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We review recent results concerning entropy balance in low-dimensional dynamical systems
modeling masgor charge transport. The key ingredient for understanding entropy balance is the
coarse graining of the local phase-space density. It mimics the fact that ever refining phase-space
structures caused by chaotic dynamics can only be detected up to a finite resolution. In addition, we
derive a new relation for the rate of irreversible entropy production in steady states of dynamical
systems: It is proportional to the average growth rate of the local phase-space density. Previous
results for the entropy production in steady states of thermostated systems without density gradients
and of Hamiltonian systems with density gradients are recovered. As an extension we derive the
entropy balance of dissipative systems with density gradients valid at any instant of time, not only
in stationary states. We also find a condition for consistency with thermodynamics. A generalized

multi-Baker map is used as an illustrative example. 1@98 American Institute of Physics.
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Trajectories of chaotic dynamical systems closely ap-
proach the unstable manifold of an invariant set, namely,
a chaotic saddle for open systems, or a chaotic attractor
for closed and dissipative systems. Consequently, the
Gibbs entropy of smooth initial distributions monotoni-
cally decreases in time. We introduce here the concept of
coarse-grained phase-space densities and the correspond-
ing entropies, and point out that a local entropy-balance
equation with a non-negative irreversible entropy pro-
duction can always be derived under weak assumptions.
The structure of this microscopic balance equation is
similar to what is known from thermodynamics, but the
contributing terms differ in general from those in the
macroscopic case. We show that the macroscopic and the
microscopic balance equations are compatible only if it is
possible to take the limit of large systems while keeping
the transport coefficients fixed. In addition, in the case of
a general driving due to an external field, a reversible
dissipation mechanism is required, corresponding to a
proper thermostating of the system. We also point out
that consistency with thermodynamic results can only be
achieved when considering the time evolution of the full
phase-space density. Even though an entropy-balance
eqguation can also be established for the process projected
on the transport direction, this equation can no longer be
compatible with thermodynamics, except for the case of
unbiased mass transport(pure diffusion).

I. INTRODUCTION

The concept of irreversible entropy production in dy-

deterministic thermostats introduced to perform molecular
dynamics simulations of transport in spatially periodic
systems:? Since every ensemble of trajectories with smooth
initial distributions approaches a chaotic attractor in the
phase spacéijt became clear soon that after an initial tran-
sient the Gibbs entropglecreasesn time. It has a constant
negative time derivative which coincides with the sum of all
Lyapunov exponents on the attractdrit was tempting to
identify the modulus of this quantity with the irreversible
entropy production. A qualitative explanation corroborating
this view was based on the idea that the system together with
the thermostat forms a larger closed system and, conse-
quently, the thermostat’s entropy should increase with at
least the rate of decrease of the Gibbs entropy.

Support of this picture is based on the observation that
the negative sum of the Lyapunov exponents is the average
phase-space contraction rate, which is expected to be non-
negative in physically relevant cases. It is then natural to say
that the average phase-space contraction rate should be con-
sidered as the irreversible entropy producttén**Rigorous
mathematical statements have been proved concerning prop-
erties of this entropy productiofi~*? On the other hand,
there is a conceptual difficulty in these results because en-
tropy production is referred to without specifying the under-
lying concept of entropy.

The cornerstone of nonequilibrium thermodynamics is
an entropy which igi) constant in a steady stafi@ contrast
to the Gibbs entropy of thermostated systgrasd(ii) has a
time derivative which contains two contributions: the en-
tropy flux d,S/dt and the irreversible entropy production

namical systems first appeared in the context of dissipativelS/dt=0*
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In any finite volume, the entropy densi¢y i.e., the entropy 23 11 28
per unit volume, fulfills the balance equation m=0 1 5 3 " N N
ds FIG. 1. General scheme of a map modeling mass transport. The mapping is

= (irr)
dt P +ot, 2 defined on a domain oN identical cells of phase-space volunhe=ab
wherea is the width in the direction of an applied bias. Different boundary

where d/dt is the time derivative of entropy densit$, de- conditions can be imposed by suitably defined action of the map on two
notes the entropy fluinto that volume, and the rate of irre- additional cells 0 andi-+1.
versible entropy production™=0 can be viewed as the

source sfrength of entropy. In a steady state the entropy qu?§1odeling this process is worked out for arbitrary nonstation-

klal_an%is)s theh |r$\(/jer_sgjle entropy  production, ., ary states, and a general expression for the irreversible en-
=o', so that a/dt=0. tropy production is derived. It turns out that the entropy pro-

. T|Te drelatlon. bereen thg Gibbs ent(rjopr)]y, ‘;}Vh'Ch Ids CONyyction stems fromboth phase-space contraction and
tinually decreasing in a steady state, and the thermo yn"’"’nFﬁixing. In other words, whenever mixing of phase-space

entropy Ineﬁds Cla”fﬁcr?tloGn.bg IS natprlorlr?bvlﬁtés \;Vh”y the ib volumes with different mass densities plays a role in the
temporal change of the Gibbs entropy should be fully attr ‘transport process, the irreversible entropy production does

UtEd. o the irreversible entropy production and (it least not coincide with the average phase-space contraction rate.
part!ally) to an entropy flux into an attached heat bath O"we also show that the inclusion of dissipatioigavoidable
particle reservoir. in order to be consistent with classical thermodynamics in

_Todfmd a CORS'Stem delscgptmn, the us; fOf 3 coarsey,ig general case. The only choice consistent with this re-
gramne SlS_”;{‘;Fr’]Y as recently heen proEoge or ynar?|fc; uirement is a time-reversible dissipation mechanism that
systems: is concept emphasizes the importance of fi- - 4o proper thermostating of the system.

nite resolution in any observation, which is mimicked by | "so. |1 we derive the entropy-balance equation for a

cparzsse graining the dgnsity over phase-space gells of a ﬁxe(gjeneral dynamical system. Different levels of description
size:” The coarse-grained entropy computed with respect t ill be considered. We will find balance equations at all

levels but an agreement with thermodynamics can be
) ) i o achieved only if the phase-space density is used to define the
coarse-grained density approachestationary distribution entropy, and if the system size is large. In Sec. lll we intro-
localized around the unstable manifold of the chaotic sety,qq th(;. biased multi-Baker model. The microscopic balance
This limiting distribution is a finite-precision approximation for this model is derived in Sec. IV, and its macroscopic

of the natural measure on this manifold, which typically haSIimit is presented in Sec. V. In the conclusion we discuss the

a fractal structure. Correspondingly, the coarse-grained eNole of coarse graining for the concept of entrd@ec. V).

tropy gventually becomes ﬁndependent Of. time. Then the he paper is augmented by three appendices. For reference,
rever3|b!e entropy pTOd“C“O’? can be defined as the loss % Appendix A relevant thermodynamic relations are derived
|nformat|on_ on the microscopic state of th? system due to th a form not relying on temperature. The discussion of the
cparse-gramed description. It is reflect_ed in the growth Of_theentropy balance for the process projected on the transport
difference between the coarse-grained and the Glbbairection is relegated to Appendix B. A generalization of the

15
entropy. . irreversible entropy-production formula to maps more gen-
In open systems the concept of phase-space contractigf}| than the multi-Baker is given as Appendix C.
has to be generalized since there is an effective phase-space

contraction even in Hamiltonian cases because trajectories

can escape from the relevant part of the phase space. Td%i'\lll;i%g\fr BALANCE FOR MAPS MODELING MASS

leads to the observation that the escape rate has to be adde

to the previous resuf® We consider a system whose phase space is part of the
To understand boundary driven problems, it turned ou{x,p) plane and consists o identical cells which are

to be essential to use the balance equations in addition to thadigned along the direction of an external field. The cells are

coarse-grained entropies. The first attempt to derive entropgoupled such that a trajectory can proceed from one cell to

balance for a deterministic dynamical system is due tdts neighbors. Since there are no temperature gradients in the

Gaspard® (in a noisy system to Nicolis and Daetis To  system, all cells can be taken equivalent as far as their ge-

describe a one-dimensional diffusive current induced by fluxometry and dynamics is concerned. They are of linear aize

boundary conditions, Gaspard considered a purely Hamilwith phase-space volunié=ab (Fig. 1). The time evolution

tonian model(a multi-Baker map The rate of entropy pro- is given by a mapping acting at integer multiples of the time

duction he derived was consistent with the thermodynamianit 7. Since we are interested in ensembles of trajectories,

expression in the large-system limit. we consider the dynamics of phase-space densities. In order
In the present paper we consider one-dimensional mags model the effect of finite accuracy of observation, we will

transport that is driven not only by density gradients but alsa@onsider coarse-grained densities where only the average

by an external biaga field. The entropy balance for maps phase-space density in the bins of a preselected fixed grid is

the coarse-grained densityr the e-entropy) differs quali-
tatively from the Gibbs entropy. After a long time, the
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specified. For simplicity, in the present paper this grid is  In meaningful models of transport, the entropy change
taken to coincide with the cells depicted in Fig?®IThus the  should always be related to particle motion contributing to
mapping describing the time evolution of the coarse-grainedransport. This means that for localized trajectofias long
densities will be considered as always acting on densitieas they stay inside a given ceflhase-space volume should
which are uniform within each cell. Such a density is also thebe preserved. In view of this requirement we let the dynam-
initial condition for the time evolution of the phase-spaceics inside a cell be phase-space preserviHgmiltoniar),
density. i.e., localized trajectories cannot contribute to the temporal

Let o,,(X,p) denote the phase-space density in oetht  change of a cell's Gibbs entropy. Consequently, the change
some timet. For later reference we mention that the massof AS{®) is entirely due to the entropfjux into the cell. The
densitypn,(X) in cell m is obtained by integrating the phase- entropy fluxes in the coarse grained and in the microscopic
space density over the momentum coordinate description do not differ,

AeSy=ASy. (9)

This equation states that the coarse-grained entropy flux is
Wtirely due to a change of the Gibbs entropy.
With this result Eq(8) can also be written as

b
pr(X) = fo om(x.p)dp. 3

The difference between these quantities is also stressed
labeling them with different letterg and o.

The Gibbs entrop)anG) of cell m is defined as A%:ge)’_%e)+[(sr —S(Gy)—(Sm—S(rf))] (10)
m m m "
X, i
56— _j 0. (x.p)ln Om( ‘ p) o dp, 7 In view of (7) and(9),
el ¢ ASn=AeSuASn, (11

where the Boltzmann constakg has been suppressed, and ynere
g™ is a constant reference density which fixes the origin of )
the entropy scale. It dogwt depend on spatial coordinates,  A;S,=(S,,—S\> )~ (Sp—S{o)). (12

time or the boundary conditions, and must not be confuseﬁj_|ere the expressions faxS,,, A.S.., andA;S,, take the
with an equilibrium or steady-state density of the physicalform ,of discrete time derivativese sé that qu.l) has the

system under consideration. .
. : . structure of an entropy-balance equatiai. (1)]. Conse-
The coarse-grained @ell densityp, is the average den- : . . i
. quently, A;S,,/7 is a natural extension of the irreversible
sity . . ;
entropy production to dynamical systems. Being the change
in time of the difference between the coarse-grained and the
en=p fce”QO(Xﬁ)dX dp (5)  Gibbs entropy, it exactly measures the amount of informa-
tion lost per time unitr because of coarse grainihy.
in cell m. The corresponding entropy We remark that for the present choice of initial densities,
which are uniform over full cells, the initial Gibbs and
S,=-To,In €m (6) coarse-grained entropies coinci(ﬁﬁ=SEnG). In (10—(12)
the termS,,— S®) was nevertheless written out explicitly, to
is in general different from the Gibbs entropy. It will be make clear thaf\;S,, is indeed a discrete time derivative.

called thecoarse-grained entropgcoarse grained on the full Note that the Gibb’s entropg)" contains more infor-
cell. We argue below that it is a natural candidate for amation about the phase-space structure than the coarse-
generalization of the thermodynamic entropy to dynamicaBrained entropys;, and, therefore, must be less than or equal
systems. When the coarse-grained entropies are defined oi@®Sy,- This ensures that the irreversible entropy production
grid with bins smaller than the full cell, the results depend oniS always non-negative
the form of the partitionipg. In the macroscopic limit, how- A;S,=0. (13
ever (cf. Sec. V}, the chain consists of many celldl$1),
and coarse graining over each cell corresponds to a rathdhe irreversible entropy productiod;S;, vanishes only
fine resolution. In this limit the time derivatives and the con-when, under the dynamics, the phase-space densities are no
tributions to the entropy balance become independent of th€®nger developing fine structures. The absence of temporal
details of the partitioning inside the cell, as corroborated inchanges in the structure of the phase-space density can there-
Ref. 22. fore be viewed as a signature of thermal equilibrium.

To derive an entropy-balance equation, we compare In @ nonequilibrium steady state we haSg=S,,, and
quantities computed at two successive time stdpst, the rate of irreversible entropy production

=n7andt’ =ty+ 7=(n+1)7. The temporal variation of the AS ASﬁnG)
Gibbs entropy in celm during one time step is LY (14)
T T
G)_ g(6) _ &) *

AS{”‘ =S SS“ ' 0 coincides with thenegativetime derivative of the Gibbs en-

and, similarly, for the coarse-grained entropy we write tropy. Thus the rule that, after a long time, the irreversible
entropy production is the negative of the Gibbs entropy’s
AS,=S,,—Sy. (8)  time derivative appears as a natural consequence of the fun-
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damental fact that any observation has finite precision. By

\ : L : ] T
that, the present approach also provides a foundation, withi . 0 .
o i Sle|»: S = Sb=sb
the framework of entropy balance, for the qualitative argu P
ments mentioned in the Introduction. O : b

Although the structure of the microscopic balance equa- 4 ¢4
tion (11) is identical with that of the macroscopic equation
(1), each term is yet a function of the microscopic parameters
of the dynamics, e.g., of the cell size the time unitr, and  FIG. 2. Graphical illustration of the action of the multi-Baker map. Three
typically also of additional parameters symbolically denoteq\/e_rtical columns are squeezgd and stretchec_i to o_btain horizontal strips of
by . Therefore, the terms on the right hand side of 8d) width a. Note the correspondlng free spacedite strips Iabel~ecR~andS)
will not coincide with the corresponding terms of the mac-"/"ere strips from the neighboring boxes are mapped ol &1 +1).
roscopic equatioril).

In the macroscopic limithe microscopic parametees -
and 7 tend to zero in such a way that the transport coeffi- O_(irr):J_ (19)
cients stay finite. In that limit we expect that a finite entropy pD’
density is obtained as the limit &,,/a. Furthermore, we
also expect that theates of entropy changes obtained from
Egs.(9), (8), and(12) by dividing these equations kar are
also well-defined and finite. ThuAS,,/(ar)—ds/dt(e),
ASy/(ar)—®(e), andA;S,/(ar)— oM (¢), so that the
canonical form of entropy baland@) is recovered

ra
m m-1 m m+1

an expression quadratic in the total current den&igy.
At this point general statements about thdependence
of the flux and entropy production appearing(ib) cannot
be made. For the particular example of the next section there
is one and only one set of parameters which corresponds to
the thermodynamic forms, namely, the one describing a
S _ time-reversible dissipation mechanisnvhich models a
a(8)=®(8)+0'('”)(8). (15 proper thermostating of the system.
We show in Appendix B that an entropy balance similar
Note, however, that in general all terms still depend on thdo (15) also holds for the transport process projected on the
system paramet@) . Only for special values of, these transport direction. However, this “projected” entropy bal-
terms can coincide with the expressions known from irre-ance is in general inconsistent with thermodynamics.
versible thermodynamics.
To facilitate comparison with thermodynamics, the tem-,, 1. \1uL TI.BAKER MODEL
perature must be eliminated from the classical expressions
for ds/dt, ® and ¢("™. After all, in low-dimensional dy- Baker map®~® are archetype models for strongly cha-
namical systems the concept of temperature is ill-definedotic systemg? and multi-Baker mags—31?1?play an essen-
Appendix A shows how this can be achieved. In the nextial role in understanding the connection between chaotic
paragraphs we present temperature-independent expressiongroscopic dynamics and macroscopic irreversibility,
for the entropy fluxd and the irreversible entropy produc- which has also been a subject investigated by means of sev-
tion oM. eral other approachéé:3°
According to irreversible thermodynamics, mass trans- The phase-space of the multi-Baker model to be treated
port is characterized by the drift coefficiemtand the diffu-  here consists of a chain of identical cells of linear sizend
sion coefficientD, and by two density distributions, namely, areal’=ab (cf. Fig. 1). To define the dynamics every cell is
the mass densitg(x) and the current density(x). The cur-  divided into three vertical columr(see Fig. 2 the rightmost
rent densityj is the sum of thaiffusion current —D d,p, (leftmosd column of widthra(la) of each cell is mapped
and thedrift current, vp onto a strip of widtha and height b(Tb) in the square to the
i=vp—Dayp (16) right '(Ieft). These colgmns are respon;ible for trapsport in
X one time stepr. The middle column of widtlsa stays inside
The conservation of particles leads to a continuity equathe cell, thus modeling the motion that does not contribute to
tion which is a kind of transportFokker—Planckequation  transport during a single iteration. This column is mapped

onto a strip of widtha and heightsb. According to the

dp=—0dyj=—vdyp+Da’p. 17) argument of the previous section, the internal dynamics
The entropy flux, which is the sum of a convective termshould be area preserving, i.s=s. Motivated by other
and of the heat flow, can be written as models of transportglobal phase-space conservation is as-
) sumed, which implies the sum rules-|+r=1=s+1+T.
P=dfj(cting)]-5 ] (18 Inorder to characterize the local dissipation mechanism, we

introduce the parameter

with ¢ as a constant. The second term corresponds to the T—
entropy flow related to the heat current into the thermostat e=—-, (20
(Joule’s heat, cf. Appendix A r-

The expression of the irreversible entropy productionwhich measures the deviation from uniform phase-space
formula is obtained as contraction on the stripR andL. For =1 the Jacobians of
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the stripsR and L are identical, while fore=—1 they are IV. ENTROPY BALANCE FOR THE MULTI-BAKER
reciprocal to each other. Besides the microscopic Wmjta, =~ MODEL

and b), the thermodynamic and transport properties of the . . . o
model are characterized by three independent parameters: IPE‘S In this section we calculate the different contributions

" . : 9), (12) to the entropy balanc€ll) for the general
| h | h (
:Jriasgisr;g?ignp?;zl?r:glg’ to neghboring cefisand, and the multi-Baker map depicted in Fig. 2. As discussed above, we

. ~ choose the initial density ,(x,p) to be uniform in every
The phase-space contraction ratgs=(1/7)In(l/1} and cell. Then the coarse-grained entropy of celht timet and

or=(1/7)In(r/r) on the respective strigs andR depend on t’ =t+ 7 takes the form
the parametes. According to their value, different transport
dynamics can be modeled: Om

= _ =m_gG)
(i) Phase-space preservitigamiltonian dynamics: Sm=—T¢mIn o S (233
o =0r=0 (213 and
(e=1=r=r, |=1). Sr,‘n:_FQr,nan_Ti (230)
(i) Dissipative dynamics with time-reversal symmetry: e
1 r respectively. In order to compute the Gibbs entropy at time
og=—o.=—1In T (21  t’, we note that the densities on the three horizontal strips
T depicted in Fig. 2 differ after having applied the map. On the
(s=—1=r=T, I=T). This choice mimics the effect of a SUIPSR, SandL the density assumes the new valugs

thermostat® Indeed, in order to model the decelerating ef- =@m-1f/r, 0s=€m, andg{ =g 1l/1, respectively(The
fect of the heat bath on particles accelerated by the externéfitial densities on these strips we@zr=0s=0.=0m")
field, a map modeling driven thermostated systems has to b@onsequently, the Gibbs entroﬂﬁ)' is

area contracting if the trajectory moves in the direction of the

bias. Similarly, the map should be expanding for trajectoriess(me>’E T
moving against the bias, on which the heat bath has an ac-
celerating effect to compensate for the slowing down by the
external field(cf. Refs. 2, 5, 9. In addition, the overall dis- -7
sipation should vanish for closed trajectories which do not
contribute to transport. Since this is also true for period-2

orbits, the overall contraction rataesg+ o for making a Om+1 |
step to the right and a step to the left should add up to zero. t1ome1In . ~ (24b
It is worth noting that the map is then time-reversiffle. e

(i) General dissipative dynamics:

sesIn %47@;{ In %+~Igﬁ In %} (2439

*x o~

r

qr
(1-r=DHoyIn Q—T+r9m_1 In( Om-1 —)
e

=T

i &y in &=t
(TLqﬁ_(TR?&O (21C) Qm n Q* er71 n Q 'F
m
(e# =1). This case has similarities with the thermostating
algorithm but does not fulfill the time-reversal symmeftty. 1oy In( Qm+1! )l (240
m ~ il

We consider it as a model for improper thermostatting. o

Fmal!y, we stress that also the coarse-grame_d denSItIe\f/here Eq.(22) has been used to arrive at the latter equality.
depend, in general, on time. Due to the conservation of prob-

. . . )’
ability, we have the following expression for the cell density 't IS cléar from these relations that the Glbbs_entrq"&
o' after one time step: coincides with the coarse-grained or®;,, only if the map

does not generate any local inhomogeneities of the phase-
0r=(1=r=)O0n+rom_1+10me1- (220  space density.
L ) . . Inserting Egs(23b) and(24) into the expressions for the
This is a discrete-time master equafitogoverning the dy- changeAS,, of the coarse-grained entroffEq. (8)], the

_namics of the cell densities. I_n (_:ont_rast to the full dynamicschangeAeSm due to the flu{Eq. (9)], and the irreversible
it does not depend on the dissipation parametdBecause entropy changé\;S,, [Eq. (12)], one obtains
the average mass densjiy, of cell mis p,=be.,, Eq.(22) ' ' '

Om

also holds for the average mass density. It provides a closed , m

set of equations for the time evolution of the coarse-grained ASn= _F[Qm In o @mIn ?
densities, which can rigorously be derived from the micro-

scopic dynamicgcf. Refs. 31, 29 By this, modeling trans-

port by means of multi-Baker maps allows us to work out the ASp=-T
relation between self-contained descriptions of transport be-

havior on the microscopic levéphase-space densities and

Gibbs entropyand a macroscopic levétoarse-grained den- +10me1 In(
sities and coarse-grained entrppy

!

: (259

_ar
(eh—emin %Hem_l ln( gm l:)

m I

) (25b)

Om+1 l_)

m |
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0 r 0 | is the mixing entropybased on neighboring cell densities,
AiSpy=T|rom_1In m_1: +lomeq In m”: and the contribution
Om r Om |

ASE=T[Qm 170+ Cmr17o-], (3D

-0 In% (250  accounts for an averageontraction of phase space. The
Om guantities
The sum ofA.S,, andA;S,, is indeed the total changkS,, 1 r 1
of entropy. Consequently, the balance equatibh is ful- o,=—rIn- and o_=-lIn- (32
T r T I

filled. In Appendix C we consider a map much more general
than the multi-Baker model and show that, under very weal

. . L kdre theconditional phase-space contraction rafes the mo-
assumptions, an expression structurally very similai2fx)

foll for the | ‘ble ch f ent tion in the positive and negative direction, respectivéBy
° OI\_NSt or d_e reversiole c gggefo zn ropy. conditional we mean that for a constant distribution of the
et us discuss expressid@50 for A;Sy, in some more coarse-grained density these rates would be the average

detail. First, we consider a steady state. Then the discret&qase-space contraction rates for the two directiofibe
version of the rate of irreversible entropy production is third term of (29)

AiSy,

T

Qm—l Qll? Qm+1 QI,_ ’
In — +1 In —]|. 26 , @
m Ok Om  OL (2 ASE=—-Tp/ In Q—:, (33)

Notice thato/ o is the ratio of the local densities at tirbe
andt on stripR, andg|/¢, the corresponding quantity on
strip L.

=lomr

SS

vanishes in a steady state. It accounts for irreversible entropy
production due to the temporal change of the cell densities,

N ] in addition to the contributions due to mixing and phase-
The probability to be mapped onto these strips by ime o506 contraction which are found in both stationary and

IST@m-1/€m (0rl@m+1/@m). Therefore, we can say that the 1yqnstationary situations. In particular, the splitting of Eq.
irreversible entropy production is related to the average ofag) shows that in a steady state with constant cell densities,
the growthrates only the phase-space contraction contributes to the irrevers-
1 o'(x,p) ible entropy production. In the other limiting case, namely,
Te(x,p)=—1In 2(x.D) (27)  for a steady state where the dynamics is everywhere Hamil-
' tonian, the mixing entropy provides the entire entropy pro-
of the local (non coarse-graingdohase-space densities. In duction(see Ref. 15

other words, It is worth briefly mentioning the case of a homogenous
AS, AS, temporal decay of the density towards an empty state, which
—— == =(0g)ss- (28)  corresponds to the decay with the most stable eigenstate of a
Teml g TP system displaying transient cha@scape rate formalism, cf.

Thus the irreversible entropy production per particlegree Refs; 5 32, 3L, ?)1 One can then writeoy, = ex —«(ty

of freedom is the average growth rate of the local phase-*7]¢m, Where « is the decay rateescape rate from a
space density, where the average has to be taken with resp&@ddle, and ¢, is the conditional cell density which does
to the steady-state distribution. In the special case when theot depend on time. An analogous form holds for the phase-
coarse-grained density is constant along the ctigin 1  space density @, (x,p)=exf—«(to+ N]em(x.p), Where
=@m for everym), the local density growth rates reduce to p (x,p) is the so-called conditional phase-space density. In
the phase-space contraction ratgx,p) and we recover the g irast to its cell average,(x,p) is time-dependent, ex-

relation (A;Sp/(rapm))ss=(0)ss valid for thermostated sys- ) oqqing the approach towards the chaotic saddle’s unstable

tems with periodic boundary (_:onditioﬁé:s‘BWe believe  anifold. From (250 we obtain for such alecayingstate
(28) to be a proper generalization that holds in every steades)

state of a dynamical systems where mix{ng., intertwining
of different neighboring average cell densijigdays a role. AS,

To underline this observation, it is useful to separate the  7ap exp(— «k7)
contributions stemming from mixing and phase-space con-
traction. To this end we split the full entropy chan@bc  wherex stems fromASEf;‘V"), and
into a term with onlyp dependence under the logarithms, a

:K+<Ué>dsv (34)
ds

term which accounts for the change of phase-space volumes, e Om-1 én’q Om+1 éﬁ
nd a time-dependent rest: (0g)as=— [T =—In=—+1 =—1In == (35
a a e-aependae est: T Om Or Om oL
AiSn=AST™ + AR+ ASE. (29 is the average growth rate of the conditional phase-space
Here density evaluated under the condition that particles have not
yet escaped. Note that; = (1/7)In(o’/p) appearing here is
ASﬁnmix)EF ron 1 In Om-1 +1op., I Om+1 (30) the direct gerlerahzatlon af, [cf. Eq. (27)] for the condi-
Om m tional densityp ,(x,p).
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Equation(34) is an extension of the results of Ref. 15, on how the transition probabilitiesandl behave. In order to
which are recovered for two special cases: a homogeneodmd a sufficient condition for the existence of this limit, we
cell density distributionp,,=0,+1, Or averaging over the go back to the microscopic model. The cell-to-cell dynamics
whole system. If the deviation from a homogeneous cell denef the multi-Baker model is equivalent to a random walk
sity distribution is importantor averaging takes place over, with fixed step lengtha.3*?43Such random walks are char-
e.g., individual cellg there is, according t(84), (35), also a  acterized by well defined drift) and diffusion D) coeffi-
contribution due to the mixing entropy, just as in a steadycients, which can be expressed in termsrodnd| as (

state. —l)a=vrand (+1)a?=2Dr, respectively** Thus,
7D av D av
V. THE MACROSCOPIC LIMIT r=2z\1*55] =22\l 35 (39

As a first step towards a mean_ingful macroscopic limit,If y and D are fixed, these relations determine the scaling
we assume that the system consists of a large nuroer behavior of the transition probabilitiesand| as a function
>1 of cells. This implies that the total length=Na is  of the length unita and the time unit-.
much larger than the cell size&. We are interested in the Via the conditional contraction rates. , Egs.(389 and
large-system limitcorresponding ta<L, i.e, toa—0 at (38 contain the parametens andT. It is convenient to

fixed IengthL_. - expresg and] in a similar way as andl, which, however,
The spatial variation of the average phase-space den5|p(OW also contain the dissipation parameter

Om, i.e., of the cell density, follows the one of the mass

density p,, in the large system limitl{g ,=p). Thus the ~ ~
cell densities for the neighbors of ceti [i.e., at positions ==z =2z
X+ 8x=(m=1)a] can be expressed through spatial deriva-
tives of the mass density distributigr{x) atx=ma. Up to

second order i,

1+ 2
2D

av

—& E . (40)

Since ¢ is also a parameter which is relevant for the
macroscopic behavior weefinethe macroscopic limit as

2 a—0, 7—0, with v,D,e fixed (41

a

_ t 2
bem=1=p(X) £ adxp(X)+ 5 dxp(X). 38 (or a<L,D/v; 7<L¥D,D/v?). It is in this limit that the
dynamics(37) of the cell (or mas$ densities reduces to the

In the same spirit, the temporal variation of the cell densitymaCrOSCOIoiC mass transport equatiai. However, this re-

reads quirement only ensures that the transport process can be de-
, a? ) scribed by a one-dimensional Fokker—Planck equation. It
b(Qm_Qm):_a(r_l)axP“L§(r+|)’7xp- (37 does not yet imply that the model also has a meaningful

. ) __thermodynamics.
Substituting these relations for the phase-space densities | the macroscopic limit one immediately finds

in (25¢ yields for the irreversible entropy production in the

2 2
imi ve(l- v(l—
large system limit ot to :ﬁ, om0 :u_ 42)
AiSm a2 4D a
— 2
ar (osto)|pt 5 dp| Ao —0)dxp Inserting these relations, as well €9) and (40), into Eq.
(38a), we obtain the asymptotic expression
-y 22 (389 (1-2) 4|2
—[(r+1)—(r— —_ . . v(l—e
27 P 0'('")(8)=£ (——Dip . (43
, D 2 P
The first two terms are consequences of the phase-space con- ]
traction, while the third one arises frodS™ and A S(€vo). In the same way we find for the entropy flux EG8b)
A similar rearrangement dR5b) yields for the entropy flux (1= i 141 ﬁ) o v2(1—g)2 "
Aesm a2 ) € X J p* EV O 4D P
=—(o,t+t0o_) p+?&xp ) o
ar where the particle current densityis given by(16). A com-
P parison with the thermodynamic entropy balance also shows
+alo,—0o_— —} Oyp that the limit of —bo, In(en/2*)=—pm IN(pm/p*) goes over
T into the macroscopic expression
r—1 a?r+l p x
FlaTeT g T e p—” s(0==p(x)In ”;,) (45)
(38b

of the entropy density given in terms of the mass density.

wherep*=bp* denotes the reference mass density. Thus for everye we find ds/dt=(1+In(0/0*))dj. We em-
The fact that these equations are expressed solely hyhasize again that the balance equation &48), (44) are

spatial derivatives of the mass density distribution does notalid at every instant of time, not only in steady states.

yet ensure the existence of a well defined macroscopic limit It is remarkable that the asymptotic macroscopic expres-

for o™ and®. We see that the limit—0 strongly depends sions fora(" (&) and®(e) are finite for arbitrary values of
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the dissipation parameter However, there exists only one whether or not the system is close to thermal equilibrium.
value for which the thermodynamic resul$8), (19) are  Therefore, we expect this form to hold beyond linear-
recovered, namely = —1. [The constant of Eq. (18) cor-  response theory.

responds to *In p* and can be set zero by the choice of (vi) It was shown that besides for steady states of peri-
p*=e.] We thus conclude thdg) although transport caused odic systems wheré,p=0, the rate of irreversible entropy
by an external fieldbias is considered to be a typical many- productiona"™ contains contributions not only from phase-
body phenomenon, it can faithfully be modeled by discretespace contraction but also due to spatial variations of the
time dynamical systems with few degrees of freedom. Thelensity. To our knowledge, these contributions can only be
heat flow accompanying transpddbule’s heatis accounted derived from dynamical system theory via coarse graining.
for by a reversible dissipation mechanisth) The thermo-
stating condition is fulfilled in one point of the parameter
space only.

Several comments are in order. We conclude this paper with comments on the role of
(i) For the derivation of Eqsi43) and (44) we did not  coarse graining when defining entropies. Dividing the phase
specify boundary conditions, i.e., the macroscopic resultgpace into elementary cells of arapAgq=AT is essential
hold irrespective of their choice. In particuld43) with (¢ for the foundation of equilibrium statistical mechanfgst is
=—1) implies that even for periodic boundary conditions yell-known that the equilibrium entropy is defined only up
there is a non-negligible mixing entropy contributiéthe  to an additive constant whose value depends on the partition
term proportional taJyp) before the steady state is reached.sjze AT'. By the uncertainty principle of quantum mechanics,
It is only in the long time limit of such periodic cases that AT is bounded from below by Planck’s constamt How-
o™/p equalsv?/D and coincides with the negative sum of ever, the value oAT’ does not affect thermodynamic observ-
the average Lyapunov exponents. ables. Indeed, the entropy itself is not an observable, and its
(ii) The multi-Baker model is an example for which the derivatives, the observables, are not affected by the additive
laws of thermodynamics can be derived without using theconstant depending oAl
concept of temperature and heat. Instead, irreversible entropy The same reasoning applies to coarse-grained entropies
production was seen to arise from the mixing of phase-spacef dynamical systems. The entropies themselves depend on
regions due to a strongly chaotic dynamics. This mechanismge way of coarse graining, but their temporal derivatives,
is by no means restricted to low-dimensional systems. Wevhich appear in the balance equation, are much less sensi-
expect it to be the dynamical reason for irreversible entropyive. In the macroscopic limit the dependence on the coarse
production and for the possibility to find an entropy balancegraining disappears completéef§/??
in systems with many degrees of freedom, too. In this ap- In the bulk of the paper, we have not discussed the ap-
proach the concepts of heat and temperature appear as cqroach to thermal equilibrium in a closed system, i.e., in a
venient tools to characterize certain macroscopically relevartiamiltonian system with a closed phase space. Owing to
effects of the mixing process. Liouville's theorem, the Gibbs entropy does not depend on
(iii ) Entropy-balance equations have been established faime in that case, its value is preserved. Also in the context
arbitrary values of the external control parameterWe  of closed systems, one way to find an increase of entropy
would like to point out that although a macroscopic limit when starting from nonequilibrium initial conditions is to
exists in all these cases, the expressions obtained for thatroduce a coarse-grained entropy. It was already Gibbs
fluxes and for the irreversible entropy production do, in genwho showed that the coarse-grained density approaches
eral, not fulfill the thermodynamic relations betwegher-  some finite limit in the long time limif> He also claimed
modynamig forces, induced currents and entropy produc-that the coarse-grained entropy based on this density can
tion. Only for parameter values corresponding to a properlyncrease in timéfor polemic discussions, see also Refs. 47—
thermostated systeifincluding time reversibility, the ther-  49).
modynamic relations are recovered. This emphasizes the ne- It is interesting to compare the time evolution of the
cessity of both the existence of a meaningful macroscopidifferenceA;S(t) between the coarse-grained and the Gibbs
limit and proper thermostating. entropy in this Hamiltonian case with the time evolution of
(iv) It is worth pointing out where the chaoticity of the the same difference for a transport process approaching a
underlying dynamics plays an essential role. It isithiging  steady statécf. Fig. 3. For both situations, the Gibbs en-
property (in the sense of ergodic thedr§f) of the multi-  tropy S® is compared at any time with the entrofycom-
Baker map without which an analogy with a random walk, puted, for the same initial conditions, with densities coarse
and hence a transport equation, cannot be established. Thgeained on a fixed grid. In the case of a closed system, the
mixing property leads to the appearance of a diffusion coefGibbs entropy remains unchanged, I8{t) initially grows
ficient D which, in our approach, is diilly dynamicalorigin.  with time [Fig. 3(@)]. Since closed systems eventually ap-
In view of point (ii), we also see how accurate Gibbs’ anal-proach equilibrium, the coarse-grained entropy saturates.
ogy of irreversible processes with the mixing of a nondiffu- Consequently, the time derivative &;S(t), which can
sive dye in a colorless solvéftwas, since the latter is of again be considered as irreversible entropy production, first
course a chaotic process with mixing properfies. grows but vanishes in the long-time limit. The basic differ-
(v) The macroscopic expressiet™ =j?/(pD) was de- ence between a thermodynamically closed and an open sys-
rived here (for e=—1) without any assumption about tem relaxing towards a nonequilibrium state is that in the

VI. DISCUSSION
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graining. This is why one recovers the thermodynamic re-

(a) relaxation (b) steady state S -
to equilibrium sultg, as we did in .the present paper, even with the most

—~ — straight-forward choice of coarse-graining sizamely, the

Q) (] . . L . .
k%) S 0 S full cell size) and the choice of a constant initial density in
%) i <o ) every cell.
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A jump from the phase-space density to its coarseT19483.

grained analog causes the Gibbs entropy to jump up to the

curve ofS. Because .the thi'rd CO|UI’T'(.TS) is missjng in their APPENDIX A: NONEQUILIBRIUM THERMODYNAMICS
model, they can neither find consistency with a Fokker—-og MASS TRANSPORT

Planck equation nor with the thermodynamical form of the ) . . .
irreversible entropy production. When such a coarse graining " this section we summarize the thermodynamic rela-
is performed after the closed system has relaxed to equilib%ons describing transport due to the simultaneous presence
rium, S andS(® remain identicalFig. 3@]. This is a partial of drift and diffusion current$® We restrict ourselves to
eXte;’]SiOI’l of the approach of Ref. 22, where only two differ-C25€S where the external field and the density gradient are
ent refined partitions were investigated but results for arbiPOth parallel to thex-axis so that the diffusion and the con-
trary non-stationary states could be obtained. Even though @UCtiVity are scalar quantities. The temperatiiref the sys-
jump from the phase-space density to its coarse-grained aniem Will be kept constant throughout the system, i.e., we will
log causes the Gibbs entropy to jump up to the curvé,of not consider heat conduction. For the derivation we use the
the coarse-grained and Gibbs entropy always start to diffd@ws of nonequilibrium the'rmod_ynamics., and Iinear. response.
again after the coarse graining. The central point of the/V€ Stress, however, that in spite of this assumption the ex-
present article was to call attention to this qualitatively dif- Pressions can very well be of more general validity.
ferent behavior of closed and open systems, which leads to a 1h€ conductivityo is the transport coefficient which
strictly positive irreversible entropy production in nonequi- duantifies the amount of a current dengity response to an

librium systems. The ever-lasting decrease of the Gibbs erPPlied thermodynamic forck. In the presence of a gradi-
tropy is a striking consequence of the fact that nonequilib €Nt Of the chemical potentidk) and an external forces)

rium steady states are associated with chaotic systems whol¥S leads o'
steady-state distributions are supported by fractal subsets of j=oTX=0(E—dyu). (A1)
the phase space.

Note added:After submitting this paper we became
aware of a recent preprint by Gilbert and Dorfmfadealing
with closely related problems. In a multi-Baker model, de-
fined with two columns only, they discuss properties of the o
entropy in stationary states of the Hamiltonian and of the D:O‘% (A2)
properly thermostated versidthe cases=*1 in our no- T
tation). By carrying out coarse graining aarbitrarily fine  we find thatj=oE—Dd,p. By introducing the drift velocity
Markov-partitions, they derive an expression for the irrevers- oE
ible entropy production in steady states. This is an extension p=yE=—, (A3)
of the results of Ref. 22, where only two different refined p
partitions were investigated, but for arbitrary nonstationary(Ohm'’s law where u is the mobility of the particles, we
states. The authors of Ref. 50 show by explicit numericafind the full current in the form of16).
calculation that in the limit of large system size the irrevers-  The entropy flux contairt§ a convective contribution
ible entropy production becomes independent of the parti- .
tioning everywhere, except for a narrow boundary layer P =g j(c+In p)] (A4)
around the two ends of the chain. Based on the results afharacterizing the entropy carried by the flow of particles
Refs. 22 and 50 we firmly believe that in the bulk of every (herec is a constant which is typically scaled out to zerdo
macroscopically large system none of the terms in thahe presence of a thermostat there must be another contribu-
entropy-balance equation depends on the details of coars®n, which accounts for the entropy flux due to heat which

Next, we rewrite the current in a convenient form. Sub-
stituting, in Eq.(Al), the thermodynamic expression for the
diffusion coefficient
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FIG. 4. Chain of intervals along theaxis on which the projected dynamics ’>'<‘
is defined.(cf. the texj. ~—

dissipates the work done by the external field into a thermo-

stat (Joule’s heat This contribution will be calledb("ea)
and it takes the form
(4]
Ej v
(heay — _ —° _ _ ~ ;
) T D j- (A5)

Here, we used the definition of the driA3) and Einstein’s

_relation pD =0T to arrive at the last equality. The total flux %_5 }
is the sum:® = @ (M4 p(hear) ' oE X
Finally, the rate of irreversible entropy productiofi™ 38
is the product of the current densityand the thermodynamic m=o0 1 5 3 N N+1

driving force X4

O_(irr)zjx_ (AB) FIG. 5. Piecewise linear map governing the projected dynamics of the
multi-Baker model.
In view of Eq. (Al), this leads to

P2 P2
plim—J__ J—, (A7)  this coincidence, however, the balance equation for the pro-
ol pD . . .
jected entropy differs profoundly from its phase-space ana-
where again Einstein’s relation has been used. log.
For the projected entropy, the derivation of a balance

equation is more formal than in the full phase-space ap-

APPENDIX B: ENTROPY BALANCE EOR THE proach, because the projected dynamics is no longer invert-
PROCESS PROJECTED ON THE DIRECTION OF ible. For states with constant mass densities in every interval,
TRANSPORT the projected Gibbs entropy coincides thus with the coarse-

grained entropy although the entropy production might still
be strictly positive. What can be done in any case is to iden-
Since the thermodynamic expressions only contain theity a flux Aesfﬁ) of the projected entropy into interval due
mass density distributiop(x) along the transport axis, the to the motion of one-dimensional volumes across the bound-
question arises in which sense the orthogonal direction iaries of this interval during one time unit. This quantity is
relevant. To clarify this, we discuss an entropy balance basegypically different from the full chang@& S, of the entropy.
on the projected density, i.e., on the mass density distributioiherefore, we camlefinethe irreversible projected entropy
inside the cells. change via a balance equation
For a general model of the type of Fig. 1, the dynamics
of the projected density is generated by an extended one- ASET?):AS'“:AGS(”?)JFAS”?)’ (B2)
dimensional map containing identical intervals of sizésee i.e., as the difference

Fig. 4. We define the prOJectfd)(Glbbs) entropy as Ais(n?)EASm_AeS(n?)- B3)
Pm(X

S%)):_f- pm(X)IN —— dx, (B1) Thus, in this approach the existence of an entropy-balance
interval m P equation is necessary for thiefinition of entropy produc-

which contains information about the inhomogeneities of thelion.

projected distribution along the axis. Here, again, we used

p*=bp™ as the reference density for the definition of the _ _ )

entropy. We also define a coarse-grained projected entrogyy ENtropy balance in the projected multi-Baker map
computed with the average mass dengityin each interval. The dynamics projected onto theaxis is governed by

In view of Eq.(5), p,=be.,. Therefore, with this choice of the one-dimensional map depicted in Fig. 5. Since the 1D
p* the coarse-grained projected entra®f)) coincideswith ~ map is piecewise-linear, the density, is a step function
the coarse-grained entrof84,. Thus we can drop the super- which is constant within every cell at any instant of time, if
script of the coarse-grained entro;ﬁ{;?)=8m. In spite of the initial density is of this type. Again, we fing,=bg,,.

1. Entropy balance
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The entropy fluxA S into intervalm during one time
step corresponds to the flow 8f, through the boundaries of n=1 f
m,1

the interval, i.e., it is given by the difference between the
respective in- and outgoing fluxes

A=

) _ =
Spm=—a|rpp 1 " 4 1pp,y In 2T (Baa N ! Wne v
p p i m mA
< W 24'_ = <
(p,ouf Pm AN |
Sy % =—a(r+1)pmIn —. (B4b) \I’k
p Wm 3
The total flux is obtained, after usir@2) for the mass den-
sity, as n=3

ASp=sp-spes

Pm-1 FIG. 6. Notations used for the discussion of entropy production for general

Pm maps(cf. the texj.

=-a

Pm
(pm—pm)In oF FTPms In

Pm+1

(B5)

+lpms+1 In

m tion about the phase-space contraction along ghexis,

Note that this is exactly the same as EB5b) except that which is related to the heat current into a thermostat. The
here, the effect of phase-space contraction is missing. projected density faithfully reflects the entropy changes re-

In view of (B3) the irreversible change of the projected lated to the interaction with particle reservoirs, but it cannot
entropy reads account for the effects related to a heat bath.

ASP=alrpn 2Tt iy i Py Pl APPENDIX C: IRREVERSIBLE ENTROPY
Pm Pm Pm PRODUCTION FOR GENERAL MAPS
o ~ (562 We work out the irreversible entropy production Eg.
As expected, it is independent of the parameterand | (12) per time stepr in cell m for a general map modeling
characterizing the phase-space contraction in the full bakehass transport on a grid of cells as schematically depicted in
dynamics. Fig. 6.

In order to describe the time evolution of the system on
the level of coarse-grained densities, we introduce the fol-
lowing notations:

The present approach corresponds to the Hamiltonian: label of the neighbors of cefh.
choicee =1 of the previous resulfef. Eq.(25]. Therefore, @;: the coarse-grained density in cgll

3. Macroscopic limit

in the macroscopic limit whep,,, tends top(x) we find I': the (possibly high dimensionalholume of each cell.
w; i : the transition probability from cell to k.
oP=4, j(1+ln ﬁ*) —0dyp (B7) Sj k. Vvolume fraction of cell mapped into celk. sy, ,, de-
p notes the volume fraction which does not leave cell
and in one time step. The; ,'s are subjected to the sum
5 rule
o PiM=p M (B8)
p > Sm,j=1. (C)
je{n,m}

Note that the same result is also obtained by directly consid-
ering the large-system limit of the projected entropyBi).  sj: volume fraction of celk which contains all points with

In this limit, p,,(x) approaches the thermodynamic mass preimages in cell. We are only interested in globally
density p(x), and the Fokker—Planck equati¢h?7) can be phase-space preserving flows implying
used to directly evaluate the time derivative of the projected
entropy. In this limit,S,,/a approaches, and one obtains an Z Ej’mz 1. (C2
entropy-balance equation of the form je{n,mj

5= D P+ (P (B9) Note that~sj,j=.sj,j for everyj 'be(':ause of the assump-

_ tion that the internal dynamics in every cell is phase-

where ®® and o™ are again given by EqgB7) and space preserving.

(B8). Although this is a well-defined macroscopic entropy- . .
balance equation with a non-negative entropy production, it _Tg King the ceII_Qensny to b?. constant becausq of coarse
is markedly different from the thermodynamic form in the graining, thg transition p_robablllty from ceji to k is the

case of a nonvanishing drift. This is consistent with the Ob_volume fraction mapped into ce

servation that the projected density cannot contain informa-  w;  =s; i (C3

Downloaded 23 Feb 2010 to 10.0.105.87. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



Chaos, Vol. 8, No. 2, 1998 Breymann, Tél, and Vollmer 407

The volume fractior?;m,m of points not leaving celin in one 5J. R. Dorfman,An Introduction to Chaos in Non-Equilibrium Statistical
time step is obtained as Physics Lecture NotegUniversity of Maryland Press, Maryland, 1998
Phys. Rep(to appear 1998
~ 6N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai, Phys. Rev.
Smm=Smm=1— 2 Wi - (C4) Lett. 70, 2209(1993; Commun. Math. Physl54, 569 (1993.
' ' n ’ ’D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev. T&t2401

, - (1993
Conservation of probability leads to a master equationsg gajlavotti and E. G. D. Cohen, Phys. Rev. L&, 2694 (1995; J.

expressing the cell density;, after one time ste Stat. Phys.80, 931 (1995; F. Bonetto, G. Gallavotti, and P. Garrido,
Physica D105 226 (1997.
9E. G. D. Cohen, Physica 213 293(1995; 240, 43(1997); also cf. E. G.
r_ _ _ i , ,
fm=ECm ; (Wm,n@m=Wnm@n) D. Cohen and L. Rondoni, Cha@s 357 (1998.
10D, Ruelle, J. Stat. Phy®5, 1 (1996.
E 1G. Gallavotti, J. Stat. Phys35, 899 (1996; Phys. Rev. Lett77, 4334
=S mPm+ 2 SnmCn- (CH (1996.
mm=m 4 TnmEn 12G, Gallavotti and D. Ruelle, Commun. Math. PhS0, 279 (1997.
. , . . 1L, Rondoni and E. G. D. CoherQrbital Measures in Nonequilibrium
Attime t’ the coarse-grained entropy is Statistical Mechanicgpreprint, 1997.

, 143, R. de Groot, and P. Mazwdonequilibrium Thermodynamic¢Elsevier,
S =—To' | €m C6 Amsterdam, 196
m— €m N ? (C6) w. Breymann, T. Tk and J. Vollmer, Phys. Rev. Letf7, 2945(1996.
18p_ Gaspard, Physica 240, 54 (1997); J. Stat. Phys88, 1215(1997.
In order to compute the Gibbs entropy at the same time, wé&G. Nicolis and D. Daems, J. Phys. Cheb@0, 19187(1996; D. Daems

observe that the number of particles entering geffom the and G. Nicolis, “Entropy production and phase space volume contrac-

. tion” (preprint, 1998, Chaos8, 311(1998.
volumes, ' of cellnis g,s, nI'. Therefore, the new den- 18] Rondoni and G. P. Morriss, Phys. Rev558, 2143 (1996.

sity @n,m On volume Soml Of cell m is Onm  '°3.R. Dorfman and H. van Beijeren, Physica2AQ, 12 (1997).

=0,5h m/En m- The denSity in that part of ceth which is 20g, Lepri, R. Livi, and A. Politi, Phys. Rev. Let?.8, 1896(1997.

. . 213, Vollmer, T. Té, and W. Breymann, Phys. Rev. Le®9, 2759(1997.
mapped into the same cell does not change. The Gibbs e yqgimer, T. T¢ and W. Breymann, “Entropy balance in the presence

tropy is thus of drift and diffusion currents: an elementary chaotic map approach,”
, Phys. Rev. Hto be published
€j.m 231t was pointed out by Gaspditthat the integrals appearing in the defini-
0 tion of, e.g., the Gibbs entropy are not even well defined in the long time
limit because of strictly formal reasons, unless the singular densities de-
oS scribing steady states of nonequilibrium systems are regularized by a
_ E I's;m@; In _iJ_m coarse-graining procedure as provided by the formalisre-@ftropies*
je{n,m ' Y Sj.m 24p. Gaspard and X-J. Wang, Phys. R2p5, 321 (1993.
' %In a more elaborate setting our results can immediately be extended to
©n Snm cases where the bins are smaller than the c¢eflsRef. 22. In fact, the
=T| -0/, Inon— E Shm@n IN| —=—11|, formalism of e-entropies is ideally suited to carry out this program, and
n €m Sh.m subsequently take the limit of vanishing bin sizé Ref. 24.

*

SP'=— 3 'S m@} m In(

je{n,m}

c 26E_ Ott, Chaos in Dynamical Systeri@ambridge Univ. Press, Cambridge,
(C7) 1993.

. . . .27 H H . H
where(C5) has been used to arrive at the last equation. Simi- G- P- Morriss and L. Rondoni, J. Stat. Phy$, 553(1994; L. Rondoni

X ; ; d G. P. Morriss, Physica 833 767 (1998; also cf. S. Tasakét al.
larly as for the multi-Baker map, the irreversible entropy ?:T]aoss 424?13358 ysica 233 (1996; also ¢ asaxet a

change becomes 2W. G. Hoover, O. Kum, and H. A. Posch, Phys. Re\5& 2123(1996);
, W. G. Hoover and H. Posch, ChaBs366 (1998.
AS,=S,—S® 29p_Gaspard, J. Stat. Phyg8, 673 (1992.
303, Tasaki and P. Gaspard, J. Stat. PB{s935(1995; also cf. P. Gaspard
©n Snm o and R. Klages, Chadg, 409 (1998.

=TI E Sam@n IN| —=—|—¢nIn| —/|. 817, Td, J. Vollmer, and W. Breymann, Europhys. Le®5, 659 (1996;

n m Spm Om note that the definitiorD differs by a factor 1/2 from the one in the
(C8) present paper.

32p, Gaspard and G. Nicolis, Phys. Rev. L&, 1693(1990; P. Gaspard

Note that this expression is exactly of the same typ@&e), and F. Baras, Phys. Rev.H, 5332(1995; P. Gaspard and J. R. Dorf-

- g man,51, 28 (1995; 52, 3525(1995; H. van Beijeren and J. R. Dorfman,
except for a straightforward generalization to general cell Phys. Rev. Lett74 4412(1995.

shapes, arbitrarily many neighbors, and higher dimensiorsyy 'N. vance, Phys. Rev. Let69, 1356 (1992.
Hence, it significantly extends the validity of relatigB8)  **J. L. Lebowitz, Physica A94 1(1993; J. Bricmont, Phys. Magl7, 159
and(34), and underlines the general points advanced in Seg,(1995; D. Sz&z, Studia Sci. Math. Hurg1, 299 (1996.

. . A. Baranyai, J. Chem. Phy405, 1 (1996.
VI when interpreting these results. 3N, I. Chernov and J. L. Lebowitz, Phys. Rev. Le6, 2831 (1995 J.

Stat. Phys86, 953 (1997; Ch. Dellago and H. A. Posclibid. 88, 825

(1997.
1B. L. Holian, W. G. Hoover, and H. A. Posch, Phys. Rev. L&8, 10  *’L. A. Bunimovich and H. Spohn, Commun. Math. Ph$36, 661(1996.
(1987; H. A. Posch and W. G. Hoover, Phys. Rev.38, 473(1988. %R. Klages and J. R. Dorfman, Phys. Rev. L&#, 387(1999; G. Radons,

2D. J. Evans and G. P. MorrisStatistical Mechanics of Nonequilibrium ibid. 77, 4748(1996; Z. Kaufmannet al, ibid. 78, 4031(1996.
Liquids (Academic, London, 1990W. G. Hoover,Computational Statis-  3°M. H. Ernstet al, Phys. Rev. Lett74, 4416(1995; J. R. Dorfman, M. H.
tical Mechanics(Elsevier, Amsterdam, 19%1also cf. G. P. Morriss and Ernst, and D. Jacobs, J. Stat. PHy%.497(1995; C. Appertet al, Phys.

C. Dettmanm, Chao8, 321(1998. Rev. E54, R1013(1996); J. Stat. Phys87, 1253(1997; H. van Beijeren
3G. P. Morriss, Phys. Lett. A22 236(1987. et al, Phys. Rev. Lett77, 1974(1996.
“B. Moranet al, J. Stat. Phys48, 709 (1987). “Owe call a mapping reversible when it is one-to-one on the phase-space and

Downloaded 23 Feb 2010 to 10.0.105.87. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



408 Chaos, Vol. 8, No. 2, 1998 Breymann, Tél, and Vollmer

the Lyapunov exponents of the inverted dynamics coincide with those of“Using the more general relations—|)a=7v and ¢ +1)a?=27D + 7v?
the forward dynamics. This differs slightly from the irreversibility concept  only modifies corrections to the macroscopic results, see Ref. 22.
of other author¥ who demand that the time-reversed dynamics is identi- **J. W. Gibbs,Elementary Principles in Statistical Mechani¢gale Uni-
cal to the original one up to a geometrical transformation. For multi-Baker, verS|ty Press, New Haven, CT, 190Zhap. XII.

maps with a dissipative dynamics with time reversal symmeaay) the 46J. M. Ottino, The Kinematics of Transport and Mixing: Stretching, Chaos
composition with a reflection on the diagonal of every cell complies with , and Transport(Cambridge University Press, Cambridge, 1989
the latter requirement . and T. EhrenfesfThe Conceptual Foundations of the Statistical Ap-

proach in MechanicgCornell University Press, Ithaca, 195%ec. 23;

41 i .
J.A. G. Roberts and G. R. W. Quispel, Phys. Ref5, 63(1992; as well translation of the German original in tiéncyklopalie der Mathematis-

as contributions to the proceedings volume PhysicidlR No. 1-2(Jan chen Wissenschaftdifeubner, Leipzig, 192

15, 1998. ) - ) o “48R. C. Tolman,The Principles of Statistical Mechani¢®@xford University
“2w. Feller, An Introduction to Probability Theory and its Applications Press, Oxford, 1938

(Wiley, New York, 1978. 49D, ter Haar, Rev. Mod. Phy®7, 289(1955.
43F. Reif, Fundamentals of Statistical and Thermal PhysiggeGraw-Hill, 0T, Gilbert and J. R. DorfmarEntropy Production: From Open Volume
New York, 1969. For random walks, see Section 1.9. Preserving to Dissipative Systerfigeprint, 1998.

Downloaded 23 Feb 2010 to 10.0.105.87. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



