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Budapest, Hungary

E-mail: tel@general.elte.hu

Received 1 October 2020, revised 13 December 2020
Accepted for publication 7 January 2021
Published 2 March 2021

Abstract
The aim of this study is to investigate the bouncing dynamics of a small elas-
tic ball on a staircase consisting of rounded edge steps, as an example of a
dissipative gravitational billiard, and to determine if its dynamics is chaotic.
We derive a nonlinear recursion for the coordinates of the collisions, com-
pleted with numerical simulations, which indicate that the bouncing dynamics
is chaotic, as also follows from elementary considerations regarding the Lya-
punov exponent. It is, however, surprising that instead of permanent chaos, only
the transient form is present. The main reason behind this is that a collision
with the rounded edge of the step enhances the horizontal velocity leading to
larger and larger jumps. Not even the introduction of a tangential coefficient of
restitution (COR) on the curvature can hinder the flying away of some trajecto-
ries. There is also a chance for remaining trapped on a single step in the form
of sliding, representing another possibility for escape. Therefore, chaoticity
holds for long trajectories before any kind of escape takes place. We also show
that an impact-velocity-dependent COR converts the dynamics to permanently
chaotic with an underlying fractal attractor. Only elementary mathematics is
required for the analytic calculations used, and we offer a set of problems
to solve, as well as a user-friendly demo software on our website:
https://theorphys.elte.hu/fiztan/stairs to facilitate experimentation and further
understanding of this complex phenomenon.
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1. Introduction

In an Austrian high school textbook the bouncing motion of a ball down a staircase is given
as one of the real life examples of chaotic dynamics [1]. This statement was investigated from
a theoretical/numerical point of view in a previous paper [2] in the case of rectangular steps
consisting of horizontal and vertical parts only. The authors, in order to keep the model as
simple as possible, assumed the ball to be a non-rotating point, the air drag negligible, as in
billiards (see e.g., [3]), and the bounces to occur elastically with some energy loss, described
by a constant coefficient of restitution (COR), k < 1. The motion was found to be nonchaotic
(typically quasi-periodic), therefore, here we turn to the question of whether by keeping the
framework of gravitational billiards, that is point-like non-rotating ball with negligible air drag
in a gravitational field (see e.g. [4–6]), a mere change in the geometry, namely the rounding
of the edges (resulting in what we call rounded stairs in short), is sufficient to generate chaos.
Intuitively, this is a natural expectation, and the authors of [2] conjectured indeed that the
dynamics will be chaotic since the curvature at the edge will act as a magnifying mirror, which
scatters parallel incoming beams (while the rectangular case contained only plane mirror-like
surfaces).

We provide an elementary argument indicating that a standard chaos quantifier, the so-called
Lyapunov exponent of long-lasting motions is positive, no matter how short the curvature at the
edge is. There is thus potential for chaos from even the smallest possible amount of rounding.
The numerical simulations provide, however, a tricky detail: instead of permanent chaos, only
the transient form of chaos shows. The main reason behind this is that a collision with the
curvature enhances the horizontal velocity of the ball, hence the jumps become larger and
larger. Not even the introduction of a new source of dissipation, a constant tangential COR,
can make the dynamics to be bounded. Besides this escape to infinity, there is also a chance
for remaining trapped on a single step in the form of sliding. There are thus two sources of
escape, and we show that long-lasting motions are indeed chaotic before any type of escape
takes place.

An elementary definition of chaos states that it is a long-lasting motion which is irregular in
time; sensitive to initial condition; complex, but ordered, and associated with a fractal structure
in the phase space (for more details see the textbook [7]). We provide evidence for each of these
fundamental properties of chaos.

The investigation of the physics behind the concept of CORs [8–12], and its dependence on
different parameters is a current problem of interest. There are indications for the CORs being
dependent on the impact velocity since internal degrees of freedom might become excited upon
highly energetic impacts [13, 14]. After considering the CORs constant in both the normal and
the tangential directions, we also turn to a version when the tangential COR on the curvature
is velocity-dependent. By phenomenologically choosing a simple exponential decay, we find
that both kinds of escape can be avoided, and the bouncing dynamics becomes permanently
chaotic with a fractal attractor in the phase space.

The theory of transient chaos is well established (see e.g., the monograph [15]), and is not
without any technically demanding methods. In order to make the approach feasible for under-
graduates, we are applying here only the simplest available techniques, and keep the material
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on the level of the introductory textbook [7]. We offer the exploration of the dynamics on the
rounded stairs with different COR values as a useful project for undergraduates, supported by
a set of problems to solve, and a demo software freely available on the internet for personal
experiences with different facets of the motion4.

2. A short summary of the dynamics on rectangular stairs

In [2], a rectangular staircase was considered with step tread L and rise M, tilted from left to
right. The main findings turn out to be reproducible by considering the bouncing of a ball on a
slope but letting energy loss occur only in the vertical velocity component.

A ball initiated with a horizontal and vertical velocity u0 and v0, respectively, collides with
a surface of slope m after time

T = 2(v0 + mu0)/g (1)

with vertical velocity

v′ = −(v0 + 2mu0). (2)

Problem 1. Based on the rules of oblique projection, derive these relations.

These relations apply with good accuracy to a staircase of slope m = M/L. Since, however,
the collision occurs there with a horizontal plane, only the vertical velocity changes upon col-
lision. In the presence of a COR k < 1 for this component, the rebound velocity right after the
bounce is

v1 = −kv′ = k(v0 + 2mu0). (3)

After some time, a stationary sequence of bounces sets in whose average velocity v̄ can be
obtained from the condition of repetition: v1 = v0 = v̄ (both for the slope, on which strict
repetition occurs, and for the staircase), leading to

v̄ = 2mu0
k

1 − k
. (4)

The appearance of factor u0 suggests that velocities are worth measuring in units of the initial
horizontal velocity (which remains constant for the rectangular staircase as no force acts on
the ball in this direction).

The average flight time between two bounces follows from (1) applied with v̄ instead of v0.
Substituting this time into the function u0t of horizontal displacement, we obtain the average
number N̄ of stairs between two bounces as

N̄ =
u0t
L

=
u2

0

gL
2m

1 + k
1 − k

=
2m
H

1 + k
1 − k

. (5)

This expression contains an important dynamical parameter

H =
gL
u2

0

, (6)

4 Both the detailed solutions of the problems and the demo software are available on the website
https://theorphys.elte.hu/fiztan/stairs.
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Figure 1. Shape of the rounded staircase, and the trajectory of a ball bouncing down it.
Quantities characterising the motion are: the location of the nth collision, xn, the vertical
and horizontal velocity after the bounce vn and un, respectively, measured in units of the
initial horizontal velocity, while the number of steps the ball jumps over between the nth
and n + 1st collision is Nn.

a dimensionless expression of the gravitational acceleration in combination with the horizontal
initial velocity and the step tread L.

According to [2], these formulas provide good approximations for any k, down to k = 0.4
where their validity is lost because with such strong dissipation all balls might become trapped
on a single step, stop bouncing, and start a sliding motion. The majority of the long last-
ing bouncing motions is quasi-periodic (i.e., they repeat themselves with some mismatch),
and expressions (4) and (5) yield the average velocity and jump number over the quasi-
periodic motion. Strictly periodic bouncings occur at exceptional, discrete values of k, where
expressions (4) and (5) might become exact.

With parameters m = 1/2 (a typical slope of staircases), H = 4 and a COR value k = 0.6
a periodic bouncing occurs with a single bounce on each step (N̄ = 1), while the case
k = 0.75 corresponds to a typical quasi-periodic motion (N̄ = 1.75). For the dynamics on
the rounded stair we shall keep m = 1/2, H = 4 fixed, and use these COR values throughout.
The user of the simulation on our webpage can, however, freely set these parameters, and the
others, too.

Problem 2. How long is the tread if H = 4 and the initial horizontal velocity is 1 m s−1? For
which initial velocity would H be as small as 0.0625 on this staircase?

3. Bouncing on the rounded stairs

3.1. The shape of the staircase

Each step consists of a horizontal and a vertical part, connected smoothly with an arc formed
by a quarter of a circle of radius R. Relations (5) and (6) of the previous section imply that it
is worth measuring all lengths in the unit of the step tread L. In this representation the steps
are of unit length, and of rise m = M/L, while the radius of the arc is r = R/L, so that the
horizontal part of a step is of length 1 − r, as figure 1 indicates. We shall be interested in the
range 0 < r � 0.2. The figure also contains the schematic trajectory of a ball, and the quantities
needed for a unique description of the bouncing dynamics are also given.
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Figure 2. The trajectory of the ball between two collisions. The x coordinate of an imag-
ined bounce with the rectangular stairs, x̃n+1, can be calculated analytically, but this need
not be the x coordinate, xn+1, of the actual collision.

3.2. Monitoring the motion on this staircase

Our goal is to find a relation between the location and velocity data of the nth and the n + 1st
bounces. Velocities are convenient to measure in units of the initial horizontal velocity u0, as
e.g., (4) suggests. From now on, the rebound velocities un and vn, right after the nth bounce,
are considered to be dimensionless. The only quantity in which the dimensional u0 appears
is the dynamical parameter H given by (6). From the dimensionless data xn, un, vn of the nth
bounce, we would like to know those of the next bounce, i.e. we determine the mapping

(xn, un, vn) → (xn+1, un+1, vn+1). (7)

The y coordinates do not appear here since on the staircase this is never an independent quantity,
it follows from the x coordinate and the shape of the stairs. Initial data of the entire motion are
represented by n = 0. An important auxiliary quantity is the jump number, Nn, expressing how
many steps are jumped over between the nth and the n + 1st collision. Relation (7) concentrates
only on the bounces but, if desirable, the continuous-time motion can be reconstructed from
these data in the form of parabola arcs.

To keep things simple, we place the origin of our coordinate system to the left edge of the
step on which the collision occurs. This means that we always shift the coordinate x of the
collision back to the unit interval, and the y coordinate is either zero (if the bounce is on the
horizontal part of the step), or negative. As in the rectangular case, air drag is assumed to be
negligible.

To simplify the monitoring process, we cut the trajectory into two pieces: the first one lasts
until the ball hits an imagined rectangular step at some coordinate x̃n+1 (see figure 2), because
the impact data here can be determined analytically, and the rest, until the real bounce with the
step at some xn+1 occurs, to which numerical methods should be applied5.

5 An alternative approach is also possible: the first intersection point of the parabola arc representing the flight in
vacuum with the shape of the staircase can always be found as a solution of a quartic equation. This might be solved
numerically with the desired accuracy, then the time and velocity data can be determined afterwards. Our choice is
motivated by the fact that the process is more similar this way to the one followed in the rectangular case in [2].
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3.3. Analytic part

Let the motion, right after the nth bounce, start on a step at dimensionless horizontal coordi-
nate 0 < xn < 1. The corresponding y coordinate is yn =

√
r2 − (xn − (1 − r))2 − r < 0 if the

bounce has been on the curvature of the step (xn > 1 − r), and yn = 0 otherwise. After the start
with horizontal and vertical velocity components un and vn, respectively, we consider the stairs
to be rectangular, and assume that the number of steps, Ñn, flown over until the next collision
with this imagined staircase is known. Thus the collision will happen at a depth −mÑn, and all
the quantities characterising this collision can easily be determined from the laws of oblique
projection. The results are marked by a tilde to indicate that these are not necessarily the data
for the collision with the rounded stairs. For the x coordinate one obtains

x̃n+1 = xn +
un

H

(
vn +

√
v2

n + 2H(mÑn + yn)

)
− Ñn. (8)

where

Ñn =

[
xn +

un

H

(
vn +

√
v2

n + 2H(mÑn + yn)

)]
, (9)

and the square brackets represent the integer part. The jump number Ñn is the smallest integer
for which equations (8) and (9) possess a solution. The impact velocities (marked with commas)
with this Ñn can be expressed as

ũ′
n = un, ṽ′n = −

√
v2

n + 2H(mÑn + yn). (10)

For yn = 0 these relations provide the exact description of the bouncing on rectangular stairs,
as given in [2] where tildes are not used as the results always describe the state at the moment
of a real collision.

Problem 3. Derive relations (8)–(10).

3.4. Numerical part

In the case of x̃n+1 > 1 − r, numeric calculations are required. We consider the moment when
the ball reaches the imagined rectangular stair, to be at time t = 0 for the subsequent treatment.
This way, the x and y coordinates of the ball can be determined as functions of time: x(t), y(t).
The y coordinate of the stair is a function of x, but when calculated at the time dependent x(t)
coordinate of the ball, it will practically become a function of time, telling us the height of the
stair at the point directly underneath the ball at any given moment. Subtracting this from the
ball’s height, y(t), we get the vertical distance Δy(t) between the ball and the stair.

Problem 4. Determine the function Δy(t).

The numeric algorithm checks this quantity after every small time increment Δt, at t = 0,
Δt, 2Δt, . . . to see its sign. When Δy(t) becomes negative, it indicates that the collision has
happened prior to that moment. Hence, we return to the last instance t of time that gave a pos-
itive value and start using a smaller increment Δt′ that we conveniently choose to be one tenth
ofΔt. The process continues, now checking after every incrementΔt′ until we run into another
negative value for the vertical distance of the ball and curvature. An even smaller increment
can be chosen, and the same steps can be executed several times, to achieve a sufficiently accu-
rate determination of the time t∗ that passes between the ball being on the imagined rectangular
stair and colliding with the actual one. We have the error, the shortest increment used, be below
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10−14. 6 We have experienced with other increments, too. By choosing this error to be ten times
smaller, i.e. 10−15, the deviation in the values of xn, un, vn was found to be typically of order
10−11 or less, even at collision numbers n above 100. We, therefore, decided to stick to 10−14.
Another way to show the consistency, was to check that the results of [2] are recovered for
r = 0. It is worth mentioning here that chaotic systems are error-magnifiers [7], thus errors
unavoidably grow in the long-term dynamics, and the well-known chaos quantifier, Lyapunov
exponent, is just the rate of this growth (see more about this in sections 4.4, 4.5 and 6). For this
reason all long-term quantities should be given as averages, that do not depend on individual
details. The Lyapunov exponent, too, is itself a kind of average.

This done, the ball’s position, xn+1 = x̃n+1 + ũ′
nt∗, and impact velocities as u′

n = ũ′
n = un,

v′n = ṽ′n − Ht∗ are also known.
In the simplest scenario, the ball bounces on the same step as it would if the stairs was rectan-

gular, just lands on the curvature instead of the horizontal surface (see figure 2). Occasionally,
the ball can ‘skip’ a step, when the value of Ñn derived via the analytic calculations is not the
actual value of Nn. In this case, the ball misses the curvature of the step that it would have
hit if it were rectangular. Since the trajectory of the ball does not intersect with the curvature,
the numeric algorithm will not find a solution. This problem can be eliminated by constantly
checking the inequality x(t) < 1, and whenever it becomes incorrect, it is certain that the ball
has ‘skipped’ the step. Then, we return to the analytic calculations, substituting Ñn + 1 as the
new value of Ñn. Although plausible, seldom does the ball ‘skip’ two or more stairs this way,
nevertheless, the same process of switching between analytic and numeric calculations can
then be performed multiple times.

The output of the numerical part is the position xn+1 of the n + 1st collision, and the
components u′n, v′n of the impact velocity.

3.5. Bounces

The collision rule can be described analytically. If the collision occurs on the horizontal surface,
the vertical impact velocity v′n < 0 becomes multiplied by COR k < 1, and changes sign. The
horizontal velocity remains unchanged, the collision rule is thus

vn+1 = −kv′n, un+1 = u′
n. (11)

On the curvature, the collision rule is naturally formulated in normal/radial and tangential
components denoted by vr and vt, respectively. Here, k is applied for the normal component,
thus we call it the normal COR. As will be seen later, it is worth considering the effect of
another COR, the tangential COR, whose value will be denoted by j � 1. In terms of physics,
this is a consequence of the collision not being instantaneous, thus forces are present while
being in contact. The relevance of such a COR has been shown experimentally [18, 19]. We
are here offering an elementary argument for its existence, which is based on the presence of
a friction force during the short duration of contact. Let F f,n(t) denote the magnitude of this
force at the nth collision which always points against the tangential component of the velocity
(see inset to figure 3), and is thus negative. Its time-dependence is not known, but thanks to
Newton’s second law this is not even needed to determine the momentum loss. The latter is
given by

6 The simulation, which can be accessed on our web page, was written in java, on a platform called Processing [16]
(version 3.3.7) and used the library Jasmine for faster calculations [17].
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Figure 3. Schematic diagram illustrating the collision rule for a bounce occurring in
a point of impact angle αn+1. The inset indicates the friction force acting during the
impact.

∫
F f ,n(t)dt = Δpt,n

where the integral is taken over the time of contact, pt is the tangential momentum, and the
momentum difference Δpt,n is negative. We consider the impact velocity v′t,n to be the one
right before the contact, and vt,n+1 the one at the end of it. The letter is the rebound velocity
with which the flight of the ball starts. For a point of mass m∗ (not to be confused with m, the
slope of the staircase), the tangential momentum difference is

Δpt = m∗(vt,n+1 − v′t,n) = m∗( j − 1)v′t,n.

The tangential COR j < 1 is thus set by the time integral of the friction force (and the mass),
but, for simplicity, we will consider it a constant. For completeness, we mention that in models
taking into account the internal structure of the ball, the tangential COR also depends on the
internal details [20, 21]. 7 The tangential COR is applied only on the curvature in order to
recover the dynamics of [2] with no curvature, r = 0.

All in all, the collision rule on the curvature is that for impact velocity components v′r,n <
0, v′t,n, the same components right after the collision become (see figure 3)

vr,n+1 = −kv′r,n, vt,n+1 = jv′t,n. (12)

The numerical part provides, however, the impact velocity in rectangular components as
u′

n = un, v′n with the coordinate xn+1 also given. If the bounce is on the curvature, xn+1 > 1 − r,
the angle αn+1 under which the collision point is seen from the centre of the circle defining the

7 In the simplest model, the tangential COR can be related to the more standard normal COR. The force Fr,n(t) acting
normally to the surface of contact during the nth collision sets the difference of the radial momentum:

∫
Fr,n(t)dt =

Δpr,n. If the positive direction is normally outward, as the direction of Fr,n, Δpr,n = m∗(1 + k)v′r,n. Since, as one knows
that F f ,n(t) = μFr,n(t), where μ is the coefficient of sliding friction, the two time integrals, and thus the momentum
differences too, are proportional to each other. As a consequence, there is a linear relation between j and k but the
coefficients, apart from μ, also depend slightly on the angle under which the ball hits the surface (see [19]).

8
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Figure 4. Time series of the two velocity components un (blue) and vn (red) up to 200
bounces on a stair of r = 0.01 with COR k = 0.6 (a) and k = 0.75 (b) and j = 1 in
both cases. The initial coordinate is x0 = 0.53 in (a), and x0 = 0.76 in (b), while (the
dimensionless) v0 = 3, and the parameters are m = 1/2, H = 4 here and throughout the
paper. Instances of bounces with the curvature are denoted by dots along the n axis.

rounding is obtained from (see figure 3)

cos αn+1 =
xn+1 − 1 + r

r
. (13)

The αn+1 is called the impact angle.
We thus have to transform the impact velocity into polar components in a frame of polar

angle αn+1. Then (12) is applied with these components, and the new velocity components are
transformed back in rectangular coordinates. For these rebound values un+1, vn+1 we obtain

un+1 = u′
n( j sin2 αn+1 − k cos2 αn+1) − v′n(k + j) sin αn+1 cos αn+1, (14)

vn+1 = −u′
n(k + j) sin αn+1 cos αn+1 + v′n( j cos2 αn+1 − k sin2 αn+1). (15)

Problem 5. Derive relations (14) and (15).

Problem 6. Determine the smallest impact angleαc permitted in (14) and (15) for given impact
velocity components u′n and v′n.

Relation (14) clearly shows that, in sharp contrast to perpendicular stairs, the horizontal
velocity component does not remain constant on the rounded stairs.

By the end of these calculations, we obtain the location of the n + 1st bounce, and the veloc-
ity components right after the collision, i.e. map (7) is completed. From here on the algorithm
can be iteratively repeated an arbitrary number of times.

4. Bouncing on stairs with very short rounding

4.1. First observations

In this special case, collisions with the curvature are rather rare, the motion is mostly dominated
by long sequences of the ball bouncing only on the horizontal part of the stairs. The numerical
simulation on such a stair of rounding radius r = 0.01 also illustrates (figure 4) that without an
energy loss in the tangential velocity, j = 1, the horizontal velocity, u always increases. This
tricky feature indicates a strong deviation from the rectangular case.

After a bounce on the curvature, there is a jump in the u-component, while in vn a transient
increase can be observed over about 10 bounces, after which a plateau follows.

9
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Problem 7. At collisions with the curvature, why do we see red dots below the level of the
previous plateau?

From here on the motion is like on the rectangular stairs. Since long sequences exist without
the ball visiting the curvature, we can interpret the findings by considering un+1 right after the
first hitting of the curvature as a new initial velocity u′

0. In view of the definition (6) of parameter
H, there is a new, smaller value H′ = H(u0/u′

0)2 governing the motion leading, in view of (4),
to average vertical velocity v̄′ = v̄(u′

0/u0) > v̄. The plateau after the first bounce corresponds
to the attractor8, described in [2], belonging to parameter H′ on the rectangular stair. The fine
structure in the red lines of figure 4 indicates that the motion is quasi-periodic, although the
stationary motion on the rectangular stair with H = 4, k = 0.6 (panel (a)) is periodic. The first
plateau is, however, of finite length, after some time a bounce occurs on the curvature again,
leading to a new initial velocity u′′

0 > u′
0 for the forthcoming motion with an even smaller H′′.

The sequence of u0, u′
0, u′′

0, . . . , is increasing, indicating that the velocities are ever increasing,
and larger and larger jumps occur. There is a tendency for an inherent instability in the system.

As the parameter H changes, the spectrum of the discrete k values that result in periodic
motion changes with it, thus making it statistically impossible for periodicity to occur after a
bounce on a curvature. This also implies, that motions for k = 0.6 are no longer fundamen-
tally different from those for k = 0.75. So much so, that it should not be treated as a separate
case, as all of our results for k = 0.75 similarly hold for k = 0.6. It is more practical to anal-
yse motions that start with parameters inducing quasi-periodicity because then the ball will
eventually bounce on the curvature under every initial condition (in contrast to motions with
parameters of periodic motions, when only a portion of the initial conditions do so, as it can
only happen before the periodicity sets in). For this reason we decide to keep only the COR
value k = 0.75 in what follows.

4.2. Analytic investigation of the horizontal velocity change

The well-known property of an absolutely elastic ball bouncing down on stairs, namely that
its jumps are ever increasing (since the potential energy is decreasing on average, but the total
energy is constant), appears to remain valid on rounded stairs even in the presence of a normal
COR. This COR is unable to lead to a sufficiently strong energy loss to oblige the kinetic energy
to stay on average. The tendency of increase follows from relation (14) without tangential
energy dissipation ( j = 1).

Problem 8. Show, based on relation (14), that with j = 1, the horizontal velocity can never
decrease: un+1 � u′

n = un.

The inclusion of a tangential COR j < 1 provides a stronger dissipation, and there is a
chance for having smaller horizontal rebound velocities then impact ones. A consequence of
(14) with j < 1 is that un+1/u′

n � j.

Problem 9. Show, based on relation (14), that its maximum is taken for an angle α∗ = π/4 +
αc/2, i.e. for the average of the permitted angles in (αc, π/2). The minimum is achieved at the
two ends αc and π/2, where un+1 = jun.

When analysing the velocity ratio un+1/u′
n a difficulty is that it contains v′n/u′

n, a quantity not
known analytically. In the limit of small r, however, there is a possibility for simplification:
there are long stretches of bounces occurring only on the horizontal parts of the steps, and
therefore, between two collisions with the curvature the results of section 2 apply. It is sure

8 An attractor is a sustained motion which other motions converge to, due to dissipation [7, 22].
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Figure 5. The velocity ratio un+1/u′n as a function of the impact angle according to rela-
tion (17) with k = 0.75 and (from top to bottom) j = 1, 0.5, 0.2, 0. The curve belonging
to a balanced case, with a mean value close to unity ( j = 0.2) is marked with a bold line.
The smallest permitted angle, αc is indicated.

that after an impact with v′n, the rebound velocity is −kv′n which, after the transients, takes one
of the values for a typically quasi-periodic bouncing. Their average is given by (4). Therefore,
−kv′n can be approximated by v̄ in which u0 should be taken as the horizontal velocity after
the last collision with the curved surface, i.e. u′n in the current notation. We can thus write

v′n
u′

n
= − v̄

ku′
n
= − 2m

1 − k
. (16)

Substituting this relation into (14) we obtain

un+1

u′
n

= j − (k + j) cos αn+1

(
cos αn+1 −

2m
1 − k

sin αn+1

)
. (17)

The advantage of this approximate relation is that the velocity ratio appears as a one-variable
function of the impact angle αn+1.

Problem 10. Based on (16), determine the critical angle αc as a function of the parameters m
and k. What is this angle for m = 1/2 with our baseline COR value k = 0.75?

In figure 5 we plot the velocity ratio (17) as a function of the impact angle, for different
values of the tangential COR j. We see that the velocity ratio can be both smaller and larger
than unity, and for sufficiently low values of j the average can be close to unity. For k = 0.75
such a value is j = 0.2. A balance between increased and decreased rebound u values can only
be ensured with rather strong tangential momentum loss. We shall use the mentioned j in what
follows.

4.3. Lifetimes

Even if a tangential COR is applied at which the average velocity ratio un+1/u′
n is close to

unity (like e.g. the j value represented with the bold line in figure 5), there always exist initial
conditions which lead, sooner or later, to an ever increasing sequence of u. For large velocities,
however, the air drag cannot be neglected, although our reasoning is based on the rules of
oblique projection. We are thus running out of the validity of our model if the velocity is
too large. To avoid this, we stop considering the results reliable if the collision data exceed a
threshold value. For practical reasons, we prescribe a threshold in the jump number, N th = 100.

Whenever Nn is larger than this, simulation is stopped and we say that the ball has flown
away. As an arbitrary long monitoring of the motion is not possible within the model, chaos, if
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Figure 6. Lifetime τ vs initial position x0 for r = 0.01 and k = 0.75, j = 0.2. (a) The
distribution of lifetimes on the unit interval, in 100 starting positions. (b) The same on
a tiny interval of length 2 × 10−4 around x = 0.36 in 100 points. Columns higher than
8000 are cut at 8000.

present, can only appear as a transient. The theory of transient chaos [7, 15] requires the exis-
tence of long lasting motion, we shall, therefore, be after trajectories remaining well defined
over several hundreds in n at least.

Problem 11. The threshold in the jump number implies a threshold in the velocities, too. Based
on (5) and Nth = 100, show that for k = 0.75 uth ≈ 7.5.

For other initial conditions, the ball, after a period of bounces on different steps, might
undergo an infinite number of collisions on a single step. Parallel to this, the sequence of vn

tends to zero. This indicates the turning of the bouncing motion into a different kind of motion:
sliding. Such cases provide another kind of escaping process, and we say the ball has stuck
down. Numerically, simulation is stopped when either of the velocity components become less
then 0.01 after a bounce on a horizontal part of a step. Sticking is a well-known phenomenon
for bouncing balls (see e.g. [23–26]) but was found in [2] to exists only for k < 0.4. It is the
presence of another source of dissipation, described by j, which leads to sliding even for larger
k values in our cases.

Problem 12. The lowest graph of figure 5 represents parameter sets where practically no
increase would occur in the horizontal velocity. Why do not we choose such COR values to
prohibit balls flying away?

We are thus interested in long lasting sequences of bounces before flying away or turning
to sliding. For small r there is a wide range of such initial conditions. An interesting pattern
arises if we examine the total number of bounces τ before any kind of escape takes place, and
plot this lifetime as a function of the initial position along the step. Red and blue columns mark
motions which end in flying away and in sliding, respectively. Figure 6 exhibits an intricate
pattern: the heights, the lifetimes before escape, are irregularly distributed, and the change of
colouring is also irregular.

To gain more insight, we select a tiny, hardly visible interval around x = 0.36, zoom in on
it, and plot the lifetimes on it in panel (b). The structure is very similar to that of in panel (a),
no regularity occurs on fine scales. Statistical features, like e.g. the ratio of flying away and
sliding remain the same (roughly 1 to 2).

The irregularity of the distribution both in height and colour provides an example of sen-
sitivity to initial conditions, a general feature of chaos, while the fractal-like pattern in the
lifetime distribution is a property characterising transient chaos specifically [7, 15].
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Figure 7. Schematic diagram illustrating the concepts of the angle differences Δα and
Δϕ for bounces on a circular arc of radius r.

4.4. Elementary estimation of the Lyapunov exponent

The presence of a curved surface act as a convex mirror and scatter the beam of balls falling on
it along parallel paths. This tendency for divergence serves as the source of chaos in the motion
of the balls. A measure of the strength of this sensitivity to initial conditions is the so-called
Lyapunov exponent (see [7, 22]). This also quantifies the growth of small initial errors as time
progresses. An elementary argument for its estimation is as follows.

Consider two balls hitting the curvature of radius r along parallel paths and with approx-
imately the same velocity. The impact points are close to each other and the corresponding
impact angles αn+1 differ by some small Δα. The rebound directions will be different, char-
acterised by a relative angle Δϕ (see figure 7). It is intuitively clear that these two small angles
are proportional to each other:

Δϕ = aΔα (18)

where a is a proportionality constant.

Problem 13. Determine coefficient a in (18) for collisions with CORs k and j.

Because of the divergence in their path, the distance Δx between the balls increases in time.
As an estimation, we can write this distance as Δx = Δϕ · s after a length s along the paths.
We take s to be of order unity, i.e., corresponding to the length of a single step. Rearranging
this as Δx = Δϕ · r/r = Δα · r · a/r, and using that Δα · r = Δx0 is approximately the ini-
tial distance between the balls, we find Δx = Δx0a/r. This distance increases by a factor of
a/r. The logarithm of this, ln(a/r) can be considered the Lyapunov exponent belonging to a
bounce on the curvature. Hitting this part is, however, rather rare (at least for small r), and the
corresponding probability is expected to be proportional to r (as the step tread is chosen to be
unity). We thus can write the average Lyapunov exponent as

λ = cr ln(a/r) (19)

where c > 0 is a proportionality constant. For r << 1, the logarithm ln(a/r) = ln a − ln r is
dominated by ln r and the expression simplifies to
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Figure 8. The average of logarithmic distances lnΔxn of 76 674 pairs of initial distance
Δx0 = 10−6 vs n (k = 0.75, j = 0.2, r = 0.01). Only pairs with at least 1000 bounces
have been kept when performing the average. The straight line fit is marked by a red
line. The deviation from linearity for n > 90 is due to the fact that the pairs are strongly
deviated, their distance is on the order of the step length, unity, and, accordingly, their
logarithm is close to zero.

λ = cr ln(1/r). (20)

This result indicates that the knowledge of constant a is not necessary in this limit. For r → 0
the Lyapunov exponent vanishes in harmony with finding no chaos on the rectangular stairs in
[2]. The illuminating feature of (20) is that it provides a positive value for any r > 0. There is
thus a potential for chaos on any rounded stairs, no matter how small r is [27].

4.5. Numerical determination of the Lyapunov exponent

We divide the unit interval in 106 pieces and initiate from all these x0 coordinates a trajectory
(with (dimensionless) velocity v0 = 3). The distance Δxn between originally neighbouring
pairs of initial distance Δx0 = 10−6 is numerically followed as a function of the number
of bounces, n. In order to keep only pairs with long lasting motion, we keep only those
which possess at least 1000 bounces. The logarithm lnΔxn of the distance is taken from
each of the 76 674 pairs kept. The average of these, ln Δxn, is evaluated and plotted as a
function of n in figure 8. The growth of this quantity (indicating an approximately expo-
nential increase) is a clean sign of sensitivity to initial condition, i.e. of chaos. The slope
(after discarding the initial transient of 30) is the Lyapunov exponent. Its value is obtained as
λ = 0.176 ± 0.004. Although (20) need not hold since r = 0.01 is small but not very small, a
comparison is worth while: r ln(1/r) = 0.046 for r = 0.01, not the same as the numerical value
but certainly on the same order of magnitude. (If (20) is taken seriously, the proportionality
constant is c ≈ 4.)

4.6. Patterns in phase space and real space

Chaotic motions are accompanied with intricate patterns in the phase space. In our model the
phase space is three-dimensional with variables as appearing in mapping (7). We shall inves-
tigate two projections, the (un, xn), (vn, xn) phase planes. We saw that there is a convergence
time on the order of 10 bounces to reach a kind of stationary motion, therefore we cut the first
30 iterations of long trajectories. The last 30 iterations are also cut in order to avoid points
characterising the escape process. One example of such trajectories is shown in figure 9.

Both patterns are rather complex, fractal-like. The most dramatic effect is perhaps that the
permitted u values extend over an interval of about [0.4, 4], while in the rectangular case u
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Figure 9. Phase space patterns in the (v, x) (a) and (u, x) (b) planes for r = 0.01 and
k = 0.75, j = 0.2 arising from a trajectory of total length of 3260 iterates, after elim-
inating the first and the last 30 points. (This particular trajectory ended in sliding.) To
emphasise the contrast, the two insets in panel (b) display the (v, x) and (u, x) phase
planes belonging to the quasi-periodic motion with k = 0.75 on the rectangular staircase.

is constant and the corresponding phase plane pattern belongs to horizontal line u = 1 (upper
right inset in panel (b)). The (v, x) pattern is also more complicated since the quasi-periodic
motion of the rectangular case would practically appear as the union of only four horizontal
intervals (upper left inset in panel (b)).

A large number of short horizontal intervals can be seen in both panels of figure 9 indicating
that the chaotic motion at this small r value consists of a mixture of quasi-periodic sections
separated by bounces on the curved surface, and irregularity afterwards indicated by all the
points scattered around randomly. An additional novelty in the (v, x) plane is that points close
to the end of the step might exhibit negative v values. This is a consequence of nearly tangential
collisions with the curvature. The fact that the set of points in both panels appear to be subjected
to an upper cut-off is the consequence of the application of the threshold value N th = 100 and
the fact that the last 30 points before reaching this value are not plotted.

It is important to note that other long trajectories produce practically the same patterns as
seen in figure 9. The fact that these are independent of the initial pair (x0, v0) illustrates that
there exists a chaotic set in the phase space underlying the motion. (In the terminology of
transient chaos this is called a non-attracting chaotic set or a chaotic saddle [7, 15, 22]).

Let us, finally, show the motion in real space. The path of the ball (built up from appro-
priate parabola arcs) corresponding to the points shown in figure 9 are exhibited in panel (b)
of figure 10. For comparison, the quasi-periodic motion belonging to the insets of figure 9
is shown in panel (a). The difference is enormous. Arcs in panel (b) are of different heights
(below a maximum) mostly irregularly arranged. The existence of nearly repetitive patterns is
a consequence of the presence of quasi-periodic epochs in the motion (horizontal segments in
figure 9). The full motion is a mixture of irregular periods and such epochs, each of the latter,
if lasting infinitely long, would be similar to the path in panel (a).

We have thus demonstrated all the main characteristics of chaotic motions already for a
small r: irregularity in time, sensitivity to initial conditions, and complex, fractal-like pat-
terns in phase space. The motion keeps, however, its character for finite times only: chaos is
transient.
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Figure 10. Path of a ball in real space with r = 0, k = 0.75 (a) and r = 0.01, k = 0.75,
j = 0.2 (b). The motion is followed on 10 steps with the convention that after leaving
the picture at the end of the last step the trajectory enters from the left at the same height
above the first step. Panel (b) corresponds to the points in figure 9 but followed, for
clarity, over 700 bounces only (after the exclusion of the first 30 iterates). Note that the
edges are rounded in panel (b) but r is so small that this is hardly discernible.

Figure 11. The decay of the number Kn of survivors with the number of bounces
n (k = 0.75, j = 0.2) for radii of curvature (from top to bottom) r = 0.01, r = 0.05,
r = 0.1, r = 0.15, and r = 0.2. The number of initial points is K0 = 106 uniformly
distributed in x with v0 = 3.

5. Bouncing with larger roundings

When repeating the same study for stairs with larger roundings, up to r = 0.2 (by keeping k
and j fixed), one has to realise that chaotic transients become shorter and shorter. A simple,
standard approach can be taken over from the theory of transient chaos: the investigation of
the number of survivors as time increases. In our particular case this means that we start with
a large number K0 of initial conditions uniformly distributed in x along a step, and follow the
number of trajectories Kn not yet escaped up to n collisions. This quantity decreases in time,
and the speed of the decay characterises the robustness of the transients: the slower the decay
the more long lived the chaos.

The drastic difference in the decay law is clear at first sight. While the number of survivors
is about one half of the initial number by n = 500 for r = 0.01, it is less then one hundredth for
r = 0.2. A qualitative measure of the speed of decay is based on the general experience that the
decay is, after a first transient period, exponential in time [7, 15, 22]. The exponentκ governing
this decay is called the escape rate. The results of our fits to the data of figure 11 applied after
the first 30 bounces are summarised in table 1. The average lifetime τ̄ of transients is generally
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Table 1. The dependence of the escape rate κ and average lifetime τ̄ on the radius r of
curvature.

r 0.01 0.05 0.1 0.15 0.2
κ 0.0014 ± 0.0001 0.0049 ± 0.0002 0.0086 ± 0.0006 0.0125 ± 0.0007 0.0161 ± 0.001
τ̄ 720 ± 50 204 ± 8 117 ± 8 80 ± 5 62 ± 4

estimated by the reciprocal of κ: τ̄ = 1/κ can be considered as the average number of bounces
experienced before escape takes place, and is also exhibited in the table, along with estimated
errors.

The escape rate does not depend on the details of the initial distributions taken, it is a
property of the system. Table 1 shows that the average lifetime falls below 100 by reaching
r = 0.15.

The lack of long trajectories implies that the characterisation of chaos becomes less and
less reliable as r increases. We have determined the phase space patterns and found similar
results for larger r values as seen in figure 9 for r = 0.01. The average logarithmic distance
between point pairs increases monotonically, indicating chaos for any r. The ln Δxn graph
looks similar to figure 8 up to r = 0.1, even the slope is nearly the same as for r = 0.01. For
larger values of the radius, however, the graph becomes much more bent, and a linear fit can
be applied to a rather short interval only, making the determination of a Lyapunov exponent
unreliable.

6. The effect of velocity-dependent COR

Up to now, we have confirmed the statement that a ball’s bouncing motion on rounded edge
stairs is chaotic, at least within the framework of the model. The tricky feature found is that the
motion with chaotic properties lasts for a finite number of bounces, but still much larger than
what one can observe in real life. From a theoretical point of view, however, it can be of inter-
est to investigate a modified model that incorporates a possibility of a (theoretically) unlimited
number of bounces. To this order we turn to a formal extension by keeping the model’s bil-
liard character. In order to avoid, or at last weaken, the tendency of flying away we have to
decelerate fast balls more than slower ones. This can be done by allowing COR to become
velocity-dependent, with an overall decrease with the velocity. The literature discusses this
effect in detail (see e.g. [13, 14]), we just choose a form convenient for our purposes here.
Since the tangential COR proved to be able to weaken the tendency for an instability, we
decide to make quantity j to be velocity-dependent, along the curvature only. We have experi-
enced with different functions, but finally, the perhaps simplest form performed the best. The
form phenomenologically taken is a simple exponential:

j = e−δv′t (21)

where v′t is the tangential component of the impact velocity, and δ is a constant. Note that
for small velocities (for v′t � 1/δ) the tangential COR is practically unity, as in the set-up
investigated in section 4.1, but for v′t = 1/δ j falls down to 0.37, and for v′t = 2/δ to j = 0.14.
The application of relation (21) might be considered as a way to incorporate into a gravitational
billiard the effect of air drag, a mechanism of velocity-dependent dissipation.

Our numerical simulations support that there is a range in parameter δ where the dynamics
becomes practically permanently chaotic with this choice: the probability of any kind of escape
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Figure 12. The chaotic attractor in the two phase planes (v, x) (a) and (u, x) (b) in the
case of a velocity-dependent tangential COR on the curvature, as given by (21) with
δ = 0.3 for r = 0.2 and k = 0.75. Only the first 8000 points are displayed. The third
panel exhibits a three-dimensional view of the attractor, with 20 000 points shown. Here,
the positive direction of the x axis is to the left, in order to make the range 1 − r � x < 1
more conspicuous.

is negligible. In addition, this is valid in the whole r range investigated, thus precise Lyapunov
exponent values can be determined everywhere.

As an example we show the phase space patterns, representing a chaotic attractor in this
case, in figure 12 with δ = 0.3. With this delta, the average of the velocity-dependent COR on
the attractor comes to be around 0.27, a number close to the value j = 0.2 used in previous
sections. To show the stability of this model, we have taken the largest radius considered,
r = 0.2. The patterns are rather similar for all smaller values of r, and do not even depend
much on whether v′t in (21) is replaced by the normal component, or the modulus of the impact
velocity.

Over the horizontal part of the step, for x < 1 − r, the pattern closely resembles the charac-
teristics of the transient dynamics before escape takes place (cf figure 9), but over the curvature,
1 − r � x < 1, new features show up. Right around x = 1 − r there is a tendency of increase
in u, but the shape remains bounded and the permitted u values appear to tend to nearly
zero by the end of the step. Thanks to the strongly increasing dissipation with the velocity
as expressed by (21), all u values remain below about 4, there is thus no need to apply any
artificial threshold. In the vertical component a decreasing trend is visible for x > 1 − r which
leads to slightly negative values at the end, representing nearly tangential impacts. To have an
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Table 2. The dependence of the Lyapunov exponent on the radius of curvature with
δ = 0.3.

r 0.01 0.05 0.1 0.15 0.2
λ 0.195 ± 0.015 0.316 ± 0.016 0.480 ± 0.020 0.724 ± 0.026 0.862 ± 0.033

opportunity to see the attractor in the full phase space (x, u, v), too, panel (c) provides a spatial
representation.

Problem 14. What is the explanation of the fact that the attractor points go down to nearly zero
at about x = 1 − r in panel (b) of figure 12?

The real space paths remain similar to the one shown in panel (b) of figure 10, and the lack
of escape makes the determination of Lyapunov exponents straightforward for any r. For each
radius, the average was taken for approximately 105 pairs of trajectories on the attractor, with
an initial distance of 10−11 between each other. The results are given in table 2. To estimate the
reliability of the quantities, the errors are also given. All in all, the results indicate a pronounced
chaos in all cases.

7. Summary

After a detailed study, we can say that the intuition of the authors of schoolbook [1] is
correct, the motion of a ball bouncing down on stairs modelled as a gravitational billiard
is unpredictable, provided the stair is not rectangular. Chaos, however, can only be classi-
fied properly if the motion is long-lasting, a few bounces do not suffice. It is because of
this requirement that the analysis turns out to be more demanding than perhaps anticipated.
When searching for such motions, we had to realise that the standard COR reducing the
normal velocity component only is unable to prevent the ball from flying away, there is a
tendency for unlimited acceleration in spite of this form of dissipation. This lead us to intro-
duce a tangential COR, which along with the standard one, converts the motion to remain
within the validity of the model over long periods of time. The (transiently) chaotic nature
of the dynamics was possible to demonstrate, in fact, from the smallest possible radius on.
The length of transient chaos turned out to be shrinking with increasing radii, making the
statistics less reliable. This experience certainly shows that the transient form of chaos might
be more generic than assumed, and it is worth being acquainted with the basics of this
form of motion, too, along with the elements of how to investigate it. The permanent form
of chaos was possible to find within the model only via introducing a velocity-dependent
COR.

We think that the investigation presented here, or parts of it, can be used as undergraduate
projects. The background is solely oblique projection and dissipative collision rules, the stu-
dent, while working on the project, might nevertheless become familiar with the elements of
chaos science, too.
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