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We review recent results concerning entropy balance in low-dimensional dynamical systems
modeling mass~or charge! transport. The key ingredient for understanding entropy balance is the
coarse graining of the local phase-space density. It mimics the fact that ever refining phase-space
structures caused by chaotic dynamics can only be detected up to a finite resolution. In addition, we
derive a new relation for the rate of irreversible entropy production in steady states of dynamical
systems: It is proportional to the average growth rate of the local phase-space density. Previous
results for the entropy production in steady states of thermostated systems without density gradients
and of Hamiltonian systems with density gradients are recovered. As an extension we derive the
entropy balance of dissipative systems with density gradients valid at any instant of time, not only
in stationary states. We also find a condition for consistency with thermodynamics. A generalized
multi-Baker map is used as an illustrative example. ©1998 American Institute of Physics.
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Trajectories of chaotic dynamical systems closely ap
proach the unstable manifold of an invariant set, namely,
a chaotic saddle for open systems, or a chaotic attractor
for closed and dissipative systems. Consequently, th
Gibbs entropy of smooth initial distributions monotoni-
cally decreases in time. We introduce here the concept o
coarse-grained phase-space densities and the correspon
ing entropies, and point out that a local entropy-balance
equation with a non-negative irreversible entropy pro-
duction can always be derived under weak assumptions
The structure of this microscopic balance equation is
similar to what is known from thermodynamics, but the
contributing terms differ in general from those in the
macroscopic case. We show that the macroscopic and th
microscopic balance equations are compatible only if it is
possible to take the limit of large systems while keeping
the transport coefficients fixed. In addition, in the case of
a general driving due to an external field, a reversible
dissipation mechanism is required, corresponding to a
proper thermostating of the system. We also point out
that consistency with thermodynamic results can only be
achieved when considering the time evolution of the full
phase-space density. Even though an entropy-balanc
equation can also be established for the process projecte
on the transport direction, this equation can no longer be
compatible with thermodynamics, except for the case of
unbiased mass transport„pure diffusion….

I. INTRODUCTION

The concept of irreversible entropy production in d
namical systems first appeared in the context of dissipa
3961054-1500/98/8(2)/396/13/$15.00
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deterministic thermostats introduced to perform molecu
dynamics simulations of transport in spatially period
systems.1,2 Since every ensemble of trajectories with smoo
initial distributions approaches a chaotic attractor in t
phase space,3 it became clear soon that after an initial tra
sient the Gibbs entropydecreasesin time. It has a constan
negative time derivative which coincides with the sum of
Lyapunov exponents on the attractor.1,4 It was tempting to
identify the modulus of this quantity with the irreversib
entropy production. A qualitative explanation corroborati
this view was based on the idea that the system together
the thermostat forms a larger closed system and, co
quently, the thermostat’s entropy should increase with
least the rate of decrease of the Gibbs entropy.2,5,6

Support of this picture is based on the observation t
the negative sum of the Lyapunov exponents is the aver
phase-space contraction rate, which is expected to be
negative in physically relevant cases. It is then natural to
that the average phase-space contraction rate should be
sidered as the irreversible entropy production.4,6–13Rigorous
mathematical statements have been proved concerning p
erties of this entropy production.10–12 On the other hand,
there is a conceptual difficulty in these results because
tropy production is referred to without specifying the unde
lying concept of entropy.

The cornerstone of nonequilibrium thermodynamics
an entropy which is~i! constant in a steady state~in contrast
to the Gibbs entropy of thermostated systems!, and~ii ! has a
time derivative which contains two contributions: the e
tropy flux deS/dt and the irreversible entropy productio
diS/dt>014
© 1998 American Institute of Physics
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dS

dt
5

deS

dt
1

diS

dt
. ~1!

In any finite volume, the entropy densitys, i.e., the entropy
per unit volume, fulfills the balance equation

ds

dt
5F1s~ irr!, ~2!

where ds/dt is the time derivative of entropy density,F de-
notes the entropy fluxinto that volume, and the rate of irre
versible entropy productions (irr)>0 can be viewed as th
source strength of entropy. In a steady state the entropy
balances the irreversible entropy production, i.e.,F
52s (irr) , so that ds/dt50.

The relation between the Gibbs entropy, which is co
tinually decreasing in a steady state, and the thermodyna
entropy needs clarification. It is nota priori obvious why the
temporal change of the Gibbs entropy should be fully attr
uted to the irreversible entropy production and not~at least
partially! to an entropy flux into an attached heat bath
particle reservoir.

To find a consistent description, the use of a coar
grained entropy has recently been proposed for dynam
systems.15–22 This concept emphasizes the importance of
nite resolution in any observation, which is mimicked
coarse graining the density over phase-space cells of a fi
size.23 The coarse-grained entropy computed with respec
the coarse-grained density~or thee-entropy24! differs quali-
tatively from the Gibbs entropy. After a long time, th
coarse-grained density approaches astationary distribution
localized around the unstable manifold of the chaotic s
This limiting distribution is a finite-precision approximatio
of the natural measure on this manifold, which typically h
a fractal structure. Correspondingly, the coarse-grained
tropy eventually becomes independent of time. Then the
reversible entropy production can be defined as the los
information on the microscopic state of the system due to
coarse-grained description. It is reflected in the growth of
difference between the coarse-grained and the G
entropy.15

In open systems the concept of phase-space contra
has to be generalized since there is an effective phase-s
contraction even in Hamiltonian cases because trajecto
can escape from the relevant part of the phase space.
leads to the observation that the escape rate has to be a
to the previous result.10,15

To understand boundary driven problems, it turned
to be essential to use the balance equations in addition to
coarse-grained entropies. The first attempt to derive entr
balance for a deterministic dynamical system is due
Gaspard16 ~in a noisy system to Nicolis and Daems17!. To
describe a one-dimensional diffusive current induced by fl
boundary conditions, Gaspard considered a purely Ha
tonian model~a multi-Baker map!. The rate of entropy pro-
duction he derived was consistent with the thermodyna
expression in the large-system limit.

In the present paper we consider one-dimensional m
transport that is driven not only by density gradients but a
by an external bias~a field!. The entropy balance for map
Downloaded 23 Feb 2010 to 10.0.105.87. Redistribution subject to AIP lice
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modeling this process is worked out for arbitrary nonstatio
ary states, and a general expression for the irreversible
tropy production is derived. It turns out that the entropy p
duction stems fromboth phase-space contraction an
mixing. In other words, whenever mixing of phase-spa
volumes with different mass densities plays a role in
transport process, the irreversible entropy production d
not coincide with the average phase-space contraction
We also show that the inclusion of dissipation isunavoidable
in order to be consistent with classical thermodynamics
this general case. The only choice consistent with this
quirement is a time-reversible dissipation mechanism t
models proper thermostating of the system.

In Sec. II we derive the entropy-balance equation fo
general dynamical system. Different levels of descripti
will be considered. We will find balance equations at
levels but an agreement with thermodynamics can
achieved only if the phase-space density is used to define
entropy, and if the system size is large. In Sec. III we int
duce the biased multi-Baker model. The microscopic bala
for this model is derived in Sec. IV, and its macroscop
limit is presented in Sec. V. In the conclusion we discuss
role of coarse graining for the concept of entropy~Sec. VI!.
The paper is augmented by three appendices. For refere
in Appendix A relevant thermodynamic relations are deriv
in a form not relying on temperature. The discussion of
entropy balance for the process projected on the trans
direction is relegated to Appendix B. A generalization of t
irreversible entropy-production formula to maps more ge
eral than the multi-Baker is given as Appendix C.

II. ENTROPY BALANCE FOR MAPS MODELING MASS
TRANSPORT

We consider a system whose phase space is part o
(x,p) plane and consists ofN identical cells which are
aligned along the direction of an external field. The cells
coupled such that a trajectory can proceed from one ce
its neighbors. Since there are no temperature gradients in
system, all cells can be taken equivalent as far as their
ometry and dynamics is concerned. They are of linear siza
with phase-space volumeG5ab ~Fig. 1!. The time evolution
is given by a mapping acting at integer multiples of the tim
unit t. Since we are interested in ensembles of trajector
we consider the dynamics of phase-space densities. In o
to model the effect of finite accuracy of observation, we w
consider coarse-grained densities where only the ave
phase-space density in the bins of a preselected fixed gr

FIG. 1. General scheme of a map modeling mass transport. The mapp
defined on a domain ofN identical cells of phase-space volumeG5ab
wherea is the width in the direction of an applied bias. Different bounda
conditions can be imposed by suitably defined action of the map on
additional cells 0 andN11.
nse or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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specified. For simplicity, in the present paper this grid
taken to coincide with the cells depicted in Fig. 1.25 Thus the
mapping describing the time evolution of the coarse-grai
densities will be considered as always acting on dens
which are uniform within each cell. Such a density is also
initial condition for the time evolution of the phase-spa
density.

Let %m(x,p) denote the phase-space density in cellm at
some timet. For later reference we mention that the ma
densityrm(x) in cell m is obtained by integrating the phas
space density over the momentum coordinate

rm~x!5E
0

b

%m~x,p!dp. ~3!

The difference between these quantities is also stresse
labeling them with different letters,r and%.

The Gibbs entropySm
(G) of cell m is defined as

Sm
~G!52E

cell m
%m~x,p!ln

%m~x,p!

%! dx dp, ~4!

where the Boltzmann constantkB has been suppressed, a
%! is a constant reference density which fixes the origin
the entropy scale. It doesnot depend on spatial coordinate
time or the boundary conditions, and must not be confu
with an equilibrium or steady-state density of the physi
system under consideration.

The coarse-grained orcell density%m is the average den
sity

%m5
1

G E
cell m

%m~x,p!dx dp ~5!

in cell m. The corresponding entropy

Sm52G%m ln
%m

%! ~6!

is in general different from the Gibbs entropy. It will b
called thecoarse-grained entropy~coarse grained on the fu
cell!. We argue below that it is a natural candidate for
generalization of the thermodynamic entropy to dynami
systems. When the coarse-grained entropies are defined
grid with bins smaller than the full cell, the results depend
the form of the partitioning. In the macroscopic limit, how
ever ~cf. Sec. V!, the chain consists of many cells (N@1),
and coarse graining over each cell corresponds to a ra
fine resolution. In this limit the time derivatives and the co
tributions to the entropy balance become independent of
details of the partitioning inside the cell, as corroborated
Ref. 22.

To derive an entropy-balance equation, we comp
quantities computed at two successive time steps,t5t0

5nt andt85t01t5(n11)t. The temporal variation of the
Gibbs entropy in cellm during one time step is

DSm
~G!5Sm

~G!82Sm
~G! , ~7!

and, similarly, for the coarse-grained entropy we write

DSm[Sm8 2Sm . ~8!
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In meaningful models of transport, the entropy chan
should always be related to particle motion contributing
transport. This means that for localized trajectories~as long
as they stay inside a given cell! phase-space volume shou
be preserved. In view of this requirement we let the dyna
ics inside a cell be phase-space preserving~Hamiltonian!,
i.e., localized trajectories cannot contribute to the tempo
change of a cell’s Gibbs entropy. Consequently, the cha
of DSm

(G) is entirely due to the entropyflux into the cell. The
entropy fluxes in the coarse grained and in the microsco
description do not differ,

DeSm5DSm
~G! . ~9!

This equation states that the coarse-grained entropy flu
entirely due to a change of the Gibbs entropy.

With this result Eq.~8! can also be written as

DSm5Sm
~G!82Sm

~G!1@~Sm8 2Sm
~G!8!2~Sm2Sm

~G!!#. ~10!

In view of ~7! and ~9!,

DSm5DeSm1D iSm , ~11!

where

D iSm[~Sm8 2Sm
~G!8!2~Sm2Sm

~G!!. ~12!

Here, the expressions forDSm , DeSm , and D iSm take the
form of discrete time derivatives, so that Eq.~11! has the
structure of an entropy-balance equation@cf. ~1!#. Conse-
quently, D iSm /t is a natural extension of the irreversib
entropy production to dynamical systems. Being the cha
in time of the difference between the coarse-grained and
Gibbs entropy, it exactly measures the amount of inform
tion lost per time unitt because of coarse graining.15

We remark that for the present choice of initial densitie
which are uniform over full cells, the initial Gibbs an
coarse-grained entropies coincide:Sm5Sm

(G) . In ~10!–~12!
the termSm2Sm

(G) was nevertheless written out explicitly, t
make clear thatD iSm is indeed a discrete time derivative.

Note that the Gibb’s entropySm
(G)8 contains more infor-

mation about the phase-space structure than the coa
grained entropySm8 and, therefore, must be less than or eq
to Sm8 . This ensures that the irreversible entropy product
is always non-negative

D iSm>0. ~13!

The irreversible entropy productionD iSm vanishes only
when, under the dynamics, the phase-space densities a
longer developing fine structures. The absence of temp
changes in the structure of the phase-space density can t
fore be viewed as a signature of thermal equilibrium.

In a nonequilibrium steady state we haveSm8 5Sm , and
the rate of irreversible entropy production

D iSm

t U
ss

52
DSm

~G!

t
~14!

coincides with thenegativetime derivative of the Gibbs en
tropy. Thus the rule that, after a long time, the irreversib
entropy production is the negative of the Gibbs entrop
time derivative appears as a natural consequence of the
nse or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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damental fact that any observation has finite precision.
that, the present approach also provides a foundation, w
the framework of entropy balance, for the qualitative arg
ments mentioned in the Introduction.

Although the structure of the microscopic balance eq
tion ~11! is identical with that of the macroscopic equatio
~1!, each term is yet a function of the microscopic parame
of the dynamics, e.g., of the cell sizea, the time unitt, and
typically also of additional parameters symbolically deno
by «. Therefore, the terms on the right hand side of Eq.~11!
will not coincide with the corresponding terms of the ma
roscopic equation~1!.

In the macroscopic limitthe microscopic parametersa,
and t tend to zero in such a way that the transport coe
cients stay finite. In that limit we expect that a finite entro
density is obtained as the limit ofSm /a. Furthermore, we
also expect that theratesof entropy changes obtained from
Eqs.~9!, ~8!, and~12! by dividing these equations byat are
also well-defined and finite. ThusDSm /(at)→ds/dt(«),
DeSm /(at)→F(«), andD iSm /(at)→s (irr) («), so that the
canonical form of entropy balance~2! is recovered

ds

dt
~«!5F~«!1s~ irr!~«!. ~15!

Note, however, that in general all terms still depend on
system parameter~s! «. Only for special values of«, these
terms can coincide with the expressions known from ir
versible thermodynamics.

To facilitate comparison with thermodynamics, the te
perature must be eliminated from the classical express
for ds/dt, F and s (irr) . After all, in low-dimensional dy-
namical systems the concept of temperature is ill-defin
Appendix A shows how this can be achieved. In the n
paragraphs we present temperature-independent expres
for the entropy fluxF and the irreversible entropy produc
tion s (irr) .

According to irreversible thermodynamics, mass tra
port is characterized by the drift coefficientv and the diffu-
sion coefficientD, and by two density distributions, namel
the mass densityr(x) and the current densityj (x). The cur-
rent densityj is the sum of thediffusion current, 2D ]xr,
and thedrift current, vr

j 5vr2D]xr. ~16!

The conservation of particles leads to a continuity eq
tion which is a kind of transport~Fokker–Planck! equation

] tr52]xj 52v]xr1D]x
2r. ~17!

The entropy flux, which is the sum of a convective te
and of the heat flow, can be written as

F5]x@ j ~c1 ln % !#2
v
D

j ~18!

with c as a constant. The second term corresponds to
entropy flow related to the heat current into the thermo
~Joule’s heat, cf. Appendix A!.

The expression of the irreversible entropy product
formula is obtained as
Downloaded 23 Feb 2010 to 10.0.105.87. Redistribution subject to AIP lice
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an expression quadratic in the total current density~16!.
At this point general statements about the« dependence

of the flux and entropy production appearing in~15! cannot
be made. For the particular example of the next section th
is one and only one set of parameters which correspond
the thermodynamic forms, namely, the one describing
time-reversible dissipation mechanismwhich models a
proper thermostating of the system.

We show in Appendix B that an entropy balance simi
to ~15! also holds for the transport process projected on
transport direction. However, this ‘‘projected’’ entropy ba
ance is in general inconsistent with thermodynamics.

III. THE MULTI-BAKER MODEL

Baker maps26–28 are archetype models for strongly ch
otic systems,26 and multi-Baker maps29–31,21,22play an essen-
tial role in understanding the connection between cha
microscopic dynamics and macroscopic irreversibili
which has also been a subject investigated by means of
eral other approaches.32–39

The phase-space of the multi-Baker model to be trea
here consists of a chain of identical cells of linear sizea and
areaG5ab ~cf. Fig. 1!. To define the dynamics every cell i
divided into three vertical columns~see Fig. 2!: the rightmost
~leftmost! column of width ra( la) of each cell is mapped
onto a strip of widtha and heightr̃ b( l̃ b) in the square to the
right ~left!. These columns are responsible for transport
one time stept. The middle column of widthsa stays inside
the cell, thus modeling the motion that does not contribute
transport during a single iteration. This column is mapp
onto a strip of widtha and heights̃b. According to the
argument of the previous section, the internal dynam
should be area preserving, i.e.,s5 s̃. Motivated by other
models of transport,global phase-space conservation is a
sumed, which implies the sum ruless1 l 1r 515s1 l̃ 1 r̃ .
In order to characterize the local dissipation mechanism,
introduce the parameter

«[
r̃ 2 l̃

r 2 l
, ~20!

which measures the deviation from uniform phase-sp
contraction on the stripsR andL. For «51 the Jacobians o

FIG. 2. Graphical illustration of the action of the multi-Baker map. Thr
vertical columns are squeezed and stretched to obtain horizontal strip
width a. Note the corresponding free spaces~white strips labeledR andS!

where strips from the neighboring boxes are mapped to (r 1 l 5 r̃ 1 l̃ ).
nse or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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the stripsR and L are identical, while for«521 they are
reciprocal to each other. Besides the microscopic units~t, a,
and b!, the thermodynamic and transport properties of
model are characterized by three independent parameters
transition probabilities to neighboring cellsr and l , and the
dissipation parameter«.

The phase-space contraction ratessL5(1/t)ln(l/ l̃ ) and
sR5(1/t)ln(r/r̃) on the respective stripsL andR depend on
the parameter«. According to their value, different transpo
dynamics can be modeled:
~i! Phase-space preserving~Hamiltonian! dynamics:

sL5sR50 ~21a!

~«51⇒r 5 r̃ , l 5 l̃ !.

~ii ! Dissipative dynamics with time-reversal symmetry:

sR52sL5
1

t
ln

r

l
~21b!

~«521⇒r 5 l̃ , l 5 r̃ !. This choice mimics the effect of a
thermostat.21 Indeed, in order to model the decelerating e
fect of the heat bath on particles accelerated by the exte
field, a map modeling driven thermostated systems has t
area contracting if the trajectory moves in the direction of
bias. Similarly, the map should be expanding for trajector
moving against the bias, on which the heat bath has an
celerating effect to compensate for the slowing down by
external field~cf. Refs. 2, 5, 9!. In addition, the overall dis-
sipation should vanish for closed trajectories which do
contribute to transport. Since this is also true for period
orbits, the overall contraction ratessR1sL for making a
step to the right and a step to the left should add up to z
It is worth noting that the map is then time-reversible.40

~iii ! General dissipative dynamics:

sLÞ2sRÞ0 ~21c!

(«Þ61). This case has similarities with the thermostati
algorithm but does not fulfill the time-reversal symmetry40

We consider it as a model for improper thermostatting.

Finally, we stress that also the coarse-grained dens
depend, in general, on time. Due to the conservation of pr
ability, we have the following expression for the cell dens
%m8 after one time step:

%m8 5~12r 2 l !%m1r%m211 l%m11 . ~22!

This is a discrete-time master equation42 governing the dy-
namics of the cell densities. In contrast to the full dynami
it does not depend on the dissipation parameter«. Because
the average mass densityrm of cell m is rm5b%m , Eq. ~22!
also holds for the average mass density. It provides a clo
set of equations for the time evolution of the coarse-grai
densities, which can rigorously be derived from the mic
scopic dynamics~cf. Refs. 31, 29!. By this, modeling trans-
port by means of multi-Baker maps allows us to work out
relation between self-contained descriptions of transport
havior on the microscopic level~phase-space densities an
Gibbs entropy! and a macroscopic level~coarse-grained den
sities and coarse-grained entropy!.
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IV. ENTROPY BALANCE FOR THE MULTI-BAKER
MODEL

In this section we calculate the different contributio
~8!, ~9!, ~12! to the entropy balance~11! for the general
multi-Baker map depicted in Fig. 2. As discussed above,
choose the initial density%m(x,p) to be uniform in every
cell. Then the coarse-grained entropy of cellm at timet and
t85t1t takes the form

Sm52G%m ln
%m

%! 5Sm
~G! ~23a!

and

Sm8 52G%m8 ln
%m8

%! , ~23b!

respectively. In order to compute the Gibbs entropy at ti
t8, we note that the densities on the three horizontal st
depicted in Fig. 2 differ after having applied the map. On t
strips R, S and L the density assumes the new values%R8

5%m21r / r̃ , %S85%m , and%L85%m11l / l̃ , respectively.~The
initial densities on these strips were%R5%S5%L5%m .!

Consequently, the Gibbs entropySm
(G)8 is

Sm
~G!8[2GFs%S8 ln

%S8

%! 1 r̃%R8 ln
%R8

%! 1 l̃ %L8 ln
%L8

%!G ~24a!

52GF ~12r 2 l !%m ln
%m

%!
1r%m21 lnS %m21

%!

r

r̃
D

1 l%m11 lnS %m11

%!

l

l̃
D G ~24b!

52GF%m8 ln
%m

%!
1r%m21 lnS %m21r

%mr̃
D

1 l%m11 lnS %m11l

%ml̃
D G , ~24c!

where Eq.~22! has been used to arrive at the latter equal

It is clear from these relations that the Gibbs entropySm
(G)8

coincides with the coarse-grained one,Sm8 , only if the map
does not generate any local inhomogeneities of the ph
space density.

Inserting Eqs.~23b! and~24! into the expressions for the
changeDSm of the coarse-grained entropy@Eq. ~8!#, the
changeDeSm due to the flux@Eq. ~9!#, and the irreversible
entropy changeD iSm @Eq. ~12!#, one obtains

DSm52GF%m8 ln
%m8

%! 2%m ln
%m

%! G , ~25a!

DeSm52GF ~%m8 2%m!ln
%m

%!
1r%m21 lnS %m21

%m

r

r̃
D

1 l%m11 lnS %m11

%m

l

l̃
D G , ~25b!
nse or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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D iSm5GF r%m21 lnS %m21

%m

r

r̃
D 1 l%m11 lnS %m11

%m

l

l̃
D

2%m8 ln
%m8

%m
G . ~25c!

The sum ofDeSm andD iSm is indeed the total changeDSm

of entropy. Consequently, the balance equation~11! is ful-
filled. In Appendix C we consider a map much more gene
than the multi-Baker model and show that, under very we
assumptions, an expression structurally very similar to~25c!
follows for the irreversible change of entropy.

Let us discuss expression~25c! for D iSm in some more
detail. First, we consider a steady state. Then the disc
version of the rate of irreversible entropy production is

D iSm

t U
ss

5G%mF r
%m21

%m
ln

%R8

%R
1 l

%m11

%m
ln

%L8

%L
G . ~26!

Notice that%R8 /%R is the ratio of the local densities at timet8
and t on strip R, and%L8 /%L the corresponding quantity o
strip L.

The probability to be mapped onto these strips by timet8
is r%m21 /%m ~or l%m11 /%m!. Therefore, we can say that th
irreversible entropy production is related to the average
the growth rates

s%~x,p![
1

t
ln

%8~x,p!

%~x,p!
~27!

of the local ~non coarse-grained! phase-space densities.
other words,

D iSm

tG%m
U

ss

5
D iSm

tarm
U

ss

5^s%&ss. ~28!

Thus the irreversible entropy production per particle~degree
of freedom! is the average growth rate of the local phas
space density, where the average has to be taken with re
to the steady-state distribution. In the special case when
coarse-grained density is constant along the chain~%m21

5%m for everym!, the local density growth rates reduce
the phase-space contraction ratess(x,p) and we recover the
relation (D iSm /(tarm))ss5^s&ss valid for thermostated sys
tems with periodic boundary conditions.1,4,6–13 We believe
~28! to be a proper generalization that holds in every ste
state of a dynamical systems where mixing~i.e., intertwining
of different neighboring average cell densities! plays a role.

To underline this observation, it is useful to separate
contributions stemming from mixing and phase-space c
traction. To this end we split the full entropy change~25c!
into a term with only% dependence under the logarithms
term which accounts for the change of phase-space volum
and a time-dependent rest:

D iSm5DSm
~mix!1DSm

~con!1DSm
~evo! . ~29!

Here,

DSm
~mix![GF r%m21 ln

%m21

%m
1 l%m11 ln

%m11

%m
G ~30!
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is the mixing entropybased on neighboring cell densitie
and the contribution

DSm
~con![G@%m21ts11%m11ts2#, ~31!

accounts for an averagecontraction of phase space. The
quantities

s15
1

t
r ln

r

r̃
and s25

1

t
l ln

l

l̃
~32!

are theconditional phase-space contraction ratesfor the mo-
tion in the positive and negative direction, respectively.~By
conditional we mean that for a constant distribution of t
coarse-grained density these rates would be the ave
phase-space contraction rates for the two directions.! The
third term of ~29!,

DSm
~evo!52G%m8 ln

%m8

%m
, ~33!

vanishes in a steady state. It accounts for irreversible entr
production due to the temporal change of the cell densit
in addition to the contributions due to mixing and phas
space contraction which are found in both stationary a
nonstationary situations. In particular, the splitting of E
~29! shows that in a steady state with constant cell densit
only the phase-space contraction contributes to the irrev
ible entropy production. In the other limiting case, name
for a steady state where the dynamics is everywhere Ha
tonian, the mixing entropy provides the entire entropy p
duction ~see Ref. 16!.

It is worth briefly mentioning the case of a homogeno
temporal decay of the density towards an empty state, wh
corresponds to the decay with the most stable eigenstate
system displaying transient chaos~escape rate formalism, cf
Refs. 5, 32, 31, 21!. One can then write%m8 5exp@2k(t0
1t)#%̃m, where k is the decay rate~escape rate from a
saddle!, and %̃m is the conditional cell density which doe
not depend on time. An analogous form holds for the pha
space density %m8 (x,p)5exp@2k(t01t)#%̃m(x,p), where
%̃m(x,p) is the so-called conditional phase-space density
contrast to its cell average,%̃m(x,p) is time-dependent, ex
pressing the approach towards the chaotic saddle’s uns
manifold. From~25c! we obtain for such adecayingstate
~ds!

D iSm

tarm exp~2kt!
U

ds

5k1^s %̃&ds , ~34!

wherek stems fromDSm
(evo), and

^s %̃&ds5
ekt

t F r
%̃m21

%̃m

ln
%̃R8

%̃R

1 l
%̃m11

%̃m

ln
%̃L8

%̃L
G ~35!

is the average growth rate of the conditional phase-sp
density evaluated under the condition that particles have
yet escaped. Note thats %̃5(1/t)ln(%̃8/%̃) appearing here is
the direct generalization ofs% @cf. Eq. ~27!# for the condi-
tional density%̃m(x,p).
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Equation~34! is an extension of the results of Ref. 1
which are recovered for two special cases: a homogene
cell density distribution,%m5%m11 , or averaging over the
whole system. If the deviation from a homogeneous cell d
sity distribution is important~or averaging takes place ove
e.g., individual cells!, there is, according to~34!, ~35!, also a
contribution due to the mixing entropy, just as in a stea
state.

V. THE MACROSCOPIC LIMIT

As a first step towards a meaningful macroscopic lim
we assume that the system consists of a large numbeN
@1 of cells. This implies that the total lengthL[Na is
much larger than the cell sizea. We are interested in the
large-system limitcorresponding toa!L, i.e., to a→0 at
fixed lengthL.

The spatial variation of the average phase-space den
%m , i.e., of the cell density, follows the one of the ma
densityrm in the large system limit (b%m5rm). Thus the
cell densities for the neighbors of cellm @i.e., at positions
x1dx5(m61)a# can be expressed through spatial deriv
tives of the mass density distributionr(x) at x5ma. Up to
second order ina,

b%m615r~x!6a]xr~x!1
a2

2
]x

2r~x!. ~36!

In the same spirit, the temporal variation of the cell dens
reads

b~%m8 2%m!52a~r 2 l !]xr1
a2

2
~r 1 l !]x

2r. ~37!

Substituting these relations for the phase-space dens
in ~25c! yields for the irreversible entropy production in th
large system limit

D iSm

at
5~s11s2!S r1

a2

2
]x

2r D2a~s12s2!]xr

1
a2

2t
@~r 1 l !2~r 2 l !2#

~]xr!2

r
. ~38a!

The first two terms are consequences of the phase-space
traction, while the third one arises fromDS(mix) andDS(evo).
A similar rearrangement of~25b! yields for the entropy flux

DeSm

at
52~s11s2!S r1

a2

2
]x

2r D
1aFs12s22

r 2 l

t G]xr

1]xF S a
r 2 l

t
r2

a2

2

r 1 l

t
]xr D S 11 ln

r

r!D G ,
~38b!

wherer![b%! denotes the reference mass density.
The fact that these equations are expressed solely

spatial derivatives of the mass density distribution does
yet ensure the existence of a well defined macroscopic l
for s (irr) andF. We see that the limitt→0 strongly depends
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on how the transition probabilitiesr andl behave. In order to
find a sufficient condition for the existence of this limit, w
go back to the microscopic model. The cell-to-cell dynam
of the multi-Baker model is equivalent to a random wa
with fixed step lengtha.31,42,43Such random walks are cha
acterized by well defined drift (v) and diffusion (D) coeffi-
cients, which can be expressed in terms ofr and l as (r
2 l )a5vt and (r 1 l )a252Dt, respectively.44 Thus,

r 5
tD

a2 S 11
av
2D D , l 5

tD

a2 S 12
av
2D D . ~39!

If v and D are fixed, these relations determine the scal
behavior of the transition probabilitiesr and l as a function
of the length unita and the time unitt.

Via the conditional contraction ratess6 , Eqs.~38a! and
~38b! contain the parametersr̃ and l̃ . It is convenient to
expressr̃ and l̃ in a similar way asr andl , which, however,
now also contain the dissipation parameter«

r̃ 5
tD

a2 S 11«
av
2D D , l̃ 5

tD

a2 S 12«
av
2D D . ~40!

Since « is also a parameter which is relevant for th
macroscopic behavior wedefinethe macroscopic limit as

a→0, t→0, with v,D,« fixed ~41!

~or a!L,D/v; t!L2/D,D/v2!. It is in this limit that the
dynamics~37! of the cell ~or mass! densities reduces to th
macroscopic mass transport equation~17!. However, this re-
quirement only ensures that the transport process can be
scribed by a one-dimensional Fokker–Planck equation
does not yet imply that the model also has a meaning
thermodynamics.

In the macroscopic limit one immediately finds

s11s25
v2~12«!2

4D
, s12s25

v~12«!

a
. ~42!

Inserting these relations, as well as~39! and ~40!, into Eq.
~38a!, we obtain the asymptotic expression

s~ irr!~«!5
r

D S v~12«!

2
2D

]xr

r D 2

. ~43!

In the same way we find for the entropy flux Eq.~38b!

F~«!5]xF j S 11 ln
r

r!D G2«v]xr2
v2~12«!2

4D
r, ~44!

where the particle current densityj is given by~16!. A com-
parison with the thermodynamic entropy balance also sh
that the limit of2b%m ln(%m/%!)52rm ln(rm/r!) goes over
into the macroscopic expression

s~x!52r~x!ln
r~x!

r! ~45!

of the entropy density given in terms of the mass dens
Thus for every« we find ds/dt5(11 ln(%/%!))]xj. We em-
phasize again that the balance equation and~43!, ~44! are
valid at every instant of time, not only in steady states.

It is remarkable that the asymptotic macroscopic expr
sions fors (irr) («) andF~«! are finite for arbitrary values o
nse or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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the dissipation parameter«. However, there exists only on
value for which the thermodynamic results~18!, ~19! are
recovered, namely«521. @The constantc of Eq. ~18! cor-
responds to 12 ln r! and can be set zero by the choice
r!5e.# We thus conclude that~a! although transport cause
by an external field~bias! is considered to be a typical many
body phenomenon, it can faithfully be modeled by discre
time dynamical systems with few degrees of freedom. T
heat flow accompanying transport~Joule’s heat! is accounted
for by a reversible dissipation mechanism.~b! The thermo-
stating condition is fulfilled in one point of the paramet
space only.

Several comments are in order.
~i! For the derivation of Eqs.~43! and ~44! we did not

specify boundary conditions, i.e., the macroscopic res
hold irrespective of their choice. In particular,~43! with («
521) implies that even for periodic boundary conditio
there is a non-negligible mixing entropy contribution~the
term proportional to]xr! before the steady state is reache
It is only in the long time limit of such periodic cases th
s (irr) /r equalsv2/D and coincides with the negative sum
the average Lyapunov exponents.

~ii ! The multi-Baker model is an example for which th
laws of thermodynamics can be derived without using
concept of temperature and heat. Instead, irreversible ent
production was seen to arise from the mixing of phase-sp
regions due to a strongly chaotic dynamics. This mechani
is by no means restricted to low-dimensional systems.
expect it to be the dynamical reason for irreversible entro
production and for the possibility to find an entropy balan
in systems with many degrees of freedom, too. In this
proach the concepts of heat and temperature appear as
venient tools to characterize certain macroscopically relev
effects of the mixing process.

~iii ! Entropy-balance equations have been established
arbitrary values of the external control parameter«. We
would like to point out that although a macroscopic lim
exists in all these cases, the expressions obtained for
fluxes and for the irreversible entropy production do, in ge
eral, not fulfill the thermodynamic relations between~ther-
modynamic! forces, induced currents and entropy produ
tion. Only for parameter values corresponding to a prope
thermostated system~including time reversibility!, the ther-
modynamic relations are recovered. This emphasizes the
cessity of both the existence of a meaningful macrosco
limit and proper thermostating.

~iv! It is worth pointing out where the chaoticity of th
underlying dynamics plays an essential role. It is themixing
property ~in the sense of ergodic theory5,26! of the multi-
Baker map without which an analogy with a random wa
and hence a transport equation, cannot be established.
mixing property leads to the appearance of a diffusion co
ficientD which, in our approach, is offully dynamicalorigin.
In view of point ~ii !, we also see how accurate Gibbs’ an
ogy of irreversible processes with the mixing of a nondiff
sive dye in a colorless solvent45 was, since the latter is o
course a chaotic process with mixing properties.46

~v! The macroscopic expressions (irr)5 j 2/(rD) was de-
rived here ~for «521! without any assumption abou
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whether or not the system is close to thermal equilibriu
Therefore, we expect this form to hold beyond linea
response theory.

~vi! It was shown that besides for steady states of p
odic systems where]xr50, the rate of irreversible entrop
productions (irr) contains contributions not only from phas
space contraction but also due to spatial variations of
density. To our knowledge, these contributions can only
derived from dynamical system theory via coarse grainin

VI. DISCUSSION

We conclude this paper with comments on the role
coarse graining when defining entropies. Dividing the ph
space into elementary cells of areaDpDq[DG is essential
for the foundation of equilibrium statistical mechanics.43 It is
well-known that the equilibrium entropy is defined only u
to an additive constant whose value depends on the part
sizeDG. By the uncertainty principle of quantum mechanic
DG is bounded from below by Planck’s constanth. How-
ever, the value ofDG does not affect thermodynamic obser
ables. Indeed, the entropy itself is not an observable, an
derivatives, the observables, are not affected by the add
constant depending onDG.

The same reasoning applies to coarse-grained entro
of dynamical systems. The entropies themselves depen
the way of coarse graining, but their temporal derivativ
which appear in the balance equation, are much less se
tive. In the macroscopic limit the dependence on the coa
graining disappears completely.16,22

In the bulk of the paper, we have not discussed the
proach to thermal equilibrium in a closed system, i.e., in
Hamiltonian system with a closed phase space. Owing
Liouville’s theorem, the Gibbs entropy does not depend
time in that case, its value is preserved. Also in the cont
of closed systems, one way to find an increase of entr
when starting from nonequilibrium initial conditions is t
introduce a coarse-grained entropy. It was already Gi
who showed that the coarse-grained density approac
some finite limit in the long time limit.45 He also claimed
that the coarse-grained entropy based on this density
increase in time~for polemic discussions, see also Refs. 4
49!.

It is interesting to compare the time evolution of th
differenceD iS(t) between the coarse-grained and the Gib
entropy in this Hamiltonian case with the time evolution
the same difference for a transport process approachin
steady state~cf. Fig. 3!. For both situations, the Gibbs en
tropy S(G) is compared at any time with the entropyS com-
puted, for the same initial conditions, with densities coa
grained on a fixed grid. In the case of a closed system,
Gibbs entropy remains unchanged, butS(t) initially grows
with time @Fig. 3~a!#. Since closed systems eventually a
proach equilibrium, the coarse-grained entropy satura
Consequently, the time derivative ofD iS(t), which can
again be considered as irreversible entropy production,
grows but vanishes in the long-time limit. The basic diffe
ence between a thermodynamically closed and an open
tem relaxing towards a nonequilibrium state is that in t
nse or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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latter case the Gibbs entropy decreases forever@Fig. 3~b!#.
A jump from the phase-space density to its coar

grained analog causes the Gibbs entropy to jump up to
curve ofS. Because the third column~S! is missing in their
model, they can neither find consistency with a Fokke
Planck equation nor with the thermodynamical form of t
irreversible entropy production. When such a coarse grain
is performed after the closed system has relaxed to equ
rium, S andS(G) remain identical@Fig. 3~a!#. This is a partial
extension of the approach of Ref. 22, where only two diff
ent refined partitions were investigated but results for a
trary non-stationary states could be obtained. Even thou
jump from the phase-space density to its coarse-grained
log causes the Gibbs entropy to jump up to the curve ofS,
the coarse-grained and Gibbs entropy always start to d
again after the coarse graining. The central point of
present article was to call attention to this qualitatively d
ferent behavior of closed and open systems, which leads
strictly positive irreversible entropy production in nonequ
librium systems. The ever-lasting decrease of the Gibbs
tropy is a striking consequence of the fact that nonequi
rium steady states are associated with chaotic systems w
steady-state distributions are supported by fractal subse
the phase space.

Note added:After submitting this paper we becam
aware of a recent preprint by Gilbert and Dorfman50 dealing
with closely related problems. In a multi-Baker model, d
fined with two columns only, they discuss properties of t
entropy in stationary states of the Hamiltonian and of
properly thermostated version~the cases«561 in our no-
tation!. By carrying out coarse graining onarbitrarily fine
Markov-partitions, they derive an expression for the irreve
ible entropy production in steady states. This is an extens
of the results of Ref. 22, where only two different refin
partitions were investigated, but for arbitrary nonstation
states. The authors of Ref. 50 show by explicit numeri
calculation that in the limit of large system size the irreve
ible entropy production becomes independent of the pa
tioning everywhere, except for a narrow boundary lay
around the two ends of the chain. Based on the result
Refs. 22 and 50 we firmly believe that in the bulk of eve
macroscopically large system none of the terms in
entropy-balance equation depends on the details of co

FIG. 3. Schematic time evolution of the coarse-grained densityS and the
Gibbs entropyS(G) for ~a! a closed system where the densities relax to th
equilibrium values, and~b! an open system approaching a steady state
carries a nonvanishing mass current. In both cases, the initial conditio
smooth and distributed over a region of the phase space much bigger
the cell size used for coarse graining. The arrow indicate the effect of co
graining on the Gibbs entropy.
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graining. This is why one recovers the thermodynamic
sults, as we did in the present paper, even with the m
straight-forward choice of coarse-graining size~namely, the
full cell size! and the choice of a constant initial density
every cell.
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APPENDIX A: NONEQUILIBRIUM THERMODYNAMICS
OF MASS TRANSPORT

In this section we summarize the thermodynamic re
tions describing transport due to the simultaneous prese
of drift and diffusion currents.14 We restrict ourselves to
cases where the external field and the density gradient
both parallel to thex-axis so that the diffusion and the con
ductivity are scalar quantities. The temperatureT of the sys-
tem will be kept constant throughout the system, i.e., we w
not consider heat conduction. For the derivation we use
laws of nonequilibrium thermodynamics and linear respon
We stress, however, that in spite of this assumption the
pressions can very well be of more general validity.

The conductivitys is the transport coefficient which
quantifies the amount of a current densityj in response to an
applied thermodynamic forceX. In the presence of a gradi
ent of the chemical potential~m! and an external force (E)
this leads to14

j 5sTX5s~E2]xm!. ~A1!

Next, we rewrite the current in a convenient form. Su
stituting, in Eq.~A1!, the thermodynamic expression for th
diffusion coefficient

D5s
]m

]r U
T

~A2!

we find thatj 5sE2D]xr. By introducing the drift velocity

v[m0E[
sE

r
, ~A3!

~Ohm’s law! wherem0 is the mobility of the particles, we
find the full current in the form of~16!.

The entropy flux contains14 a convective contribution

F~conv!5]x@ j ~c1 ln r!# ~A4!

characterizing the entropy carried by the flow of partic
~herec is a constant which is typically scaled out to zero!. In
the presence of a thermostat there must be another cont
tion, which accounts for the entropy flux due to heat whi

r
t
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dissipates the work done by the external field into a therm
stat ~Joule’s heat!. This contribution will be calledF (heat),
and it takes the form

F~heat!52
E j

T
52

v
D

j . ~A5!

Here, we used the definition of the drift~A3! and Einstein’s
relationrD5sT to arrive at the last equality. The total flu
is the sum:F5F (conv)1F (heat).

Finally, the rate of irreversible entropy productions (irr)

is the product of the current densityj and the thermodynamic
driving forceX14

s~ irr!5 jX. ~A6!

In view of Eq. ~A1!, this leads to

s~ irr!5
j 2

sT
5

j 2

rD
, ~A7!

where again Einstein’s relation has been used.

APPENDIX B: ENTROPY BALANCE FOR THE
PROCESS PROJECTED ON THE DIRECTION OF
TRANSPORT

1. Entropy balance

Since the thermodynamic expressions only contain
mass density distributionr(x) along the transport axis, th
question arises in which sense the orthogonal direction
relevant. To clarify this, we discuss an entropy balance ba
on the projected density, i.e., on the mass density distribu
inside the cells.

For a general model of the type of Fig. 1, the dynam
of the projected density is generated by an extended o
dimensional map containing identical intervals of sizea ~see
Fig. 4!. We define the ‘‘projected’’~Gibbs! entropy as

Sm
~p!52E

interval m
rm~x!ln

rm~x!

r! dx, ~B1!

which contains information about the inhomogeneities of
projected distribution along thex axis. Here, again, we use
r!5b%! as the reference density for the definition of t
entropy. We also define a coarse-grained projected ent
computed with the average mass densityrm in each interval.
In view of Eq. ~5!, rm5b%m . Therefore, with this choice o
r! the coarse-grained projected entropySm

(p) coincideswith
the coarse-grained entropySm . Thus we can drop the supe
script of the coarse-grained entropy:Sm

(p)5Sm . In spite of

FIG. 4. Chain of intervals along thex axis on which the projected dynamic
is defined.~cf. the text!.
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this coincidence, however, the balance equation for the p
jected entropy differs profoundly from its phase-space a
log.

For the projected entropy, the derivation of a balan
equation is more formal than in the full phase-space
proach, because the projected dynamics is no longer inv
ible. For states with constant mass densities in every inter
the projected Gibbs entropy coincides thus with the coa
grained entropy although the entropy production might s
be strictly positive. What can be done in any case is to id
tity a flux DeSm

(p) of the projected entropy into intervalm due
to the motion of one-dimensional volumes across the bou
aries of this interval during one time unit. This quantity
typically different from the full changeDSm of the entropy.
Therefore, we candefinethe irreversible projected entrop
change via a balance equation

DSm
~p!5DSm5DeSm

~p!1D iSm
~p! , ~B2!

i.e., as the difference

D iSm
~p![DSm2DeSm

~p! . ~B3!

Thus, in this approach the existence of an entropy-bala
equation is necessary for thedefinition of entropy produc-
tion.

2. Entropy balance in the projected multi-Baker map

The dynamics projected onto thex axis is governed by
the one-dimensional map depicted in Fig. 5. Since the
map is piecewise-linear, the densityrm is a step function
which is constant within every cell at any instant of time,
the initial density is of this type. Again, we findrm5b%m .

FIG. 5. Piecewise linear map governing the projected dynamics of
multi-Baker model.
nse or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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The entropy fluxDeSm
(p) into intervalm during one time

step corresponds to the flow ofSm through the boundaries o
the interval, i.e., it is given by the difference between t
respective in- and outgoing fluxes

Sm
~p, in!52aS rrm21 ln

rm21

r! 1 lrm11 ln
rm11

r! D , ~B4a!

Sm
~p,out!52a~r 1 l !rm ln

rm

r! . ~B4b!

The total flux is obtained, after using~22! for the mass den-
sity, as

DeSm
~p![Sm

~p, in!2Sm
~p,out!

52aF ~rm8 2rm!ln
rm

r! 1rrm21 ln
rm21

rm

1 lrm11 ln
rm11

rm
G . ~B5!

Note that this is exactly the same as Eq.~25b! except that
here, the effect of phase-space contraction is missing.

In view of ~B3! the irreversible change of the projecte
entropy reads

D iSm
~p![aF rrm21 ln

rm21

rm
1 lrm11 ln

rm11

rm
2rm8 ln

rm8

rm
G .
~B6!

As expected, it is independent of the parametersr̃ and l̃
characterizing the phase-space contraction in the full ba
dynamics.

3. Macroscopic limit

The present approach corresponds to the Hamilton
choice«51 of the previous results@cf. Eq. ~25!#. Therefore,
in the macroscopic limit whenrm tends tor(x) we find

F~p!5]xF j S 11 ln
r

r!D G2v]xr ~B7!

and

s~p, irr!5D
~]xr!2

r
. ~B8!

Note that the same result is also obtained by directly con
ering the large-system limit of the projected entropy in~B1!.
In this limit, rm(x) approaches the thermodynamic ma
densityr(x), and the Fokker–Planck equation~17! can be
used to directly evaluate the time derivative of the projec
entropy. In this limit,Sm /a approachess, and one obtains an
entropy-balance equation of the form

] ts5F~p!1s~p, irr!, ~B9!

where F (p) and s (p, irr) are again given by Eqs.~B7! and
~B8!. Although this is a well-defined macroscopic entrop
balance equation with a non-negative entropy production
is markedly different from the thermodynamic form in th
case of a nonvanishing drift. This is consistent with the o
servation that the projected density cannot contain inform
Downloaded 23 Feb 2010 to 10.0.105.87. Redistribution subject to AIP lice
er
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tion about the phase-space contraction along thep axis,
which is related to the heat current into a thermostat. T
projected density faithfully reflects the entropy changes
lated to the interaction with particle reservoirs, but it cann
account for the effects related to a heat bath.

APPENDIX C: IRREVERSIBLE ENTROPY
PRODUCTION FOR GENERAL MAPS

We work out the irreversible entropy production E
~12! per time stept in cell m for a general map modeling
mass transport on a grid of cells as schematically depicte
Fig. 6.

In order to describe the time evolution of the system
the level of coarse-grained densities, we introduce the
lowing notations:
n: label of the neighbors of cellm.
% j : the coarse-grained density in cellj .
G: the ~possibly high dimensional! volume of each cell.
wj ,k : the transition probability from cellj to k.
sj ,k : volume fraction of cellj mapped into cellk. sm,m de-

notes the volume fraction which does not leave cellm
in one time step. Thesj ,k’s are subjected to the sum
rule

(
j P$n,m%

sm, j51. ~C1!

s̃j ,k : volume fraction of cellk which contains all points with
preimages in cellj . We are only interested in globally
phase-space preserving flows implying

(
j P$n,m%

s̃j ,m51. ~C2!

Note thats̃j , j5sj , j for every j because of the assump
tion that the internal dynamics in every cell is phas
space preserving.

Taking the cell density to be constant because of coa
graining, the transition probability from cellj to k is the
volume fraction mapped into cellk

wj ,k5sj ,k . ~C3!

FIG. 6. Notations used for the discussion of entropy production for gen
maps~cf. the text!.
nse or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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The volume fractions̃m,m of points not leaving cellm in one
time step is obtained as

sm,m5 s̃m,m512(
n

wm,n. ~C4!

Conservation of probability leads to a master equat
expressing the cell density%m8 after one time step42

%m8 5%m2(
n

~wm,n%m2wn,m%n!

5sm,m%m1(
n

sn,m%n . ~C5!

At time t8 the coarse-grained entropy is

Sm8 52G%m8 ln
%m8

%! . ~C6!

In order to compute the Gibbs entropy at the same time,
observe that the number of particles entering cellm from the
volumesn,mG of cell n is %nsn,mG. Therefore, the new den
sity %n,m8 on volume s̃n,mG of cell m is %n,m8

5%nsn,m / s̃n,m . The density in that part of cellm which is
mapped into the same cell does not change. The Gibbs
tropy is thus

Sm
~G!8[2 (

j P$n,m%
G s̃j ,m% j ,m8 lnS % j ,m8

%! D
52 (

j P$n,m%
Gsj ,m% j lnS % j

%!

sj ,m

s̃j ,m
D

5GF2%m8 ln %m2(
n

sn,m%n lnS %n

%m

sn,m

s̃n,m
D G ,

~C7!

where~C5! has been used to arrive at the last equation. Si
larly as for the multi-Baker map, the irreversible entro
change becomes

D iSm5Sm8 2Sm
~G!8

5GF(
n

sn,m%n lnS %n

%m

sn,m

s̃n,m
D 2%m8 lnS %m8

%m
D G .

~C8!

Note that this expression is exactly of the same type as~25c!,
except for a straightforward generalization to general c
shapes, arbitrarily many neighbors, and higher dimens
Hence, it significantly extends the validity of relation~28!
and~34!, and underlines the general points advanced in S
VI when interpreting these results.
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