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In recent years chaotic behavior in scattering problems has been found to be important in a host 
of physical situations. Concurrently, a fundamental understanding of the dynamics in these 
situations has been developed, and such issues as symbolic dynamics, fractal dimension, entropy, 
and bifurcations have been studied. The quantum manifestations of classical chaotic scattering 
is also an extremely active field, with new analytical techniques being developed and with 
experiments being carried out. This issue of Chaos provides an up-to-date survey of the range of 
work in this important field of study. 

I. WHAT IS CHAOTIC SCATTERING? 

In the most general sense, we can define scattering as 
the problem of obtaining the relationship between an "in
put" variable (or variables) characterizing an initial con
dition for some dynamical system (usually Hamiltonian) 
and an "output" variable (or variables) characterizing a 
suitably defined "final" state of the system. The simplest 
example of this type deals with the motion of a point par
ticle in a potential Vex), where Vex) is zero or else very 
small, outside of some scattering region of finite spatial 
extent. Thus, outside the scattering region, the orbit moves 
along a straight line (or an approximately straight line). 
An orbit approaching the scattering region interacts with 
the scatterer, and then leaves the scattering region. This is 
shown schematically in Fig. I for the case of a two
dimensional (x,y) scattering problem. Also in Fig. I, we 
define an input variable b (the impact parameter) and an 
output parameter 4> (the scattering angle). The question 
addressed is the following: what is the functional relation
ship between 4> and b for a given fixed direction of the 
incoming velocity? The interesting point is that this rela
tionship is qualitatively different for the two cases where 
the dynamics in the scattering region is chaotic and non
chaotic. 

This issue of Chaos is devoted to recent developments 
in the field of chaotic scattering. The purpose is to provide 
an up-to-date snapshot of the spectrum of activities in the 
field, ranging from general theory to applications. This ar
ticle will introduce the general topic of chaotic scattering 
and will provide elementary background information for 
those not familiar with chaotic scattering. 

To begin, as an example, Fig. 2 shows numerically 
obtained plots 1 of 4> versus b for the potential 
V(x,y) =x2yexp[ - (x2+y)]. This potential consists of 
four hills whose peaks are located at (x,y) = ( ± I, ± 1). 
When the particle energy E is greater than the maximum 
potential energy at the hill peaks (denoted Em), the scat
tering is nonchaotic. As shown in Fig. 2 (a), the relation 
between 4> and b is a simple smooth curve in this case. 
Figure 2 (b) shows a numerical plot of 4> versus b for a 
chaotic case. As is evident from the speckled appearance in 

this finite resolution plot, there are some regions in which 
the output variable 4> varies too rapidly with the input 
variable b to be resolved. Picking such a region and blow
ing up its horizontal scale to improve resolution, we see, in 
Fig. 2(c), that speckled regions still remain. Further blow
ups shown in Figs .. 2(d) and 2(e) still fail to resolve the 
function. This suggests that there are impact parameter 
values about which 4> varies by an amount of order one On 
arbitrarily fine scale in b. 

In fact, the set of such b values is numerically found to 
be fractal with a dimension of approximately D=O.67 for 
this example.2 In general, for chaotic scattering in two di
mensions, there will be a fractal set of b values on which 
the scattering function 4> versus b is singular in the manner 
described above. This fractal set will typically have a di
mension greater than zero and less than one in the absence 
of KAM curves in the scattering region (this is the case for 
Fig. 2). When there are KAM curves, the singular set 
typically has dimension one (although we emphasize that 
the set still has Lebesgue measure zero). 3 

The source of the singUlarity can, in principle, be seen 
by following a trajectory from an input at which the scat
tering function is singular. Such an orbit enters the scat
tering region, but never exits, continuing to bounce around 
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FIG. 1. Schematic illustration of a scattering problem in two dimensions. 
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FIG. 2. tP versus b for the potential V(x,y) =ily. exp[ - (il+.1)] (a) for a case where E> Em, and (b) for a case with E <Em. (c)-(e) show successive 
blowups of a small region in h for the case E<Em shown in (b), (From Ref. 1.) 

in the scattering region forever. For example, for the four' 
hill potential V(x,y) =x21 exp[ - (x2+1)] for which Fig.' 
2 was drawn, an impact parameter value very near to a 
singular b value might lead to' an orbit that experiences 
some large number of bounces from the hills, say 1000, 
befpre exiting the scattering region. A very tiny change in 
the impact parameter might then result in say 1001 
bounces. The tiny change only makes a small relative 
change in the number of bounces, from 1000 to 100 I, but 
that one extra bounce totally changes the scattering angle. 
This sensitive dependence on initial conditions and the re
lated fractal structure can very clearly be seen in the every
day-life phenomenon of how three Christmas balls are mir
rored in each other.' A simplified two-dimensional version 
of this, the so-called three-disk problem originally consid-

ered by Eckhardt' and studied in great detail by Gaspard 
and Rice,6 provides a nice paradigm model of chaotic scat
tering. 

Alternatively, we can also consider the time delay 
function that tells us how the time the orbits spend in the 
scattering region depends on the impact parameter h. In 
the chaotic case, this function takes on an infinite value 
whenever there is a singularity in the deflection angle. In 
the nonchaotic case, Fig. 2(a), E> Em and no orbit can 
spend more time in the scattering region than some finite 
upper bound. 

Another way of thinking about the chaotic scattering 
phenomenon is to consider the invariant set of orbits that 
bounce around in the potential without ever leaving the 
scattering region for all time t ~ ± 00. The dynamics on 

CHAOS, Vol. 3, No.4, 1993 

Downloaded 23 Feb 2010 to 10.0.105.87. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



E. Ott and T. T "I: Chaotic scattering: An introduction 419 

e 

3". _ 
4 

". 

'2 

". 

'4 

-I 

E/E. = 0.260 

-0.5 o 
X 

, 
0.5 

, 
1 

FIG. 3. The chaotic invariant set in the y=O surface of section for the 
case in Figs. 2(b)-2(e). (From Ref. 1.) 

this invariant set is chaotic, and, for the hyperbolic case, 
orbits on the set can be encoded by a symbolic dynamics 
representation. The knowledge of such an encoding is of 
basic importance7 since it enables one to distinguish differ
ent classes of particle trajectories and to introduce simple 
characteristic numbers, like, e.g., entropies (see the articles 
by TrollS and Daniels, Vallieres and Yuan9 in this issue). 
The hyperbolic chaotic scattering set may be envisioned as 
the intersection of a stable manifold and an unstable man
ifold, where the stable (unstable) manifold consists of an 
uncountably many fractal set of roughly parallel surfaces 
on which orbits approach the invariant chaotic set as 
t _ + 00 (t _ - 00 ). The fractal set of singular b values for 
the scattering function corresponds to those b values that 
lie on the stable manifold. 1O Figure 3 shows a numerical 
plot of the chaotic invariant set in the surface of section 
y=O for the case in Fig. 2(a). The intersection structure 
mentioned above is clearly evident. The fractal dimension 
of the set along the unstable direction is thus D. Because of 
the time reversal invariance, however, the other partial 
dimension, that along the stable direction, has to be D, too. 
The fractal dimension do of the chaotic set shown in Fig. 3 
is thus do=2D( =1.34). Note, however, that for chaotic 
scattering with more than two degrees of freedom it might 
happen that a randomly chosen initial line does not inter
sect the stable manifold of the invariant set even if the 
latter is chaotic. Scattering functions have fractal proper
ties in such cases only if the fractal dimension of the cha
otic set is large enough." 

Another fundamental aspect of chaotic scattering is 
the time delay statistics P( Tl. Imagine that we pick many 
b values at random in some interval. We then examine the 
resulting orbit from each value and determine the time T 
that this orbit spends in the scattering region. The fraction 
of orbits with "time delays" between T and T +dT is 
PIT) dT. For hyperbolic dynamics in the scattering re
gion, one finds that for large T the time delay statistics 
decays exponentially, 
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FIG. 4. The differential cross·section for the four hill potential 
V(x,y)= x'y'eKp[-(x'+y')] for a case with E<Em. (From Ref. 1.) 

P(T)-exp( -T/T) (1) 

where ris a characteristic time of the scatterer. For chaotic 
dynamics with bounding KAM surfaces in the scattering 
region, there is a qualitatively different behavior in which 
PIT) apparently decays algebraically,'·l2 

P(Tl_T-a • (2) 

It is worth noting that opening a window on a billiard 
to allow the escape of particles also represents a kind of 
scattering problem." In the case of chaotic billiards the 
decay is typically exponential but the presence of any mar
ginally stable orbits might convert the decay to algebraic 
even if no KAM surfaces are present. 

The differential cross-section is a fundamental charac
teristic of any scattering process. Figure 4 shows this quan
tity computed for the four hill problem at a particle energy 
below Em.' The appearance of a multiplicity of singularities 
is obvious. They sit on a set of the same fractal dimension 
D as the singularities of the deflection or time delay 
functions.'4 In nonchaotic cases, the differential cross
section is either smooth Or its singularities are restricted to 
a set of dimension zero. 

The above gives some of the most basic phenomenol
ogy of chaotic scattering. Given the generality of the dis
cussion, it should not be surprising that chaotic scattering 
has found application in a host of fields. We discuss some 
of these applications in Sec. II, limiting the coverage to 
classical ,chaotic scattering (as opposed to quantum cha
otic scattering discussed in Sec. IV). Section III reviews 
some aspects of ergodic motion on invariant chaotic scat
tering sets, including multifractality, Lyapunov exponents, 
periodic orbits, etc. Section IV deals with quantum chaotic 
scattering. The basic prOblem in quantum chaotic scatter
ing is to analyze and discover the typical behaviors char
acteristic of quantum scattering problems in the semiclas
sical regime for situations in which the corresponding 
Hamiltonian yields chaotic scattering in the classical case. 
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II. PHYSICAL EXAMPLES OF CHAOTIC SCATTERING 

To provide an indication of the wide applicability of 
chaotic scattering, this section discusses some physical ex
amples where chaotic scattering is relevant. We emphasize 
that the topics chosen for discussion are only meant as a 
representative selection and that there may be other signif
icant physical applications that are not mentioned. 

A. Celestial mechanics 

The birth of the science of chaos was Poincare's study 
of the interaction of three gravitationally interacting bod
ies. Even the one-dimensional three body problem studied 
recently by Hietarinta and Mikkola IS has large regions of 
the phase space connected with chaotic scattering. One 
classical result is due to Sitnikovl6 who investigated a ver
sion of the restricted three body problem. When two heavy 
masses move on Kepler ellipses aronnd their center of mass 
and a third body of negligible mass is restricted to move 
along a line through the center of mass but perpendicular 
to the plane of the ellipses, Sitnikov was able to rigorously 
show that the light bodies motion is chaotic even if it es
capes the vicinity of the two other masses. A more recent 
approach nsing the language of scattering chaos was car
ried out by Petit and HenOn. 17 They considered the case of 
two small bodies moving around a very heavy mass. In the 
planar problem, initially one has the two small bodies mov
ing in a common plane on circles of different radii around 
the central mass. In the case of close encounters compli
cated motion can take place, but, with the exception of a 
set of initial conditions ofzero measure, the small particles 
separate again. This phenomenon is relevant for the moons 
of large planets or particles in planetary rings, e.g., that of 
the Saturn. 

The paper of Boyd and McMillan in this issuels con
siders the chaotic scattering of an incoming star on a bi
nary (two stars circling each other). From the physical 
point of view the problem is of interest with respect to the 
heating mechanism for globular clusters: the scattering in
teraction can result in a more tightly bound binary, thus 
transferring gravitational energy to kinetic energy. 

B. Charged partIcle trajectories In electric and 
magnetlc fields 

Charged particle motion in electric and magnetic fields 
is an important aspect of a variety of fields including par
ticle accelerators, electromagnetic wave generators (e.g., 
free electron lasers), and plasma physics in general. In this 
issue Chernikov and Schmidtl9 discuss the acceleration of 
a charged particle in a uniform magnetic field in the pres
ence of large amplitude traveling electromagnetic waves. 
They show that very strong and efficient particle accelera
tion can result, and that the process is basically one of 
transient Hamiltonian chaos (i.e., chaotic scattering). As 
another example, particularly interesting because of recent 
observational confirmation, we mention work on the inter
action of particles with the central plasma sheet in the 
magnetotail of the Earth's magnetosphere. The magnetic 
field in this region can be modeled as 

B(x,y} = Bo tanh(z/<5}xo+ BnZo, (3) 

where Xo and Zo are unit vectors, and <5, Bo and Bn are 
constants. For I z I > 8 the field is uniform, and particles 
spiral about the field. Since B n"pO the guiding center of a 
particle spiraling along the field can move toward the layer 
I z I ~ 8. Particle motion inside this layer can be chaotic. 
The dependence of the particle trajectory exiting the layer 
on the particle motion in the homogeneous field region 
before entry is a chaotic scattering problem. It was pre
dicted theoretically on the basis of solutions of this prob
lem that the particle velocity distribution function for ions 
would display resonant peaks corresponding to resonances 
in the chaotic scattering problem. Recent space probe mea
surements beautifully confirm these predictions (see Ref. 
20 for a review of this subject). 

C. Magnetic field line trajectories 

In plasmas, magnetic field line trajectories, given by 
the equation, 

dx/ds=B(x), (4) 

are often important for determining physical properties of 
the system. In Eq. (4) s represents a parametric variable 
measuring distance along the magnetic field line. Since 
V· B=O, Eq. (4) is analogous to the motion of a passive 
particle convected by an incompressible fluid (described by 
dx/dt=vand V 'v=O; see Sec. II 0). Recent work by Lau 
and Finn 20 on reconnection of three-dimensional magnetic 
fields in solar plasmas, has shown that chaotic scattering 
for the conservative dynamical system (4) provides the 
essential ingredient necessary for understanding their prob· 
lem. In magnetic reconnection the topology of the mag
netic field configuration changes and magnetic energy is 
converted to heat. However, in infinitely conducting plas
mas, field lines are frozen into the plasma, and topology 
change is then ruled out. Thus for field lines to reconnect, 
in a highly conductive situation (as in the plasma above 
the surface of the Sun), an energy dissipation mechanism 
must be found. Lau and Finn consider a situation where 
typical magnetic field lines leave and then return to the 
Sun's surface. Some of these take longer (in field line 
length) to do this, and they find that there is a fractal set 
which takes forever to return. This is clearly the same 
phenomena as noted in Sec. 1. The necessary dissipation is 
associated with these infinitely long lines because an induc
tive electric field then has an infinitely long time to accel
erate electrons along these magnetic field lines, and elec
trons can then gain large energy. 

D. Hydrodynamlcal processes 

It has long been known that the dynamics of ideal 
linear vortices is chaotic if the number of participating 
vortices is greater than three (see Refs. 22 and 23). When 
vortices are started far away from each other, they can 
come close due to their mutual interaction. For an infinite 
homogeneous fluid, a bounded configuration for all of the 
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participating vortices does not exist, and the distance be
tween some of them will sooner or later grow without any 
limit. Such processes are examples of scattering, and, in 
case of four or more vortices, they are typically chaotic. 
The motion of two vortex pairs has been studied in detail 
by Are£, Eckhardt and co-workers.2' They pointed out that 
in the course of interaction, the pairs exchange partners for 
a finite amount of time. The new couples have different 
vorticities and move, as long as they are far away from 
each other, On approximately circular orbits. Close en
couuters of these couples strongly perturb the orbits, but 
this "metastable" configuration of two couples can last 
very long, until a new collision finally leads to an exchange 
again. This results in the recovery of the two original vor
tex pairs which then leave each other along straight line 
orbits. This is in complete qualitative agreement with the 
experiments by van Heist and Flor'5 but, unfortunately, no 
quantitative analysis of experimental data has yet been per
formed. The motion in the "metastable" configuration is 
chaotic and the process exhibits all properties of chaotic 
scattering mentioned in Sec. I. A related problem with 
potential practical applications is the motion of a single 
vortex in the vicinity of a boundary.26 The contribution of 
Kadtke and Novikov in this issue investigates this phenom
enon in detail. 27 

It is also well known that the motion of a passive tracer 
particle in a simple nonstationary, say time periodic, ve
locity field can be chaotic (see, e.g., Ref. 28). Incompress
ibility implies the Hamiltonian character of the Lagrangian 
dynamics. If the nonstationarity of the flow is restricted to 
a central region outside of which the velocity field is prac
tically stationary, the Lagrangian advection problem in an 
incompressible fluid provides another example of scatter
ing motion. As pointed out by Aref,29 the tracer dynamics 
in the space of ideal vortices can be chaotic even if the 
motion of vortices is integrable, e.g., in the presence of 
three vortices. The transport by the vortical flow generated 
by a vortex pair in a wavy-walled channel has been inves
tigated by Rom-Kedar, Leonard, and Wiggins.3o These 
early studies have not yet used the tools of chaotic scatter
ing theory, therefore, a reconsideration of them in this 
spirit would be interesting. 

Another broad class of problems is related to viscous 
flows. The passive particle motion in any open incompress
ible flow can also be an example of scattering.3! Shariff, 
Pulliam, and Ottino, and Jung and Ziemniak demon
strated32 that particles advected by a flow generating a von 
Karman-street behind a cylinder can be trapped behind the 
cylinder, and exhibit there a sensitive dependence on initial 
conditions. This is the region where a strange set exists 
responsible for the chaos of the scattering process. The 
contribution of Jung, Tel and Ziemniak33 in this issue is a 
more quantitative investigation of this problem emphasiz
ing the important role of the hydrodynamical boundary 
conditions in making the particle dynamics nonhyperbolic. 

E. Models of chemical reactions 

In many chemical reactions the number of molecules 
in the initial and finite states is the same, i.e., no chemical 
complex is created. Nevertheless, intermediate complexes 
of finite average lifetime might be present. . 

In the simplest case, one has initially two atoms, say A 
and .0, bound in a molecule and a third atom C interacting 
with the other atoms. Reaction takes place when these two 
components collide with each other. The qualitatively dif
ferent outcomes of the interaction lead either to the cre
ation of new molecules AC or BC and free atoms B or A or 
to the survival of molecule A.o and atom C. This system is 
an example of a three body problem, and is not integrable 
even in restricted geometries like one-dimensional motion. 

The iteration of classical trajectories in such restricted 
geometries lead, much before the concept of chaos became 
widespread, to surprising results. Rankin and Miller 
found3' that small changes in the initial conditions lead to 
drastic differences in the final states, so that a nonreactive 
trajectory might exist in the vicinity of a reactive on~';or 
vice versa. Later work35 showed that this property persiSts 
to the smallest numerically accessible scales. Noid, Gr~y 
and Rice pointed out36 the underlying fractal structure in 
the scattering process. The importance of unstable periodic 
orbits to the understanding of these chemical reactions has 
been emphasized by Pechukas, Pollak and Child.37 By now 
it has become clear that there is typically an infinity of 
unstable periodic orbits present38 forming the backbone of 
a nonattracting chaotic set. Most recent investigations use 
the complete theory of dynamical system and chaotic 
scattering.39 Since chaotic motion is present as long as all 
atoms are close to each other, the average lifetime of cha
otic trajectories T can be interpreted in classical models of 
chemical reactions as the average lifetime of the interme
diate complex. In this focus issue, the contribution by 
Koch and Bruhn 40 deals with a model of chemical reac
tions. 

An interesting new development is the control of chaos 
in chemical reactions'! which means that a certain type of 
nonchaotic motion can be stabilized by appropriately 
choosing an external perturbation. This opens the possibil
ity of stabilizing metastable complexes. 

F. Scattering In atomic and nuclear physics 

The classical dynamics of two-electron atoms has 
much similarity to that of A - .0 - C chemical reactions 
with the essential difference that the interaction is of long 
range type due the Coulomb force. Much attention has 
been focused on the problem of helium. It has long been 
believed that the classical helium atom would be unstable 
apart from a set of initial conditions of measure zero, and 
would spontaneously autoionize. Recently, however, it has 
been shown by Richter and Wiutgen,42 and later by Ya
mamoto and Kaneko'3 that the phase space is stable 
around certain periodic orbits corresponding to, e.g., asym
metrical stretching motions of the two electrons around the 
nucleus." Nevertheless, only a small part of the phase 
space corresponds to stable regular motion.42 Outside of 
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FlO. S. Schematic illustration in a Poincare surface of section of a chaotic 
invariant set as the intersections of stable and unstable manifolds which 
each consist of a Cantor set of roughly paralleilines. 

this region, there exists an infinity of unstable periodic or
bits embedded in a nonattracting chaotic set, and, there
fore, nearly the entire phase space can be explored by 
means of scattering processes. As the first investigations 
indicate,45 the tori around the stable periodic orbits can 
successfully be used for carrying out semiclassical quanti
zation. In this volume, Yuan and Gu"" investigate the scat
tering of an electron on a helium ion. 

Another interesting phenomenon connected with both 
chemical reactions and atomic processes is the interaction 
of the constituents with an external electromagnetic field. 
Even if the motion is simple in the field-free case, external 
driving generically destroys integrability and leads to frag
mentation or ionization. The study of such systems has 
also attracted recent interest and serves as a useful model 
for dissociation of molecules47 or ionization of atoms.4S 

The contribution of Beeker and Eckelt49 in this issue is 
devoted to a periodically driven scattering system and 
points out that parabolic orbits also generate power law 
decays. 

Scattering experiments are essential in studying the nu
clear structure, too. Therefore, it is natural that chaotic 
scattering also has relevance to this branch of physics50 

which is reviewed in the contribution to this issue by 
Baldo, Lanza and Rapisarda. 51 

III. ERGODIC ASPECTS OF CHAOTIC SCATTERING 
SETS 

The case where there are two degrees of freedom and 
the chaotic invariant set is hyperbolic allows for a rather 
complete theoretical picture. We review results for this 
case in this section. 

As discussed in Sec. I, we can regard the chaotic scat
tering set S as the intersection of its stable and unstable 
manifolds. This is illustrated schematically in a Poincare 
surface of section in Fig. 5. Now let B be a rectangle con
tainingS. We assume that under the action of the Poincare 
map j, all points in B except for those on the invariant set 
and its stable manifold leave B and never return. Thus part 
of B must be mapped out of B, and the Lebesgue measure 
(area) remaining in B must decay. Say we randomly sprin-

kle a large number No of initial points in B. After I iterates, 
Nt points remain. The quantity Tin Eq. (1) is 

-=lim lim -In - . 1 I (No) 
T I-co No-co t Nt 

If I is large, the Nt point remaining at time I must have 
started near the stable manifold. After I iterates these 
points now line up along the unstable manifold. In fact, for 
any large time I, one finds that the remaining points essen
tially lie in thin strips covering the unstable manifold seg
ments in B. Iterating these strips backward in time to 1=0, 
the strips along the unstable manifold map to strips along 
the stable manifold. Since j is area preserving and the 
dimensions of the box B are order one, we see that the 
thickness t')') of the ith strip along the stable manifold at 
time I is of the same order as the thickness of the unstable 
manifold strip that it originates from. 

We can operationally define natural measures of a set 
A for the stable and unstable manifolds as 

p,(A) = lim lim N,(A)IN" 
1-00 No"'" 00 

pu(A)=lim lim Nu(A)INt , 
1 ..... 00 No-co 

respectively. Here N,(A) denotes the number of the re
maining Nt trajectories in B whose initial conditions lie in 
A; while Nu(A) denotes the number of the remaining Nt 
trajectories in B lying in A at time I. Similarly, we define 
the natural measure of the chaotic set S itself as 

p(A)=lim lim N,(A)IN" 
t ..... 00 No ..... 00 

where N,(A) is the number of orbits which do not leave B 
by time I and which lie in A at time 51, where 5 is a number 
satisfying 0 < 5 < I [the definition gives the same result for 
ptA) for any value of 5 greater than zero and less than 
one]. 

Lyapunov exponents AI> A2 associated with the natu
ral measure on the chaotic invariant set can be defined by 
considering the Jacobian matrix of partial derivatives 
Df'(x) of the I times iterated map f' for the Nt initial 
points x whose orbits have not left B at time I. In partic
ular, the matrix 

lim lim ([Djt(x)]*Djt(x»,!{,2t, 
t ..... 00 No ..... 00 

where * denotes the adjoint, and ( ... ) N denotes an average , 
over the Nt remaining initial conditions, has eigenvalues 
exp(A,,2)' Because j is area preserving A, = -A2' 

The information dimension of the stable and unstable 
manifold measures are equal and are given in terms of the 
Lyapunov exponent and the characteristic decay time T 
bys2,s, 

I 
d,u=2--,-. 

• 'Til.l 
(5) 

The information dimension d, of the chaotic invariant set 
is 
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(6) 

where the first equality results from the fact that S is the 
intersection of its stable and unstable manifolds. The met
ric entropy of the natural measure f.L is52,53 

hp=Al-l/T. (7) 

The paper in this issue by Gaspard" uses Eq. (5) in 
his study of the connection between the statistical treat
ment of diffusive transport (an irreversible process) and 
the dynamics of chaotic scattering (which is reversible). 

Multifractal properties of the measure f.L are readily 
available from numerical calculations of the set of strip 
widths {tit)} as shown in Ref. 55, where the following 
partition function is introduced 

I tit)" -exp[ -{3F((3)t]. (8) 
i 

Here F({3) plays a role analogous to that of a free energy 
density and {3 is analogous to the inverse temperature. The 
function F ((3) yields a convenient characterization of er
godic properties of the system. In particular the decay time 
is given by 

(9) 

the dimension spectrum dq of the measure f.L is given by the 
solution of 

P(q)F«(J(q» =q/T, (10) 

• I 
where {3(q) =q-,(q - l)d. (the factor 1/2 follows from 

the fact that the dimension spectrum is the same dql2 
along both the stable and the unstable manifold due to the 
Hamiltonian character); and the metric entropy is 

hp=F'(I). (II) 

In view of Eqs. (5) and (7) the Lyapunov exponent 
AI is obtained as the derivative of (3F({3) taken at {3= 1. 
Similar results can be obtained using a partition function 
based on averages of finite time Lyapunov numbers. 56 

Another very fruitfui'approach to the ergodic proper
ties of the chaotic scattering set S is based on the dense set 
of periodic orbits embedded in S. Again a relevant parti
tion function can be defined, this time as a sum over all 
periodic orbits of given period T. In principle, results fol
low from the large T limit. In practice, it is difficult to 
obtain many large period orbits, and techniques of obtain
ing greatly improVed convergence have been formulated 
(see Ref. 57 for a survey). The periodic orbit formulation 
is particularly important in problems of quantum chaotic 
scattering (see Sec. IV). (In that case the results are as
ymptotic rather than convergent.) 

IV. QUANTUM CHAOTIC SCATTERING 

Since many scattering experiments are done on micro
scopic systems where quantum effects are essential, a ques
tion which naturally arises is whether one can find any sign 
of an underlying classical chaos in a quantum scattering 

process. Since the pioneering work of Bliimel and 
Smilansky" it has been known that chaos clearly manifests 
itself for scattering in the quantum world. In particular, 
chaotic and nonchaotic quantum scattering processes ex
hibit different properties in the semiclassical regime. 

The central object in quantum scattering theory is the 
S-matrix. At fixed particle energy, chaotic scattering is 
characterized by fluctuations in the dependence of the 
S-matrix on the initial and final states. These fluctuations 
are so strong that the random matrix theory proves an 
appropriate framework for their description. Conse
quently, the nearest neighbor distribution of the S-matrix's 
eigenphases is universally a Wigner distribution58,59 if the 
underlying classical scattering is chaotic. 

Another manifestation of scattering chaos is the pres
ence of typical fluctuations in the energy dependence of a 
given transition probability or cross-section. Taking the 
semiclassical correlation function of a fixed transition 
probability at two different energy values, it should be a 
Lorentzian in the energy difference,58,59 provided the clas
sical dynamic is hyperbolic. Furthermore, the width of the 
Lorentzian turns out to be fz divided by 1', the classical 
average chaotic lifetime defined by (I). Thus, an important 
classical characteristic of the motion appears in the quan
tum context. It is interesting to note that the same type of 
fluctuations were found in the S-matrix of compound nu
clei reactions, and was called Ericson fluctuations, in the 
1960s.60 Similar fluctuations are expected in the transmis
sion probabilities in a beam of CsI molecules passing 
through a region of inhomogeneous electrostatic field. This 
later result is shown in the contribution of B1iimel to this 
issue61 where he also shows that such an experiment is 
realistic. 

The Lorentzian form of the correlation function 
strongly relies on the exponential decay form of the delay 
time statistics. In nonhyperbolic chaotic scattering pro
cesses the decay is algebraic. The same semiclassical argu
ment then leads to the result that a power law behavior of 
the transmission probability correlation function is ex
pected at low energy and the exponent iu this power law is 
determined by the exponent a characterizing the stickiness 
of KAM surfaces as introduced in (2).62 

Another feature characterizing quantum chaotic scat
tering is the distribution of the poles of the S-matrix in the 
complex energy plane. In hyperbolic cases, poles are ex
cluded from a strip: they cannot come closer from below 
the real axis than a finite distance. The width of the strip is, 
in the semiclassical theory, fz times a number which is on 
the same order of magnitude as the classical escape rate, 
1/1'.6 

The differential cross-section is a basic characteristic of 
quantum scattering, too. Its semiclassical form63 exhibits 
singularities exactly in those directions where the classical 
counterpart does. More interestingly, away from classical 
singularities, due to interference oscillations, other singu
larities show up." They are on a fractal set having the 
same dimensionality D as the classical singularities, e.g., in 
the deflection function. From the energy dependence of the 
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differential cross-section in a given direction, the classical 
lifetime l' can be extracted again. 

Although classically chaotic scattering processes have 
random matrix properties in the eigenphases of S, the re
verse is not true. There exist simple classically nonchaotic 
examples whose S-matrix exhibits random properties.64 

This paradox can be resolved by using the concept of Poin
care scattering maps invented by Jung.6S This type of map 
is defined by introducing a reinjection and considering the 
outgoing conditions of a scattering trajectory to be the 
incoming conditions for the next iterate of the map. In 
other words, successive applications of the Poincare scat
tering map can be understood as subjecting the particle to 
another scattering on the same object as before, in which 
the previous final state serves as a new initial condition. 
Thus, the motion on the Poincare scattering map can only 
be more complicated than in the original problem. Semi
classical arguments show" that it is the Poincare scattering 
map that is the classical analog of the quantum S-matrix. If 
this map is chaotic, then S has random properties and vice 
versa. There are cases for which there is no chaos in the 
original classical problem, i.e., nO chaotic set exists, but the 
Poincare scattering map possesses such a set. Then random 
matrix properties characterize the quantum process al
though its classical counterpait is nonchaotic.67 

An interesting example is provided by the scattering on 
a single hard wall billiard that is obviously classically non
chaotic. A simple geometrical observation shows, however, 
that there is a one-to-one correspondence between trajec
tories of the iterated Poincare scattering map and trajecto
ries of the dynamics inside the billiard, because of the sim
ple rules of reflection. Thus, the scattering and the inner 
Poincare maps are equivalent, and, in any case, when the 
billiard is chaotic~ the scattering map will be chaotic, too, 
Even more is true: because of this inner-outer duality, the 
energy spectrum of the closed billiard problem and the 
eigenphase spectrum of the S-matrix are equivalent. This 
observation opens a new way for quantizing chaotic bil
liards via scattering methods67.6' as discussed in detail by 
Dietz and Smilansky in this issue.69 

A related problem is the quantum scattering on bil
liards with elastic walls produced by a very high and thin 
potential barrier along the billiard's perimeter. 70 Because 
of quantum mechanical tunneling, the incoming wave pen
etrates into the billiard and might be trapped there for a 
while leading to a resonancelike behavior which obviously 
has no classical counterpart. Fluctuations in the S-matrix 
and the cross~section are nevertheless present and might 
differ from those in the case of a finite classical lifetime as 
discussed in the paper by Csord"s and Seba.71 

A quite different way that chaos is relevant to waves is 
discussed by Pikovsky in this issue72 who studies how non
dispersive linear waves are scaHered on discrete nonlinear 
elements. 

The scattering on a surface of constant negative cur
vature has been another paradigm of both classical and 
quantum chaotic scattering.73 The contribution of 
Gutzwiller to this issue invents a new method for the quan
tum description of the problem based on the construction 

of a quantum Poincare map and knowledge of the classical 
motion.74 

The semiclassical quantization of scattering problems 
in terms of classical periodic orbit properties has attracted 
much recent interest. The starting point is the famous 
Gutzwiller trace formula7s relating the trace of the quan
tum mechanical Green function to the unstable classical 
periodic orbits on the nonattracting chaotic set. Earlier 
works have shown that by means of zeta function methods 
and cycle expansionss7.76 very accurate results can be ob
tained. The importance of these problems is reflected in the 
fact that a group of papers is devoted to them in this issue. 
Alonso and Gaspard improve the validity of the trace for
mula by determining a correction to it in powers of filead
ing to an order of magnitude improvement in the 
accuracy,17 A new type of periodic orbit quantization pro
cedure is suggested by Cvitanovic et al. 78 who show that 
their quantum Fredholm determinant has better conver
gence than other zeta functions. The contribution of 
Eckhardt"9 is devoted to the semiclassical study of the time 
delay correlation function based on classical periodic or
bits. Theoretical conjectures of these papers are supported 
by numerical evidence in the three disk problem or other 
hyperbolic models. 

One of the most appealing applications of quantum 
chaotic scattering is provided by the motion of electrons in 
semiconductor microstructures. Recent developments in li
thography and material growth now allow for fabricating 
semiconductor devices of arbitrary geometrical shapes on 
micron scales. Since this size is considerably smaller than 
the elastic mean free path of electrons at low temperatures, 
the motion inside such microstructures is ballistic. Scatter
ing is then determined by the shape of the device and elas
tic collisions on its boundary, Of particular interest are 
two-probe microstructures of circular or stadium shape 
and cross-shaped junctions with four probes. The classical 
motion in the first and second cases corresponds to that in 
leaky billiards and to that between four disks, respectively. 
Because, however, the Fermi wavelength is not completely 
negligible on micron scales, a semiclassical description is 
necessary. Chaotic properties and fluctuations in the con
ductance of such devices have been observed both in nu
merical models'0.81 and in experimentsB2 and have been 
interpreted as Ericson fluctuations. For example, as a con
sequence of the general theory, the conductance correla
tion function as a function of wave-number difference 
should be a Lorentzian with a width inversely proportional 
to the classical chaotic lifetime. This form only holds for 
hyperbolic cases, and for billiards having periodic orbits of 
marginal stability, which induce nonhyperbolic effects, the 
algebraic decay of the time delay statistics generates an
other type of correlations. Again a group of papers dis
cusses this important topic in our focus issue. Baranger, 
Jalabert and Stone83 give an overview of the field and point 
out a surprising failure of the semiclassical methods in 
nonchaotic cases. Lin, Delos and Jensen84 deal with prop
erties of the time delay statistics in hyperbolic and nonhy
perbolic cases and with their consequences on semiclassical 
quantities. They also show that experimental observations 
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reviewed here by Marcus et al. 85 can only be understood if 
scattering noise is also taken into account. 

In a more general setting, quantum chaotic scattering 
can be observed not only in cases when the classical coun
terpart (or the Poincare scattering map) is chaotic but also 
in any wave (e.g., light) scattering problem when the ray 
dynamics (geometrical optics) is chaotic. A convincing 
experimental observation is a microwave e~eriment car
ried out by Doron, Smilansky and Frenkel. 8 Reflection of 
microwaves has been studied in an elbow-shaped cavity 
corresponding to a symmetry reduced four-disk problem. 
As the wavelength was comparable with the cavity size, the 
authors of Ref. 86 observed transmission fluctuations of 
the Ericson type in complete agreement with the semiclas
sical theory of chaotic scattering. Another application of a 
similar nature is the contribution to this issue by Mortes
sagne, Legrand and Somette87 who give a nice review of 
chaotic scattering in room acoustics. They also point out 
that the acoustic wave dynamics can be understood as a 
semiclassical theory based on the underlying classical non
attracting chaotic set. 

V. CONCLUSION 

As mentioned in Sec. II, the topics chosen for discus
sion in this review are a representative selection rather than 
a full list of all significant aspects. Nevertheless, we would 
like to mention that nonlinear wave scattering in media is 
a subject of great relevance. In particular, the chaotic scat
tering of kink-antikink systems and solitons studied by 
Campbell and co-workers88 and Gorshkov and 
co-workers,89 respectively, deserves further attention. In a 
more general setting, phenomena that may, at first glance, 
have nothing to do with a scattering process, but lead to a 
recursion of Hamiltonian character with an asymptotically 
simple behavior, can be investigated by the methods 
sketched above. Notable examples are models of an optical 
memory90 and of the quantum Hall effect.91 

We believe that chaotic scattering represents an un
usual and appealing slice through nonlinear dynamics 
which might, however, be a still undiscovered field to many 
chaos researchers. 
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