3), K(g), or L(g) valid in the thermodynamic limit 
n _ 00 is an internal characteristic of the chaotic system. 
This also has a practical relevance since the velocity of the 
approach determines essentially the accuracy with wh.ich 
the asymptotic quantities can be obtained from a finite n 
calculation. Because of the prefactors not written out on 
the right-hand side of the scaling relations like, e.g., (46), 
a general Un dependence is present in the asymptotical 
quantities. The next correction is expected to be exponen­
tial provided the largest eigenvalue of the operator in ques­
tion is separated by a gap from the rest of the spectrum. If 
these assumptions are not fulfilled, a critical slowing down 
occurs in the approach to the thermodynamical quantities 
which signals the existence of nonanalyticities, phase tran­
sitions, what we shall discuss in Sec. IV C. Here we work 
out in some detail the decay process associated with the 
Renyi entropies, the characteristics being invariant under 
the most general form of transformations. 

Let us define the finite time Renyi entropies Kn(g) via 
relation 

I I 
Kn(g) =-1- -In Z" n(g), -qn r' 

(64) 

where the partition sum is defined by Eq. (46). One is 
interested in how Kn(g) is approaching K(g) for n_ 00. 

Next, introduce the asymptotic quantities 7,23 
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iq,K= lim n(Kn(q) -K(q», (65) 

which are called reduced dynamical Renyi informations of 
order q, It is obvious from the definition that the reduced 
dynamical Renyi informations are just the amplitudes of 
the lin corrections, 

A typical next-to-Ieading-order asymptotics of Kn(q) 
is23 

K () K() 
iq,K+B(q)lJn(q) 

n q,...., q + n ,n_ 00, (66) 

where IlJ(q) I is less than unity. Situations where in some 
region of q this asymptotics is not valid is discussed in Sec. 
IV C. The quantity, 

y(q) = -In IlJ(q) I, (67) 

is called generalized entropy decay rate and lIy(q) can be 
considered to be the relaxation time of Kn(q)." The en­
tropy decay rate y defined in Sec. II C corresponds to q= I. 

For piecewise analytic FDC maps it has been found" 
that K n (q) has two competing relaxation terms for q"",O, I. 
Both are closely related to the eil;.envalues of the general­
ized Frobenius-Perron operator HJ- One decay process is 
governed by the second largest eigenvalue "V)(q), as ex­
pected. Another, nontrivial decay process is due to finite 
size effects, to the fact that the cylinder lengths are express­
ible only in leading order as the derivative of the n-fold 
iterated map. This rate turns out to be connected with the 
largest eigenvalue but taken at an inverse temperature 
shifted by 2. Both processes are of equal importance, there­
fore, lJ(q) proves to be a maximum of two terms 

(68) 

Since the largest eigenvalue is related to the entropies, the 
order q decay rate is either the negative logarithm of the 
ratio of the two leading eigenvalues or can be given in 
terms of the entropies themselves as (q+ 1)K(q+2) + (I 
-q)K(q). At q= I the contribution of y comes always 
from the latter term since in the expansion of Zp,n(q) in 
terms of the eigenvalues the amplitude of ,,~(q) vanishes. 
For q=O none of the relaxation processes are present due 
to the complete grammar of the symbolic dynamics. 

The perturbation expansion can be extended to y( q) as 
well. Here we quote, as in Sec. II D, results obtained'2,3s in 
leading order in the perturbing function vex) [Eq. (14)] 

y(q) =min(ln 4+qv"(0)/2- (q+ I )v' (O),ln 4 

-(2q+ 1)r) (69) 

valid for q"",l, where r is defined by Eq. (31). The con­
tribution coming from the second largest eigenvalue is the 
first expression inside the parenthesis. Since it is never 
present at q=l, the result y(l)=2K(3) might appear as 
an isolated point in the graph of y(q) depending on the 

actual form of vex). For the universal FDC map the en­
tropic contribution dominates for Iq-lI <I and the uni­
versal entropy decay rates then read as 

y*(q):::;In 4- (2q+ 1)r*, (70) 

where r* has been defined in Eq. (37). 

C. Phase transitions 

Phase-transition-like phenomena are much more sel­
dom in K(q) than in other characteristics, due to the 
strong invariance property of the entropies against conju­
gation. They occur at border line situations of chaos. In 
other thermodynamical formalisms [as, e.g., the ones based 
on the free energy /3F(/3), or the Lyapunov exponents 
L(q)] phase transitions away from borderline situations 
show up in nonhyperbolic maps, In such cases the two 
leading eigenvalues of the relevant GFP operator coincide 
at the critical point and the corresponding decay rate van­
ish. These phase transitions, however, are not invariant 
under singular coordinate changes that cancel or create a 
critical point. Furthermore, phase transitions, due to sim­
ilar effects, have been observed in the generalized dimen­
sions of higher-dimensional systems. For these problems 
see the reviews l4-19 and references therein. 

In what follows we concentrate on the most robust 
phase transitions, i,e., the ones in the entropies, which si­
multaneously always occur in all other thermodynamic 
quantities. Such cases have in common that the leading 
behavior of partition sums like (46) is not exponential in 
certain regions of /3. Furthermore, we shall point out that 
these transitions are also reflected in the singular behavior 
of iq,K and y(q). The borderline situations which are the 
reason for these phase transitions correspond to marginal 
stability (intermittency) or super instability of the dynam­
ics. In ID maps conjugated to the tent map no phase tran­
sition can show up. By applying an operation transverse to 
conjugation, these borderline situations are found if 
v' (0) = I and if v' (0) = -I in Eq. (14) when the fixpoint 
in the origin becomes marginally unstable [i.e., f' (0) = I] 
and superunstable [i.e., I' (0) = 00], respectively. In both 
cases a well defined density exists according to Eq. (14). In 
what follows we restrict our attention to permanently cha­
otic maps. 

1. Intermittency 

The first possibility f' (0) = I means that the dynami­
cal system is in a weak intermittent state.36 An example is 
the map (15) at d= I. Close to the intermittent state, the 
form of the map near the origin is 

(71) 

I! is worth also giving how the equivalent Lebesgue map 
I(x) [Eq. (16)] behaves: 

(72) 

Here 'Y/, 71>0 and equality holds at weak intermittency, 
The existence of a phase transition follows from an 

upper bound for the Renyi entropies2o,2l,23 
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q . I 
Kn(q) <--=-1 hm ;; In (f n))' q> I. 

q n_oo J.1, 0 
(73) 

This is obtained by keeping the contribution of the leftmost 
interval only in the partition sum (46). One can show, 
however, that this measure now decays as a power law43 

(74) 

where z is fixed by Eq. (72). Consequently, K(q) ",,0 for 
q> I. Recall that our system is chaotic, i.e., K=K(I) is 
strictly positive by definition. Since K(q) is monotonously 
decreasing with increasing q, we have two regions20,21,23 as 
shown in Fig. 9(a): 

K(q) >0, q<l, 
K(q)=O, q> I, 

"normal chaos phase," 
"regular chaos phase," (75) 

The regular chaos region q> I is dominated by the "con­
densed," seemingly regular behavior of trajectories coming 
close to the origin. At the critical temperature q,= I we 
have a jump in the entropy spectrum, which is equal to the 
Kolmogorov-Sinai entropy. An analysis of an extended 
statistical physics of this phase transition has been worked 
out in93- 97 subsequently. 

An analogous phenomenon can be seen in systems ex­
hibiting self-organized critical behavior. Such systems are 
in a marginally unstable state and their temporal correla­
tions decay according to a power jaw. Correspondingly, in 
a cellular automaton model showing this behavior, the ex­
istence of the same phase transition was pointed out. 98 

In accordance with (75) and (62), g(A)=A in the 
range O<A<K( I), and this part of the g(A) curve then 
joins a single humped curve with a continuous first deriv­
ative [see Fig. 9(c)]. 

According to the defiuitiou (65), one obtains23 for the 
reduced dynamical Renyi information the lower bound 

I 
Iq,K>Ioo,K= lim In (f n))' q> I. 

n-oo J.t 0 
(76) 

Consequently, Iq,K= 00 in the regular phase, In the normal 
phases j q,K is finite and diverges to - co as q -+ 1 - O. 

It is worth noting that the limit 7}~O(implying 'ii~0) 
resembles a phase transition, 7} playing the role of a control 
parameter. Approaching the critical point along the path 
q=q,= I, 7}~0, the entropy decay rate (27) reflects a crit­
ical slowing down, The characteristic relaxation time then 
diverges43 as 

(77) 

At the point 7}=0 the entropy Kn(l) decays algebra­
ically43,J7,45 

To follow the behavior along the "temperature" direc­
tion at 7}=0, the entropy decay y(q) is positive for q<q, 
and y(q) tends to zero" when q~ 1-0, exhibiting the 
critical slowing down again, In the regular phase y(q) =0, 

K Iq.) 
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FIG. 8. Renyi entropies of the map (15) at d=O.S. Solid and dashed lines 
show the results of a numerical calculation and of the perturbation ex­
pansions, respectively, carried out up to 9th order in d. 

2. Super instability 

Next, let us investigate the opposite case, when the 
map (14) has a super unstable iixpoint U' (0) = 00] at the 
origin, An example for such a map is (15) at d= -1. In 
that case the probability that the trajectory stays up to time 
n in the neighborhood of the origin decreases faster than 
exponentially23 as a function of n, In particular, 

J.L (Ibn)) _ B- c:' (78) 

with constants B> I and C> I. 
A lower bound for K (q) in the region q < ° can be 

obtained35
,23 by keeping only the probability (78) in the 

partition sum (46) as 

q, 1 
K(q»--=-1 lIm In (f n)) 00, q<O, (79) 

q n_ 00 J..t 0 

Since the topological entropy K(O) =In 2 and K(q) 
<K(O) for q> 0, one has a singularity in K(q) again, This 
is, however, completely different from the previous one, 
The two phases shown in Fig, 9 (b) are now characterized 
by3,,23 

K(q)=oo, q<O, "anomalous phase," 
K(q) < 00, q>O, "normal chaos phase," (80) 

An infinite jump can be seen in K(q) at q,=O, The dynam­
ical muitifractal spectrum g(A), defined in (62), in this 
situation has the particular property that reaches its max­
imum value [the topological entropy K(O)] at A= 00, and 
the decreasing branch oflhe curve is absent [see Fig, 9(d)], 
In the anomalous phase we directly get that 1.,.= - 00 bv 
using the definitio~ (65), - - ".. -

It has been shown in Ref, 23 that similar phenomenon 
can occur in the static multifractal spectrum I(a) (related 
to generalized dimensions) of one-dimensional maps as 
well. It is worth noting furthermore, that examples have 
been found in other context which exhibit one-sided I( a) 
multifractal spectra,99-102 In particular, in fractal aggre­
gates this property is caused by the extremely low growth 
probability inside the fjords, 

A different mechanism leads to the existence of an 
anomalous phase in complete maps with infinitely many 
branches,103 From the monotonicity properties of K(q) the 
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presence of this anomalous phase for q < 0 is obvious since 
K(O) = 00 in such maps. The critical value qc can, however, 
be now anywhere in the region O<qc< I depending on the 
mixing properties of the branches. 103 As an example let us 
mention the Gauss map,l04 which also has relevance in 
cosmology describing the anisotropy fluctuations of the 
metric close to the cosmological singularity, lOS for which it 
was proven 103 that qc= 1/2. 

Finally a few general remarks are in order. In complete 
non-FDe maps modeling Lorenz-type systems both types 
of robust phase transitions can occur simultaneously. 106 

A sufficient condition for the phase transition can be 
formulated by generalizing the criterions given above. To 
this purpose let us consider the following bounds for the 
Renyi entropieslO7 

q 
K(q) <--I aA, q-

q> I, (81) 

a 
K(q»~aA, q-

q<O, (82) 

where a is the pointwise dimensionS at any unstable peri­
odic orbit, and A is the Lyapunov exponent of the same 
orbit. We note that neither a nor A. are invariant under 
coordinate changes, aA is, however, invariant just like 
K(q). These relations lead to the unexpected result that 
intermittency is not necessarily connected with the exist­
ence of a marginally unstable periodic orbit, it might also 
be caused by an extremely strong feedback mechanism 
yielding a vanishing pointwise dimension around any of the 
periodic orbits with finite Lyapunov exponents.107 

V. OUTLOOK 

In this paper we have restricted our attention to single 
humped ID maps with complete symbolic dynamics, i.e., 
to cases when there was no exclusion rule for the grammar. 
That situation was found in entire intervals of generic con· 
trol parameters in transiently chaotic cases reflecting the 
structural stability of the hyperbolic invariant set. Com­
pleteness holds on a more restricted space of control pa­
rameters in the case of permanent chaos. 

A possible extension of the method includes parameter 
settings at which finite Markov partitions can be found. 
This means that certain symbol sequences are no longer 
allowed to occur, but the exclusion rules are of finite type. 
In such cases many of our results are expected to hold. One 
can define thermodynamics, generalized Frobenius-Perron 
equations, and show that their eigenvalues are connected 
with multifractal spectra exactly in the same manner as in 
the bulk of the paper. The computation is of course the 
more cumbersome the longer the grammatical rules are. 

As for the most general case without any finite Markov 
partition, we hope that certain parameter values can be 
reached at least via a convergent series of parameter values 
at which Markov partitions of increasing length can be 
found.82 In this way also thermodynamic functions can be 
obtained as limits of thermodynamic function computed at 
finite Markov partitions. 

Certain aspects might go even beyond one dimension. 
The hierarchical organization of higher-dimensional chaos 
can be described by means of thermodynamical quantities. 
Instead of the cylinder set, it is worth taking in two­
dimensional maps the intervals generated by intersecting 
the stable manifold with a smooth line. By measuring the 
scaling of the lengths of these intervals a free energy can be 
defined from which important characteristics connected 
with the expanding direction can be derived in hyperbolic 
cases. lOS One might also speculate about the applicability 
of the operator formalism to higher-dimensional maps. The 
operators and the derivatives appearing in them have to be 
defined then along the unstable manifolds. Because of the 
complicated fractal structure in the orthogonal directions, 
however, a practical computation seems to be rather cum­
bersome, but we think the problem deserves further atten­
tion. 

One of the most general properties of chaos having 
played a role in the paper is the robustness of the Renyi 
entropies under coordinate transformations. In higher­
dimensional cases they are also invariant against measure­
preserving transformations which might also be singular, 
while the other characteristics are invariant under nonsin-
gular coordinate changes only. The former, strong, invari­
ance property also hold for the entropy decay or the entire 
spectrum of the corresponding transfer matrix. Another 
consequence of invariance is the rarity of phase transitions 
exhibited by entropies. The phase transitions characterize 
the dynamics at the border of chaos like at intermittency or 
super instability. 

Bounds (81) and (82) for the entropies can easily be 
generalized 107 to higher-dimensional maps and time­
continuous cases by simply replacing aA by l:j aJ}.,jwhere 
the sum is taken over different unstable directions, and a j 
and A j denote the pointwise dimension and the Lyapunov 
exponent of the unstable periodic orbit, respectively, taken 
along direction j. 

In conclusion, a regular (anomalous) phase is present 
in K(q) for q> I (for q<O) if either 

(a) there exists a periodic orbit for which ~t a)-j=O 
(~t a)-j=oo) or 

(b) there exist a series of periodic orbits for which 
~ t a)- j can be arbitrarily close to zero (can be an arbi­
trarily large positive number). In continuous time dynam­
ics possibility (a) occurs in the Lorenz attractor at the 
weak intermittent state. 109 In generic Hamiltonian systems 
where the phase space contains regular islands and chaotic 
regions there is a series of unstable periodic orbits ap­
proaching the boundary KAM tori for which ~t a)-j can 
be arbitrarily small. ThusK(q) =0 for q> I for any generic 
Hamiltonian system."o This is a quantitative expression of 
the "siicking property" of KAM iori which property has 
recently been turned out to be essential in correctly inter­
preting an experiment on the magnetoresistance of meso­
scopic two-dimensional conductors. I I! 

It is worth recalling certain aspects that are also rele­
vant beyond the scope of dynamical systems. The essence 
of these robust transitions in a nonexponential scaling in 
certain regions of the system. Such anomalous scaling 
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FIG. 9. Renyi entropies and dynamical multifractal spectra g(A) in bor­
derline situations of chaos illustrated on the example of ma.p (IS). Inter­
mittent case (d= 1); (a), (e); super unstable case d= -I; (b), Cd). 

might occur in characteristics different from entropies, too. 
The intermittentIike transition of the entropies in self­
organized critically98 and the one-sided I( a) of random 
resistor networks99 and fractal aggregates'7,1O,,102 men­
tioned in the paper are notable examples. 

Finally we remark that the universal chaos map, whose 
properties have been discussed throughout the paper, can 
also be relevant to higher-dimensional systems in the vi­
cinity of the onset of chaos. 
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APPENDIX A: PERTURBATION THEORY 

In what follows we will briefly review perturbation the­
ory for the spectral properties of the Frobenius-Perron 
operator, a method which is applied to more general oper­
ators as well. 

Suppose we have a perturbed map 

f(E,x) =fo(x) +Ef, (x), (83) 

where 10 is the zeroth-order map and I, is the perturba­
tion. It is assumed that they are piecewise analytic func­
tions and the FDC property is maintained for f(E,x). The 
spectral properties of Ho associated with 10 are assumed to 
be known as 

(84) 

where i labels the eigenvalues and eigenfunctions. Expand 
the operator H( E) in terms of E like 

00 

H(E) = L HJ€j. 
)=0 

(85) 

The operator Hj can be expressed in terms of fo and fl' 
The first-order one is, e.g., given for a symmetric map (83) 
by H,v(x)=-(f,(fo'(x»Hov(x»', where because of 
the symmetry of I,(x) any branch ofthe inverse la' can 
be taken. A further assumption is that the eigenvalues 
Ai(E) and eigenfunctions Vi(E,X) are analytic in E 

00 

Vi(E,X) = L v;)x)€j. 
j=O 

(86) 

(87) 

Expand both sides of the eigenvalue problem (and omit the 
label i and the argument x) 

A(E)V(E) =H(E)V(E) 

and obtain in the jth order 

j 

(Ao-Ho)vj= L (Hi-Ai)Vj_i' 
i=l 

(88) 

(89) 

If At,. .. ,Aj_l and vh""Vj_l are known, then the jth cor~ 
rection to the eigenvalue A j can be determined from the 
condition that the right-hand side must not contain the 
zeroth-order eigenfunction Vo as a component, since that 
component is eliminated on the left-hand side, Note that 
since the Frobenius-Perron operator is not self-adjoint, the 
projection onto the eigenfunction Vo should be worked out 
specifically for a given zeroth-order map. Denote the pro­
jector to Vo by flo, then 

(90) 

The sum is absent for j = I. Once A j is determined, we can 
calculate the corresponding correction to the eigenfunction 
as 

Clearly one does not expect any correction to ".lO(E) = 1, 
and the invariant probability density is the corresponding 
normalized eigenfunction P( E,X) = vol E,X). 

It should be emphasized that the space of eigenfunc­
tions does not typically span the whole function space of 
interest. In the general case, so· called null functions1l2 

should be included in the treatment as well, which are 
specified by that they are transformed into zero after a 
finite number of applications of the operator if. The prob­
lem of the interplay between eigenfunctions and null func­
tions is beyond our scope. In the case of FDC maps and 
function space we are considering, apart from intermittent 
maps, at the top of the spectrum the levels are well defined 
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and there are finite distances between them and perturba­
tion theory for the eigenfunctions can be applied. 

In order to give a few examples, we will consider the 
tent map as zeroth-order map, with the known spectrum 
and eigenfunctions for flo, when the space of functions is 
restricted to analytic ones on I: 

(92) 

where Bn(x) is the Bernoulli polynomial of order n, and 0 
is a degenerate eigenvalue with eigenfunctions odd with 
respect to 1/2. The invariant density is Bo(x/2) == I. The 
projection on the ith eigenfunction goes as 

• 4i f d'i 
IIi,o</) (x) =V(X)i,O (2i)! I d1' q,(y)dy. (93) 

Here we show the example of the bilinear map 

hL(e,X) = 1- (I-e) 11-2xI-e(l-2x)2. (94) 

Perturbation theory for f BL leads to the eigenfunction 
with unit eigenvalue 

PBL(e,X);::; I+e( 1-2x) +C>(8X2- IOx+ 7/3) 

+e3(84x3-150x2+80x-II)/3+'" . 

(95) 

The bilinear map is related to the tent map by combining 
conjugation (11) with the transverse transformation (14), 
so in higher orders the correction to the probability density 
is not of odd symmetry. The full spectrum is given in first 
order 

Ai(e);::;4 -i(1-ei(2i+ I) + ... ), 
while the next-to-leading eigenvalue is to 0(e3

) 

Al (€);::; 1/4( 1-3€+4C>-5e3 +"'). 

(96) 

(97) 

The framework outlined above can be applied to the 
generalized Frobenius-Perron operator Hf(q) as well. As 
examples we give for the case of the piecewise parabolic 
map (15) to 0(d3

) the generalized Renyi entropies 

qd' 
K(q) =In 2 6 

and the entropy decay rates 

y(q) =min(q,(q),1,1(q», q#1 

with 

d2 

q,(q) =In 4-d(2q+ I) +T(8q2+ IOq+3) 

d3 

-'9(4q3+16q2+16q+3)+'" , 

(98) 

(99) 

( 100) 

d' 2d3 

1,1(q) =In 4-'3(2q+ I) -"9(3l+2q+ 1) +." , 

(101) 

and for q= I 

(102) 

APPENDIX B: RANDOM FIELD ISING CHAIN 

One-dimensional maps often show up in the theory of 
disordered systemsl13- 116 and can be studied by means of 
the methods described in the paper. As an illustrative ex­
ample, we consider here the case of the random field Ising 
chain. 

Take a semi-infinite chain of Ising spins 
{SI' 82' ... , Sm ... } in an inhomogeneous external field 
{hI' h2, .", h., ".} with Hamiltonian 

H ~ 

k T= L (KsfJ+I+hf), (103) 
B j=I 

where K is a coupling constant. The set oflocal fields {h) 
is considered as a particular realization of a random field 
distribution assuming at each site the values +h and -h 
with probabilities p and I-p, respectively. 

The thermal properties of the system are obtained by 
evaluating the partition sum 

Z= L exp (-KSIS2-hISI- i: (KSfHI+hf)) 
{sl,s2,"'} )=2 

(104) 

at a fixed realization of the fields and averaging the free 
energy over different realizations afterwards. The summa­
tion over spins can be made in a recursive way.II7 Since the 
first spin appears in two terms of H only, the partial Sum is 
easily obtained in the form 

Z= L 2 cosh (Ks2+h l ) 
{S2,S3""} 

(105) 

As S2 can take on the values ± I only, an exponential rep­
resentation of the cosh function gives 

cosh(Ks2+h l ) =exp (A (K,h l ) +g(K,h l )S2), (106) 

where 

A (K,x) =! In (cosh(K+x) cosh (K -x», 

g(K,x) =! In (cosh(K+x)/cosh (K-x». 
(107) 

This form shows that the first spin gives the contribution 
-A(K,h l ) to the free energy, and generates simulta­
neously also an extra field g(K,h l ) for the second spin. The 
partition sum can thus be written as 

Z= L exp (A (K,h l » exp (-KS2S3-X2S2 
{s2,s3,"'} 

(108) 

where x2 is an effective field acting on the second spin, and 
is given by 
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FIG. to. Left: Random map generating the local field x. Right: The 
inverse of the map. The repeller of this map is the attractor of the random 
iteration (110) for any choice of the probability p. 

( 109) 

Note that the partition sum has a similar form to the orig­
inal one (with x rather than h for the second spin). Hence, 
the summation over subsequent spins can be carried out in 
an analogous way. After n steps we find the field acting on 
spin (n+ I) as 

(110) 

and the actual contribution to the free energy will be 
-A (K,xn ). 

Thus, a recursion has been found which is actually a 
random one since the fields {h) are random variables,us 
According to the field distribution, xn+l takes on the val­
ues h+g(K,xn) and -h+g(K,xn) with probability p and 
I -p, respectively. Consequently, the recursion can be 
written as a two valued map in which iterates stay on the 
upper [lower] branch with probability p[l-p] (see Fig. 
10). The actual form of the map depends only on the cou­
pling constant K and the field magnitude h. Although the 
branches alone are not expanding, the random map exhib­
its chaotic motion on an attractor. The natural invariant 
measure on this attractor is of great importance since the 
averaged thermal free energy per spin is just the mean 
value of -A (K,x) taken with respect to the natural mea­
sure of variable x on the attractor. The averaged magneti­
zation per spin and other thermal properties can also be 
expressed by means of the natural measure,us 

At certain parameter settings there is a gap between 
the branches as shown on Fig. 10. This has the conse­
quence that the attractor is a/ractal. One sees immediately 
that the whole interval Ion which the dynamics is defined 
is mapped then into two smaller ones with the gap in be­
tween, and the images of the small intervals will have also 
holes, in any order. In fact, these intervals are exactly the 
cylinders in the inverted map shown on the right of Fig. 10. 
Thus, one concludes that the attractor of the random map 
is just the repeller of the inverted map.119 This statement 
holds for all values of probability p. The natural measure 
on the attractor, however, depends strongly on the choice 
of P and is not related to the natural measure of the repel­
ler. 

The natural measure of the attractor of the random 
map can, of course, be obtained by iterating the map / (see 
Fig. 10) backward with branching probabilities p and 
1-p, and is independent of the choice of the initial point. 

The measure is a multifractal measure. 120,12l An efficient 
way to obtain its D(q) spectrum is to solve the eigenvalue 
equation (45) with Pl(X) = l-p,P2(x) =P, In numerical 
solutions, one adjusts the exponent of the denominator 
such that the iteration converges towards a finite limiting 
function from which the value of D(q) follows. Alterna­
tively, a perturbation expansion can also be worked out. In 
the limit of small magnetic fields hone finds·S,12l 

I I ( I 
D(q)=q_1 In [pq+(l-P)q]lnv 1+lnv 

( 
2v ( I )2) 2 4) X 1+ I _ v kBT h +G(v,q,T)h +". , 

(111 ) 

where v=tanh K and G denotes a complicated function not 
given here explicitly. Note that while the auxiliary variable 
x has a monofractal structure for small hand p = 112, the 
local magnetization develops multiscaling behavior even in 
that region. 122 

It is interesting to note that free energy fluctuations 
which are due to different realizations of the random field 
in finite chains are closely related to the multifractal spec­
trum of the natural measure,121 and similar results can be 
obtained if magnetic field is not present but the coupling 
constant K is randomly distributed along the chain. 123 
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