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One of the generic ways in which chaotic scattering can come about as a system parameter is 
varied is the so-called "abrupt bifurcation" in which the scattering is nonchaotic on one side of 
the bifurcation aT!d is chaotic and hyperbolic on the other side, Previous work demonstrating the 
abrupt bifurcation [So Bleher et 01., Phys. Rev. Lett. 63, 919 (1989); Physica D 46, 87 (1990)] 
was primarily for the case where the scattering potential had maxima ("hilltops") which had 
locally circular isopotential contours. Here we extend these considerations to the more general 
case of locally elliptically shaped isopotential contours at the hilltops. It turns out that the 
conditions for the abrupt bifurcation change drastically as soon as even a small amount of 
noncircularity is included (i.e., the circular case is singular). The illustrative case of scattering 
from three isolated potential hills is dealt with in detail. One interesting result is a simple 
geometrical sufficient condition for an abrupt bifurcation in the case oflarge enough ellipticity 
of the hill with lowest potential at its hilltop. 

I. INTRODUCTION 

Chaotic scattering has attracted recent interest from 
various fields of science (for reviews see Refs. 1-4). An 
essential, and perhaps the simplest, class of problems ex
hibiting this phenomenon is provided by the class of po
tential scattering in which the trajectories are in an un
bounded phase space and the motion of particles (whose 
mass can always be chosen to be unity) is governed by a 
potential V(r). 

Typically, whether the scattering process is chaotic de
pends on a system parameter, e.g., uil the particle energy E. 
In two-degree-of-freedom cases there are two generic 
routes to chaotic scattering as a system parameter is 
changed:'-s a sequence of saddle-center and period dou
bling bifurcations or a transition called an abrupt bifurca
tion. 

In the case of an abrupt bifurcation, a chaotic set is 
created by a sudden change in the topology of the phase 
space accompanied by a sudden change in the scattering 
process as the energy E fans below a critical value. The 
critical value E, is a local maximum of the potential energy 
function VCr). An important feature of this scenario is that 
the chaotic set created at the bifurcation is hyperbolic and 
structurally stable. Thus there must exist a whole interval 
of energy values Eo<E<E, in which.the dynamics on the 
chaotic set can be encoded by symbol sequences containing 
combinations of a low number, m, of letters. The fact that 
the dynamics is structurally stable in some range is signif
icant because it implies that no bifurcations .annihilating or 
creating. periodic ~rbits can occur. Such a situation -has 
been called fully developed chaotic scattering.' One can 
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then also be sure that, for Eo<E<E" KAM tori or mar
ginally stable periodic orbits do not exist and the topolog
ical entropy is constant. (In the energy range E < Eo prun
ing may gradually set in together with the appearance of 
stable trajectories surrounded by KAM tori.) 

In the range of fully developed chaotic scattering: 
Eo < E < Ee> methods relying on the nice scaling properties 
of hyperbolic systems can be applied. If the energy is close 
to the critical value, the Lyapunov exponent on the strange 
set turns out to be proportional to Iln(E,-E) I, while the 
fractal dimension and the average lifetime of chaotic 

•• <;Q .• ~ •• ,_ ..... ' ._1 ........ 
orblts-" are proportional to Iln(Kc-K} 1-'. Ints snows 
that right after its appearance, the chaotic set is extremely 
unstable and sparse. It becomes denser and less repelling as 
the energy is lowered. As (E,-E) increases further, the 
logarithmic rule breaks down, but there are rapidly COn
verging methods (like the periodic orbit sum 10.11 or the 
analysis of the time delay function in the spirit of the ther
modynamical formalism l2

) which provide us with highly 
accurate characteristics of the scattering process. 

It is, therefore, of great interest if We can decide on the 
basis of knowledge of the potential V(r) whether the cha
otic scattering right after its onset is hyperbolic, i.e., 
whether an abrupt bifurcation occurs. In the case of po
tentials with circularly symmetric hilltops the question has 
been answered.s For three unequal hills with maxima 
Em <Em <Em an abrupt bifurcation occur as E drops 

I 2 3 

below E,= Em if the hills are arranged as in Fig. I and the 
I 

spatial extent of the hills is small compared to their sepa-
ration [i.e., V(r) rapidiy approaches zero away from the 
maxima and we say that the hills are "isolated" in this 
case]. It is worth briefly recalling the argument leading to 
this result: the scattering from an isolated circularly sym
metric hill can only produce a maximum deflection angle 
of 1T /2 as E appro~ches the value of the potential at the 
hilltop from above. As soon as E falls below the hilltop 
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FIG. 1. Configuration leading to abrupt bifurcation in the case of three 
circularly symmetric potential hills. 

value, a complete backscattering becomes possible and the 
deflection angle can take on any value between zero and 'IT 

(depending on the impact parameter). Thus, for 
E> Em" and the configuration of Fig. I, when a trajectory 
comes from hill 2 or 3 toward hill I, it cannot be reflected 
back to hills 2 and 3, since this would require a deflection 
angle bigger than 'IT /2. Hence the only periodic orbit that 
can exist is the one bouncing between hills 2 and 3, and so 
there is no chaos when E> Em,. When E drops below 
Em} , chaos is immediately created since now the deflection 
angles required are possible, and this leads to the appear
ance of an infinity of periodic orbits, and these periodic 
orbits can be encoded by the order in which they visit the 
three hills. 

While the example of Fig. I is for three isolated circu
larly symmetric hills, from the analysis of Ref. 5 (b) it is 
clear that no qualitative change is to be expected if the hills 
are not globally circularly symmetric but the hilltops are 
locally circularly symmetric. That is, near a hilltop, r=rj , 

the first two terms of the Taylor series expansion for the 
potential are of the form 

V(r) = V(rj) -K[ (X_Xj)2+ (y_yj)2] +0(,.1), (I) 

where K is a positive constant. Thus, isopotential contours 
V(r)=V* are circular to lowest order in V(r,)-V*>O. 
In Ref. 5 (b) the more general situation oflocally elliptical 
isopotential contour near the hilltops [i.e., where the qua
dratic terms in the Taylor expansion of V(r) are not of the 
restricted form above] was briefly discussed, and it was 
shown that major qualitative changes from the locally cir
cular case can be anticipated. 

Our aim in the present paper is to study a generic 
smooth repulsive potential whose isopotential contours are 
locally elliptical, rather than circular at the hilltops. In 
particular, we concentrate on the example of two
dimensional (x,y) scattering from three isolated potential 
hills where the hill oflowest hilltop. potential is elliptically 
symmetric. The main problem we address is whether one 

y 

(a) 

x 

e 

b 

FIG. 2. Illustration of a critical trajectory reaching the hiJItop in an 
infinitely long time for an elliptically shaped potential hiil at 
E=Em+O+ where Em is the hilltop value. 

finds a criterion relying solely on the geometrical configu
ration of the hills (in a similar way for an abrupt bifurca
tion as in Fig. I). The essential novel feature5

(b) is that the 
absence of rotation symmetry leads to a completely new 
scattering behavior even for one isolated hill. As Fig. 2 
illustrates, in the limiting case E-Em+O+, the trajectories 
can reach the hilltop along the major axis only. Conse
quently, it can be shown that they leave the hilltop along 
the minor axis (where the force is the strongest) in the 
positive or negative y-direction (Sec. II). By defining the 
deflection angle", as the modulus of the angle between the 
incident and outgoing velocity, we see that there must be a 
jump from a scattering angle of 'IT /2 - 9 to one of 'IT /2 + 9 
as the initial condition moves from the left side to the right 
side of the critical trajectory depicted in Fig. 2. This occurs 
at any deviation from circularity. Because of the strong 
anisotropy, the actual condition for abrupt bifurcation gen
erally will depend.on the details of the potential. For the 
example we' consider, it will be shown, however, that the 
situation becomes simpler for sufficiently elongated poten
tial forms. We shall show that in this class, if both hills 2 
and 3 lie closer to the line of the major axis of hill I than 
some critical angle 9, of order unity, then scattered trajec
tories always leave the potential toward the other side of 
the major axis for E-Em, +0+; consequently, no chaos is 

present as long as E> Em" and at Em, an abrupt bifurca
tion occurs (Secs. III and IV). In other cases when the 
hills are farther away from the major axis, or when the 
potential is not strongly elongated, we find that an abrupt 
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FIG. 3. Diagram illustrating scattering trajectories in the case of an 
infinitely extended elliptically shaped potential hill at E==Em+O+. Tra
jectories are launched toward the hill along a straight line making angle r 
with the x-axis under inclination angle 9. The impact parameter b is the 
distance of the initial point measured along this line from its intersection 
with they-axis. bc<O denotes the impact parameter of the critical trajec
tory. R is the distance of the initial line from the origin. The deflection 
angle ifJ is defined by measuring the direction a of the velocity when the 
trajectory crosses the line Y= Yend > 0 (y= - Yend) in the case of forward 
(backward) scattering and taking ifJ= la-Ol. 

bifurcation may still occur, but the particular condition for 
it to occur has to be worked out case by case. We illustrate 
by examples how this can be done (Sec. V). The paper 
ends with some concluding remarks (Sec. VI). 

II. SCATTERING ON AN INFINITELY EXTENDED 
ELLIPTICAL POTENTIAL HILL 

Whether the scattering process in the potential of three 
isolated hills with maxima Em, <Em, <Em, can undergo an 
abrupt bifurcation depends (just like in the circularly sym
metric case) on the capability of the hill with smallest 
maximum to deflect trajectories coming from the other 
hills toward any of the other hills when E~Em, +0+. 

Thus, we must first understand the scattering on a 
single isolated elliptically shaped potential hill. After res
caling, we can write the potential in the vicinity of the 
hilltop in the form 

(2) 

where, without loss of generality, we can assume that {3> I. 
We thus choose the y-axis to be the direction of the stron
gest gradient and the x-axis to contain the major semiaxis 
of the isopotential contours. For specificity we consider in 
this section and in the next section (Sec. III) the behavior 
in the simple potential given by Eq. (2). That is, we take 
Eq. (2) to apply not only as an approximation near the 
origin, but as the exact potential everywhere. Following 
that, in Sec. V, we use the results of Secs. II and III, to 
obtain the conditions for abrupt bifurcations for the special 
case where the potential of the hill of lowest hilltop poten
tial is given by Eq. (2) inside the contour 
4(X2+{32y2) =Em and V(x,y) =0 outside this contour. 

We imagine that we inject particles along a straight 
line intersecting the x-axis with an angle y which is con
sidered to be positive in the configuration shown in Fig. 3. 
The inclination angle for the velocity of all the incoming 
particles is assumed to be the same value, e> 0, and the 

total energy E is kept constant. If the particle leaves the 
potential in the upper half-plane (forward scattering), the 
deflection angle'" is observed along a line y= Yond> O. In 
the case of a backscattering, the deflection angle is read off 
when the trajectory crosses the line y= -Yond' Denoting 
the angle between the trajectory and one of these straight 
lines by a, the deflection angle is simply '" = 1 a - e I. 

When changing the position of the initial line, it is 
worth considering straight lines having the same distance 
R from the origin. By defining the impact parameter b as 
the distance of the initial position from the intersection of 
the straight line with the y-axis, the initial coordinates 
(xo,Yo) are parametrized as 

xo=bcos y, 
R 

Yo= --- -b sin y, 
cosy 

(3) 

where b is considered to be positive if the initial point lies 
to the right of the y-axis. 

Since the force acting on the particle is linear in x and 
y, the motion can be described exactly, and an explicit form 
of the deflection function can be found. To see this, we 
recall that the solution to the Newtonian equations of mo
tion in potential Eq. (2) is 

x( t) =Ae' + Be-', y(t) = cef3' + De-P' (4) 

with 

A= (xo+uOx)/2, B= (xo-uox )/2, 

c= (Yo + uo,!f3l 12, D= (Yo-uo,!{3)/2. 

In terms of the inclination angle, 

uoy 
-=tan e=const, 
UOx 

and energy conservation implies 

1222 uo/ 
E=Em-'i (Xo +{3yo )+2 cos2 e' 

(5) 

(6) 

(7) 

The last two relations can be used to eliminate the initial 
velocities from the coefficients A, ... ,D. Thus, the trajecto
ries uniquely depend on the impact parameter b. Introduc
ing z=exp({3t) as a new variable, we immediately obtain 
the equation x(y) of trajectories parametrized by z in the 
form of 

(8) 

The sign in z(y) must correspond to the sign of the initial 
velocity for z~ I. As we always start trajectories with pos
itive velocities, the plus sign is to be taken. In the case of 
backscattering, there is, however, a maximum of y, where 
the discriminant of z(y) vanishes. There one has to go over 
to the other branch of the solution; i.e., where the 
y-coordinates decrease along the trajectory, the solution 
with the minus sigu is valid. We note that an analogous 
expression exists for y(x). Since, however, we are inter
ested in trajectories with a given end point in y, the use of 
Eq. (8) is more convenient. 
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By taking the derivative of x(y), the slope 
a=arctan(y!x) of a trajectory at coordinate Y is easily 
obtained as 

a(y) = arctan (A_~~\~-~~~~I/~IP)' 
V'J..t:;\YJ . -D.i;\YJ / 

(9) 

where C,D and z(y) are given by (5) and (8), respectively. 
The deflection angle ,p of a trajectory with end point 
(x( ±Y,nd)' ±Y,nd) is 

( 10) 

where the sign of the end point coordinate is + ( -) for 
forward (backward) scattering. By substituting relations 
(3)-(9) into Eq. (10), one obtains an expression for the 
deflection angie as a function of the impact parameter b 
which can easily be plotted. Parametrically it depends for a 
given potential on the particle energy E, the inclination 
angle 6, and on the dimensionless ratio of the initial line 
distance R and the end point coordinate Yend' In our plots 
of the deflection function (Figs. 4, 5 and 9) we took initial 
conditions on the line Y= Yo which corresponds in the gen
eral notation to a case with r=O,R= -Yo, and 
Y,nd= -Yo' The deflection function then depends on fJ, E 
and e only. 

Let us first discuss the case E=Em+O+ when the par
ticle energy reaches the hilltop maximum from above. De
noting the impact parameter of the critical trajectory that 
asymptotes to the hilltop by be (see Fig. 2), we introduce 
the relative impact parameter I) measured from be via the 
relation b=be I). For negative values of I), trajectories al
ways intersect the lineY=Y,nd>O (i.e., forward scattering 
is present). In the limit I)~O-, the trajectory will move 
toward infinity along the positive y-axis, and have a deflec
tion angle 11"12-6. For small positive impact parameters I), 
however, trajectories are reflected back by the hill and in
tersect the line where they started from. A trajectory with 
1)=0+ comes back exactly along the negative y-axis and 
possesses a deflection angle 1J/2+8. Thus, there is ajump 
of size 26 at 8=0 so that the sum of the angles is always 11" 
which can clearly be seen in Fig. 4. Trajectories with small 
positive I) all intersect the line Y= -Y,nd <0 at positive x. 
Their a are thus less than 11"12, and ,p(I) is a monotonic 
decreasing function for 8 positive. Increasing the impact 
parameter further, at a relatively large value of I), the tra
jectory becomes asymptotically parallel to the x-axis, and 
thus a = 0 (corresponding to ,p = I a - 6 I = I 61>. This 
marks the end point of the impact parameter interval with 
backscattering. One can show that the graph of ,p(I) ex
hibits at this point an infinite slope [e.g., around I)"" 1.7 in 
Fig. 4( c)]. For larger values of I) forward scattering sets in 
again leading to a further decrease of the deflection angle. 

One of the most striking features of the deflection func~ 
tion for noncircular potentials, fJ=I= I, is that it can develop 
a local maximum lying higher than 11"/2-() at negative 
values of~. If such a maximum is not present, all trajec
tories leave the potential with x > 0, i.e., the potential has a 
kind of "focusing" property. As long as the eccentricity of 
the isopotential contours is small, fJ is close to I, the ex
istence ofa maximum follows from the fact that ,p(I) must 
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FIG. 4. Deflection function 4>(6) where 6=b-hc of infinitely extended 
potential hills at E=Em+O+ as obtained from Eqs. (9) and (10) for 
different eiongation parameters {3= i.O, i.2S, i.S, ... ,3.0 at incident angies: 
()=1f/6 (a). ()=1f/4 (b), and 8=11'13 (c). The initial line was chosen to 
be a horizontal one y= -R= -Yend' with r=O. 

be close to the result of the circular case for 5 not too 
small. An order unity deviation from the circular case is 
then restricted to a narrow range around I) = 0 as discussed 
in Ref. S. The diagrams of Fig. 4 show that local maxima 
are present at fJ values considerably different from unity, 
too, located at finite values of I). Interestingly, the case 
fJ=2 is a kind of boundary: one sees that for fJ> 2 (i.e., for 
sufficiently anisotropic hills) ,pUi) can be monotonically 
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" 

2 

b 

FIG. 5. Deflection function ~(b) of infinitely extended potential hills at 
E=Em-O.l as obtained from Eqs. (9) and (10) for different elongation 
parameters. Note that the value of tfo=7T' is no longer excluded and implies 
complete backscattering. The initial line is the same as in Fig. 4. 

decreasing as I h I increases, and the above-mentioned "fo
cusing" property is present. This behavior is, however, 
characteristic for a range of incident angles only. Figure 
4 (c) indicates that for (J = 1r /3 a local maximum above 
1r/2-(J can show up at negative b. A careful analysis of the 
small b limit, carried out in the next section, shows that 
this can never occur for (J values smaller than a critical 
value (J e of order unity if (3 > 2, but does occur for potential 
shapes closer to circularity even for small incident angles 
[see Fig. 4(a)]. Thus, if the hill is sufficiently elongated, 
{3 > 2, and the incident direction is sufficiently close to the 
x-axis, (J < (J co all scattering trajectories end in the half
plane x> O. This "focusing" property will enable us to for
mulate a geometrical condition for the onset of abrupt bi
furcation. 

Now, let us briefly investigate the case of particle en
ergies below the hilltop maximum, E < Em. The particle is 
then excluded from the region V(x,y) > E, and, in partic
ular, cannot reach the hill maximum. In this case, for the 
proper value of h the deflection angle aty= -Yond is 1r (Le., 
there is complete backscattering which is not possible for 
E=Em+O+ where the maximum deflection angle is 1r/2 
+ (J). Thus, when passing through Em' a sudden change 
occurs in the scattering process and, simnltaneously, also 
in the topology of the energy surface [i.e., (x,y) values in 
Em> V(x,y) > E are excluded]. Figure 5 shows the deflec
tion function obtained for t:.E = Em - E = 0.1. In order to 
avoid strong overlap of the graphs we have plotted I/> as a 
function of h rather than of b. One clearly sees that the 
absolute maximum is at I/> = 1r. When (3 increases, I/> (h) 
becomes more and more asymmetric and develops an in
creasing average slope to the left of its maximum. An an
alytic computation based on the form of the trajectories 
given above shows, however, that I/> (h) is always contin
uous for E<Em (Le., what we. observe is a rapid change 
but not a jump). 

III. THE CONDITION FOR A LOCAL MAXIMUM IN THE 
DEFLECTION ANGLE 

A simple geometrical sufficient condition for abrupt 
bifurcation can only be found if there is no local maximum 
lying above 1r /2 - (J in the deflection function at 
E=Em +0+. A local maximum value would necessarily 
depend on details like the actual value of the impact pa
rameter and the incident angle. The condition for the non
existence of a local maximum larger than 1r/2-(J can be 
derived from a singularity analysis of I/>(b) at E=Em that 
we carry out in what follows. 

Because of energy conservation, the x-component of 
the velocity can be given at E=Em as 

(II) 

which in view of Eq. (3) is a unique function of the impact 
parameter h. Let us first determine the critical impact pa
rameter he. Since the critical trajectory does not go to 
infinity, the coefficient of the terms exp(t) or exp({3t) must 
vanish and, thus, we haveA=C=O. From Eq. (5) it then 
follows that 

Yo=xo(tan (J)/{3. (12) 

By inserting this into the parametrized form Eq. (3) of the 
initial line, we obtain the critical impact parameter as 

R {3 
he= - cos2 y {3 tan y+tan (J' (13) 

As long as tany> - (tan(J)/{3, which we assume in what 
follows, the critical impact parameter is negative. 

Next, let us investigate a small neighborhood of the 
critical impact parameter Ibl « I. The initial coordinates 
are then given by 

xo= (he+b)cos Y (14) 

and 

yo=he(cos y) (tan (J)/{3-b sin y, (15) 

respectively. After inserting this into Eq. (II), we find for 
the initial velocity component 

"ox= -hc<:os y( I + :e (cos2 (J)( 1-{3(tan y)tan (J»). (16) 

Consequently, for the coefficients in Eq. (5) we obtain 

A =C{3/tan (J= (/)/4) (cos y)(sin 2(J)(tan (J+{3 tan y), 
(17) 

B= D{3/tan (J=he cos y. (18) 

Thus, A and C depend linearly on b, while Band Dare 
constant in leading order. The quantity z defined by Eq. 
(8) taken at 'F Y,nd is, therefore, approximately 'F Y ,nd/ C 
where the sign is determined by that of b. This implies 
inverse proportionality to Ibl. The factor z appears [see 
Eq. (9)] in the form of Az1lP which is proportional to 
Ibl'-lIP. The key observation is that, because the other 
term Bz- 1IP -II>I 1IP, the complete denominator in Eq. 
(9) is small and the argument ofthe arctan function is thus 
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diverging. By using the approximate formula arctan u;::;J1TI 
2-lIu valid for u~ I, we obtain for the deflection function 
[Eqs. (9) and (10) 1 after substitution 

1T ( 1.5 1)1-IIP 
4>(.5) = I '1'2 -6+ (tan 6) w--

Yend 

±~ cos
2 

6 (~) IIP
1 Y,nd 2{3w Y,nd 

(19) 

where 

(cos y)(cos2 6) 
2{3.. (tan 6+{3 tan y) w (20) 

and the upper sign corresponds to positive .5. 
This formula shows that there is an important qualita

tive change in the small .5 behavior at {3= 2 since for {3 < 2 
the first power dominates, while for {3> 2 the second one. 
In the case of backscattering (.5 > 0) this does not imply a 
drastic change in the shape of 4> (.5) since both terms are of 
the same sign (remember, 6 and tan 6+{3 tany are posi
tive): 4>(.5) decreases monotonically with increasing .5 as 
pointed out in the previous section. For forward scattering 
(.5 <0), however, the difference between the cases with 
{3<2 and {3>2 is striking. As long as (3<2, 4>(.5) always 
starts to grow with 1.51 since the dominating term being 
proportional to .51-(l/P) has a positive sign. Since 4>(.5) 
must decrease for large values of the impact parameter, 
this implies the existence of a local maximum at some 
negative {J. For {3 > 2 the situation is different since the 
other power with negative sign dominates for {J~O and, 
consequently, 4>({J) starts to decrease when moving away 
from the origin in the negative {J range but with {J still very 
small in the modulus. 

The case {3=2 is a borderline situation when both pow
ers I-II{3 and (3 are the same. The coefficients of the two 
terms are, however, of different signs. Consequently, there 
exists a critical angle 6, so that for incident angles greater 
(smaller) than 6, the deflection function increases (de
creases) when {J starts to grow in the negative direction. By 
equating the coefficients of the two powers, the following 
equation is obtained for 6, 

R 
-= (cos y) (tan 6,) (tan 6,+2 tan y) 
Yend 

with the solution 

( 
R )1/2 

tan6,= tan2 y+_ (tan2y+l)1I2 -tany. 
Y,nd 

(21) 

(22) 

For initial lines running parallel to the x-axis (y=O) 
tan 6,= (RIY,nd) 112. In the particular case of our plots 
R=Y,nd' the critical angle is just 6,=1T14. In the general 
case, the dependence of the critical angle on y and 
RIY,nd can be seen in Fig. 6. 

Interestingly, the properties of the deflection function 
discussed above do not exclude the existence of a local 
maximum close to the origin even in the case f3 > 2. The 
reason is that the next to leading term with power 1- 1I{3 
might be of the same order as the leading one at still small 

4.00 fu\"---------, 

2.00 4.0 

0.00 t~~~:;;;~1~.0~~~;;d 0.5 

-2.0 0.0 2.0 4.0 

tan y 

FlO. 6. Dependence of the critical angle Be on the slope r of the initial 
line at different geometrical ratios RIYend (indicated above the curves) as 
obtained from Eq. (22). The dashed line is the left asymptote 
tan Oc= - 2 tan r to all of the curves. 

values of {J especially if {3 is close to 2. These two terms 
might fully compensate each other at some critical {j, for 
{3> 2 where 

~_ Y,nd 2{3 sin 6 (R cos' 6 ) (2{3-2)/(P-2) 

Y,nd - - R cos3 6 Y,nd 2{3w sin 6 
(23) 

and w has been defined by Eq. (20). The value of the big 
parentheses is smaller (greater) than unity for 6> 6, 
(6 < 6,) for {3 around 2. This shows that for 6> 6, a critical 
impact parameter {J, exists around the origin. Conse
quently, the deflection function is locally increasing for 
{J < /), even if (3> 2 and thus a local maximum larger than 
1T 12 - 6 can exist at a finite distance from the origin [see, 
e.g., Fig. 4(c) for (3=2.25, 2.5]. For 6<6" however, /), 
defined by Eq. (23) is never small. Consequently, the value 
of the deflection function is always smaller than 1T 12 - 6 in 
the region of validity (I/)I 0( I) of our approximation. Nu
merics show that the lack of a local maximum lying above 
1T12-6 remains valid in a range of order unity away from 
the origin. Thus, scatterings with trajectories ending in the 
half-plane x > 0 occur if the incident angle is smaller than 
6, and (3>2. 

IV. GEOMETRICAL SUFFICIENT CONDITION FOR 
ABRUPT BIFURCATION IN SCATTERING ON 
AN ELLIPTICALLY SHAPED HILL OF FINITE HEIGHT 

We choose here a simple example, the scattering from 
three isolated hills V(x,y) = VI (x,y) + V2 (x,y) + V, (x,y) , 
where hill I is of the form 

lE m,-(x'+{32y2)/2 if X
2+{32y2';'2Em" 

VI (x,y) = . o otherwIse, 
(24) 

with Em, > O. We assume that hills 2 and 3 also have non
zero potentials only in regions of finite extent. In what 
follows we shall show that for {3> 2 an abrupt bifurcation 
to chaotic scattering occurs as E is reduced through the 
maximum potential of hill 1 provided that hills 2 and 3 are 
located inside the wedge shown in Fig. 7, where 6, is de
rived below [see Eq. (32)]. [We emphasize that the above 
simple geometrical condition is only a sufficient condition 
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Y 

ec 

x ec 
of hill 1 

FIG. 7. Geometrical sufficient condition for abrupt bifurcation. If hills 2 
and 3 lie in the shaded region 181<9c=38°1O'. an abrupt bifurcation 
occurs. 

for an abrupt bifurcation, and that abrupt bifurcations may 
still occur even if this condition does not hold (see Sec. 
V).] 

To obtain this result depicted in Fig. 7, we first note 
that, under our assumed condition, the size of the regions 
where Vl,2,3(X,y)~ is small relative to the distances be
tween the hills, and that the separation distances between 
the three hills is much greater than the extent of their 
regions of nonzero potential. Furthermore we assume that 
the maxima of both V2(x,y) and V3(x,y) exceed the par
ticle energy E and that, whatever the form of the potentials 
V2(x,y) and V3(x,y), the dynamics in the absence of hill I 
is nonchaotic [Le., for Em,=O, V(x,y) has no chaotic or
bits]. The essential deflection process from hill I can be 
studied by starting trajectories on a line outside the bound
ary contour x2+f32r=2Em,=Co, as depicted in Fig. 8. 
The initial coordinates are parametrized with the distance 
s measured along the line which is assumed to be perpen
dicular to the initial velocities. 

The motion is free before the trajectory reaches the 
outermost contour of the hill. After this the trajectory can 

Y 

--;:---:;---1f--,=-- Yeo, 

90"-9 e x 
be - ,,' 

" 2 2 2 
~ "'~ "\ +~ Yo ~Co = const 

line of xQ, yo, tangent to the ellipses 

FIG. 8. Diagram illustrating scattering trajectories in the case of an 
elliptically shaped potential hill of finite size at E=Em/ +0+. The outer
most contour is the isopotential line with energy zero and is given by 
r+132y=2Em ,==:Co= const. Trajectories ace launched toward the bill 
along a straight line making an angle of 1T/2-9 with the x-axis under 
inclination angle 9 so that the line does not cross the outermost contour. 
The impact parameter s is the distance of the initial point measured along 
this line from its closest point to the origin. Sc < 0 denotes the impact 
parameter of the critical trajectory. The dashed line is tangent to the 
outermost contour at the point where the critical trajectory enters the 
region of nonzero potential. Its slope r is uniquely determined by the 
inclination angle 8 (see text). Trajectories lying close to the critical one 
can equally well be described as if they started on the dashed line with 
initial coordinates Xo.Yo and moved in an infinitely extended potential 
until reaching the line y= ::t: Ycnd.=::t: CJ12/{3. Therefore. the results of the 
singularity analysis of Sec. III are also applicable to the present problem. 
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(a) ~= 1.5 

s 

(b) ~=2.2 

0.0 0.5 1.0 

s 

(c) ~=2.5 

FIG. 9. Deflection function ¢(s) of elliptically shaped potential hills of 
finite heights at.E=Eml+O+ as obtained from Eqs. (9) and (to) by 
numerically determining the point of exit on the outermost contour. Dif
ferent inclination angles 8=11/12, 1T/6, ... ,51T/12 are taken at elongation 
parameters /3= 1.5 (a), /3=:2.2 (b), and /3=2.5 (c), The initial line is the 
same as in Fig. 4. 

be computed in the same way as for the infinite potential 
and the deflection angle '" is determined by the particle 
velocity when the trajectory crosses the outermost contour 
again. The computation of this point requires the solution 
of an implicit equation which can be easily done numeri
cally. 

The results obtained for E=Em , +0+ at different f3 
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values and incident angles are shown in Fig. 9. Qualita
tively they exhibit very much the same features as the de
flection on an infinite hilI but strongly compressed along 
the s-axis. We observe again that for fi less than some 
critical value, which wilI be determined analyticaIIy below, 
no local maxima larger than 1r /2 - fi are created as long as 
P> 2. The deep decrease at certain positive values of s is a 
remnant of the singularity generated in the case of infi
nitely extended potentials by trajectories escaping paraIIel 
to the x-axis. Because of the finite extension of the potential 
the singularity cannot be built up now and, consequently, 
the derivative of the deflection function is finite for positive 
s. The jump from a deflection angle of 1r12-fi to 1T/2+fi is 
connected again with a critical trajectory that reaches the 
hilltop in an infinitely long time. 

The critical s-value se can be determined as foIIows. 
Any trajectory started at s along the line shown in Fig. 8 
has the form 

y=xtan fi-s/cos fi (25) 

in the force-free region. The point (xo,Yo) where the tra
jectory enters the region of finite force is then obtained as 
the intersection of this straight line with the outermost 
contour X

2+p2Y.=2(Em,-Eo) ""Co. The critical value se 
can again be computed from the fact that for such a tra
jectory A=C=O. Since inside the contour Eq. (5) holds, 
we conclude that Xo= -VOx ,Yo = -vo/P must be fulfiIIed 
with 

C 1/2 fi VOx= 0 COS. (26) 

Consequently, we find that 

Se= - ( I-~) ~ COI/
2 sin (2fi). (27) 

The form of the deflection function 1>(s) around the 
critical value as a function of~' =s-sc can be derived from 
the results of the previous section. From the point of view 
of singularity analysis, the finite hill case corresponds to a 
situation of the infinite hilI problem when the line of 
xo,Yo is just tangent at be to a given contour, and the lines 
y= ±Yend exactly touch the same contour (the impact pa
rameter b is measured again from the intersection with the 
y-axis). This means that 

(28) 

where XOc and YOe denote the coordinates of the critical 
trajectory along the xo,Yo-line. A simple geometrical obser
vation yieids xoe=becosy and R=-(Yoe+b,siny)cosy 
where R is the distance of the xo,Yo-line from the origin. 
Using Eq. (13) which connects R and be' we find that 
YOe and be are related aSYoe=be(cos y) (tan fi)IP. By com
puting the slope of the tangent to the ellipses at xo"Yoe we 
immediately find that the angles y and fi fulfill the follow
ing basic relation: 

I 
tan y= {3 tan fi· (29) 

Since the line of initial condition in the force-free region 
and the line containing Xo,Yo cross each other under an 

3 

x 

2 

FIG. 10. Diagram illustrating the selection of configurations (e2 .B) with 
abrupt bifurcation even if the geometrical sufficient condition of Fig. 7 
does not hold (see text). 

angle 1r /2 - fi - y, the deviation from the critical values, 8 
and 8' are connected by 8' =8 sin (y+fi) which in view of 
Eq. (29) reads as 

cos fi 2 
8' (1 +p2 tan2 fi) lI2 (1 +P tan fi)8. (30) 

By substituting this into Eqs. (19) and (20), we can obtain 
the form of 1>(6') valid in the limit 6' <1. 

We can thus also take over the results obtained for the 
critical angle fie and apply it to the case of finite hill. In 
particular, because of Eqs. (28) and (29) we find that 

R cosy 
Yend = sin fi· (31 ) 

A substitution of this into Eq. (22) taken at p = 2 leads to 
cos2 fie=sin fie which is solved by 

. (.J5- I ) 0, fie=arcsIU -2- ",,38 10. (32) 

Note that fie is a kind of "golden" angle. This result also 
shows that the critical angle in the case of finite hills is 
more universal than for infinitely extended hills as it does 
not depend at all on the choice of initial conditions. 

v. NONGEOMETRICAL CONDITIONS 

The local maximum value 1>$ (fi) of the deflection 
function at a given incident angle fi (and P fixed) can easily 
be read off from plots like Fig. 9 obtained for given poten
tial shapes. The condition for abrupt bifurcation can then 
be worked out easily. For potentials of the form 
V(x,y) = VI (x,y) + V2(x,y) + V3(x,y) with VI as given by 
Eq. (24) this can be done as follows. Let us denote the 
angie beiween the posiiion vector or hill 2 and the x~axis by 
fi2 • Draw a line under angle fi2+1>$(fi2 ) to the x-axis (line 
a2 in Fig. 10). Trajectories coming from hill 2 with energy 
E=Em, +0+ will then not be reflected toward hill 3 if the 
latter lies in the lower left of the boundary determined by 
line a2 and the negative y-axis (see Fig. 10). Next, position 
hilI 3 in this region. Check, by applying the same proce
dure, to see if deflection of trajectories coming from hilI 3 
by hilI I toward hill 2 is possible at E=Em , +0+, i.e., if hilI 
3 lies to the upper left of line a3 and the positive y-axis. If 
the answer is positive, we say that the pair (fi2 ,fi3) defines 
a configuration with abrupt bifurcation. We consider con-
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TABLE I. The height tP*«J) of the local maximum of the deflection 
function measured relative to the deflection angle 1T/2- (J of a trajectory 
approaching the critical one from the left for the isolated potential defined 
by Eq. (24). The values ~.(9) +9-90' are listed as read o!ffrom Fig. 9, 
angles are given in degrees. The table contains a zero if no local maximum 
above 1T/2-8 exists. 

(3 9 

15 30 45 60 75 
1.5 1 6 12 24 38 
2.2 0 0 0 7 19 
2.5 0 0 0 4 16.5 

figurations where O2 and 03 are of different sign which 
means that one of the hills lies above the x-axis, the other 
one below. and in what follows only the modulus of O2 and 
03 will be given. 

The values of "'* can easily be extracted from the 
graphs of Fig. 9. In Table I we listed ",*(0) - (7T/2-0). 
i.e .• the angle between the line a 2 or a3 and the y-axis for a 
few incident angles 0 and elongation parameter {3. If no 
local maximum exists above 7T /2 - O. the table contains a 
zero. We thus find that for {3= 1.5 abrupt bifurcation 
occurs in the model for the configurations (7T/12. 
7T/12) •..•• (7T/12. 57T/12). (7T/6. 7T/6) •...• (7T/6. 57T/12). 
(7T/4. 7T/4). (7T/4. 7T/3). (7T/4. 57T/12). and (7T/6. 7T/6). If 
(3> 2. we know that cases with O2.03 < Oc are necessarily 
accompanied with abrupt bifurcation. Although 7T / 4> 0 e> 
the plot of the deflection function shows [see Figs. 9(b) 
and 9(c») that at this incident angle there is no local max
imum lying above 7T /2 - 0 if {3 is not very close to 2. like 
e.g. for {3=2.2. 2.5. This observation shows that the actual 
range of abrupt bifurcation might turn out to be much 
larger in particular cases than the one given by the geo
metrical condition. In fact, it follows from Table I that the 
configurations (7T/4. 7T/4). (7T/4. 7T/3). (7T/4. 57T/12). and 
even (7T/3. 57T/12) are allowed for abrupt bifurcations for 
both {3=2.2 and (3=2.5. We thus conclude that there are 
entire continua of (02.03) for any elliptical hill where 
abrupt bifurcation can occur. These events are. therefore. 
typical in potential scattering. 

We can also see from Table I that the value of ",*(0) 
decreases with increasing {3. In the limit f3'> 1 we expect 
"'* to go to 7T/2-0. i.e .• the local maximum in '" to disap
pear. Thus. for an extremely elongated hill 1 abrupt bifur
cation is expected to occur in all cases when the other hills 
both lie on the left or on the right of the line defined by the 
minor semiaxis. 

VI. CONCLUSIONS 

The abrupt bifurcation to chaotic scattering was intro
duced in Ref. 5 and was illustrated there primarily for the 
case of isolated potential hills with locally circular isopo
tential contours at the hilltops. The object of this paper has 
been to illustrate the effect of noncircularity. It is found 
that abrupt bifurcations still occur in the noncircular case. 
but that major changes in the phenomenon result as soon 

as there is any deviation from circularity (i.e .• the circular 
case is singular). We have considered the case of three 
isolated potential hills that are widely separated compared 
to their individual spatial extents. For the example of the 
case where the hill of lowest hilltop potential is given by 
V,(x.y)=Em,-(x2+{32J)/2 for Em,> (x2+{32J)/2. and 
V,(x.y) =0 otherwise. we show how to obtain explicit con
ditions for when an abrupt bifurcation occurs. One of these 
results is a simple geometrical sufficient condition for the 
existence of an abrupt bifurcation. This condition is illus
trated in Fig. 7. In Fig. 7 we show the potential contours of 
the hill with lowest hilltop energy (hill 1). If the ellipticity 
parameter {3 exceeds two. and if hills 2 and 3 are located in 
the shaded wedge of angular width 20e> where Oc is given 
by Eq. (32). then an abrupt bifurcation occurs as the par
ticle energy is lowered through the hilltop potential Em,. 
Based on this example and on the case of the infinitely 
extended elliptical hill. we think that a critical Oc can also 
be found for potentials which are only locally elliptically 
shaped and sufficiently elongated. In cases when the suffi
cient geometrical condition does not hold (e.g .• (3 < 2) 
abrupt bifurcation can also occur. but a more detailed anal
ysis is necessary to determine whether the onset of chaotic 
scattering is abrupt. An illustration of how to do this for 
our example is given in Sec. V. To conclude we re
emphasize the point made in the introduction: knowledge 
that a bifurcation to chaotic scattering is abrupt gives im
portant information with respect to the dynamics and its 
evolution with parameter variation. In particular. there is a 
characteristic variation of the stability of the chaotic set. 
and since it is hyperbolic at creation. there are no bifurca
tions creating periodic orbits or KAM surfaces in a param
eter interval starting at the point of the abrupt bifurcation. 
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