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Abstract. Ensemble approaches are becoming widely used in climate
research. In contrast to weather forecast, however, in the climatic con-
text one is interested in long-time properties, those arising on the scale
of several decades. The well-known strong internal variability of the
climate system implies the existence of a related dynamical attractor
with chaotic properties. Under the condition of climate change this
should be a snapshot attractor, naturally arising in an ensemble-based
framework. Although ensemble averages can be evaluated at any
instant of time, results obtained during the process of convergence of
the ensemble towards the attractor are not relevant from the point of
view of climate. In simulations, therefore, attention should be paid to
whether the convergence to the attractor has taken place. We point out
that this convergence is of exponential character, therefore, in a finite
amount of time after initialization relevant results can be obtained.
The role of the time scale separation due to the presence of the deep
ocean is discussed from the point of view of ensemble simulations.

1 General considerations

A recently emerging view in climate science claims that the relevant quantities from a
climatic point of view are the statistics taken over an ensemble of possible realizations
evolved from various initial conditions; see e.g., [1-5] for low-order models, and [6-12]
for general circulation models (GCMs). In this paper we argue that investigating
whether the ensemble has converged to a dynamical attractor is important. Such an
investigation is lacking from certain large scale simulations (see [6-10]). We claim that
large scale models, too, should be augmented by a careful study of the convergence.

The relevance of attractors for the climate system stems from its unpredictability.
In this context unpredictability means that even if the initial condition, corre-
sponding to a given time instant, is approximately known, the system evolves in
considerably different ways from slightly differing initial conditions that comply with
the approximate knowledge. In other words, the dynamics is chaotic-like. Right after
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initialization, the possible ways of evolution are similar to each other and are strongly
determined by the approximate initial condition. Weather forecasting concentrates
on this period. In particular, probabilistic weather prediction aims to uncover the
possible ways of evolution [13] on the short time scale of days or weeks. With time
passing, however, the set of the possible ways of evolution is, due to the nonlinearity
of the equations of motion, broadening. We argue that a long-term “final” plethora
of these ways of evolution is what is of main interest for climate research.

Asymptotically, the set of the possible ways of evolution converges to a so-called
dynamical attractor, and its distribution on the attractor (which is not uniform) also
becomes unique. Uniqueness means independence of the initial conditions, including
independence of the above-mentioned approximate knowledge. This distribution is, in
mathematical terms, the natural probability distribution of the dynamical attractor of
the climate system. It is clear that the natural probability distribution of the attractor
is what defines the probabilities of all possible weather situations and, more generally,
of all states of the whole system that are permitted by its dynamics. On the one hand,
being independent of the initial state, this is the probability distribution that faith-
fully reflects what is called the internal variability of the climate system. In particular,
the width (the higher order moments) of the probability distribution characterizes
the strength of the internal variability. On the other hand, the expectation values
of the physical quantities provide the climatic mean values. A novel feature of the
approach is that it enables one to obtain both characteristics, i.e., the internal vari-
ability and the climatic mean values, simultaneously. In fact, all this implies that the
climate itself is best defined as the attractor along with its natural distribution. If,
however, expectation values are evaluated too early, they do not characterize the cli-
mate, or the attractor, but rather they characterize how the convergence towards the
attractor takes place, also reflecting properties of the initialization. It is this subjec-
tive character of ensemble simulations that can be excluded by waiting long enough,
until the convergence to the attractor takes place, after which the ensemble results
reflect the objective properties of the climate.

In more technical terms, in the language of dynamical systems theory, in the unre-
alistic case when a stationary forcing is imposed on the climate system, its dynamical
attractor is a usual chaotic attractor [14] and is also stationary in time. If the forcing
is of general time-dependence, as in the climate dynamics during climate change, then
the attractor is called a snapshot [15] or pullback [1,16] attractor (for experimental
realizations, see [17,18]) which is well-defined in any particular time instant and also
has its own time evolution. This implies the time evolution of the climatic means and,
more generally, of the relevant probability distribution, which can be interpreted as a
climate change [3]. Since this time evolution is uniquely determined by the forcing sce-
nario the climate system is subject to, this evolution represents what is called [10,25]
the “forced response” of the climate system [11].

Our studies [19,20] indicate that the process of convergence of an ensemble to the
attractor and its natural probability distribution from any set of initial conditions is
“fast”: it is expected to have a characteristic time scale and to be “exponential-like”,
i.e., faster than any power-law. This is a consequence of the dissipative nature of
the dynamics. It is due to the exponential character that the convergence possesses
a characteristic time, 7, and we can say that after some t*, which is a few times
multiple of 7 added after the time of initialization ty (i.e., t* = to + t. with ¢, o 7),
a convergence to the attractor and its natural distribution has taken place (with an
exponential accuracy).?

! In autonomous dissipative mixing dynamical systems 7 is understood formally as the
reciprocal of the first nonzero eigenvalue of the transfer operator [21,22].

2 In fact, one can associate distinct ¢* values to distinct observables. Therefore, a more
specific recommendation of ours is that the convergence should be checked separately for
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It is from ¢* on that the ensemble characterizes the full plethora of possibilities,
along with their appropriate probabilities, that is permitted by the climate dynamics.
It is thus only after t* that one can clearly distinguish the forced response, as the shift
in climatic mean values, from the effect of internal variability [19,20]. Furthermore, the
standard deviations over the ensemble provide a measure for the strength of internal
variability only then, as well. After t*, any element of the ensemble represents a
possible evolution of the climate system. Some authors consider a description based
on ensembles that have converged to attractors as the “theory of parallel climate
realizations”, as discussed in [23]. We emphasize that evaluating any statistics earlier
than ¢* leads to results that do depend on the initial condition (like in weather
forecast), and are thus, strictly speaking, not relevant from the point of view of the
climate and its change.

2 Investigating the convergence

The process of converging to the attractor should be investigated numerically by
taking different sets of initial conditions and following the time evolution of the
corresponding ensembles. In practice, one may initialize one ensemble relatively far
in the past before the time interval of interest, and investigate how another ensemble,
initialized later, converges to the previously initialized one. Similarly in part to how
it was done in [19] for a low-order model, we shall illustrate the convergence via
numerical examples in the intermediate-complexity GCM, the Planet Simulator [24],
in a version treating the upper ocean as a heat reservoir with prescribed heat fluxes.
The details of our model setup are discussed in [20,23]. In particular, we use the
default settings except for the depth of the mixed-layer ocean which we take to be
200 m.

The lower graph in Figure 1 presents the forcing scenario, prescribed via the
atmospheric COy concentration. We initialize our first ensemble, consisting of 40
members, at o = 0. Initially, the atmosphere is at rest, and the difference between
the ensemble members is obtained by randomly perturbing the surface pressure field
by an amount on the order of 10 hPa. The ensemble average of the annual mean
surface temperature of Earth as a function of time is plotted in Figure 1 as a gray
line turning into black at t* = 200 yr. This line covers the entire time span of 1500 yr.
After an initial transient lasting up to t* =ty + t. ~ 200 yr, the average is constant,
Teola =~ 8°C, up to t = 600 yr, and this already indicates that a convergence has taken
place to the attractor corresponding to the initially constant COs concentration of
360 ppm (this is why we change gray into black at t*).

Since in the period 0 < ¢t < t* the climate is the same cold stationary climate of
360 ppm, just as for t* < ¢t < 600 yr, the mean climatic temperature is T.oq also for
0 <t < t*. This value we mark by a black horizontal line segment in the period 0 <
t < t*, too, in order to indicate that the attractors exists, and carries the same average
as later also in this interval.® The deviation of the average temperature T' taken with
respect to our ensemble (gray line) for 0 < ¢ < ¢t* from T,oq (black) illustrates our
message: the ensemble average (gray) is well-defined but has no climatic relevance.
Conclusions drawn from the ensemble before convergence to the attractor takes place

various different observables of particular interest as part of a particular climate-oriented
investigation.

3 Note that this is so only because the forcing is constant. Otherwise, such an extrapolation
of the attractor average is not possible, so that the attractor average is not available before
the convergence of the first ensemble. It can, however, always be generated by another
ensemble initiated much earlier (at negative times in our example). Numerically, the constant
value plotted for [0,200] yr is obtained here as the temporal average of the black line for
[200, 600] yr.
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Fig. 1. The annual global surface mean temperature 7' as a function of time in different
ensembles. The ensemble average taken over the ensemble initialized at tp = 0 is shown in
gray from 0 to 200yr and in black from 200yr on when it represents the average on the
attractor. The constant black line before 200 yr represents the average on the attractor at
these time instants (Tto1a; see text, and also Footnote 3). The entire black line represents
the time evolution of the average on the snapshot attractor for all . The red line from 591 yr
to 790 yr [also gray in print] marks the ensemble average taken over the ensemble initialized
at ty = 591 yr, before the average merges at t*’ with the black line designating the snapshot
attractor. In the inset, we show the difference AT of the red and the black lines as a function
of time. We also include here an exponential fit (marked dotted) for the interval [596, 656] yr
which yields a relaxation time 7 = 36 yr. In the main plot, the CO2 concentration, i.e., the
forcing, is also given (in orange [gray in print], see the bottom graph), as well as to and
to (the time instants of initialization), and ¢* and t*' (the time instants up to which the
convergence of the ensemble averages to the attractor values takes place with an accuracy
comparable to the size of the numerical fluctuations). The vertical dot-dashed (dashed) lines
in gray mark the beginning (end) of the linear ramps in the CO2 concentration in the entire
figure.

may lead to temperatures strongly different (2...3°C higher) from the climatic mean
Teola- It is only for ¢ > ¢t* where our ensemble properly characterizes the climate (after
gray and black merge).

The average on the attractor (black line) starts changing at ¢t = 600yr, and is
seen to roughly follow the later linear increase and decrease (from ¢ = 600yr and
t = 1050 yr, respectively) in the CO5 concentration?. In this period the driving is not
constant, the attractor underlying the climate thus cannot be a traditional attractor,
but it is a snapshot attractor. It turns out to be strongly time-dependent in this
period, indicating climate change. We emphasize that this attractor (represented by
the black line) reflects the dynamical attractor of the problem in the whole time span
investigated.

We initialize a second ensemble (also of 40 members) at t{, = 591 yr with an al-
gorithm similar to that of the first one. The average taken over the second ensem-
ble, marked by red [gray in print] in Figure 1, converges to the black line, i.e., to
the average on the snapshot attractor (this is numerically generated, by this time,
as the ensemble average over the first ensemble), within about ¢, = 200yr, i.e., by
t*' = t{, +t. ~ 790 yr. The convergence times t. and t. to the attractor turn thus out
to be approximately the same for ¢y and t{. According to the inset of Figure 1, the
difference AT between the red [gray in print] and the black lines of the main plot de-
creases in time exponentially, as exp(—t/7), with a relaxation time of 7 = 36 yr with

4 Tt is worth observing that the temperature reaches both its upper and lower plateau
with a time delay (of about 100yr) compared to the beginning of the corresponding CO»
plateaus.
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Fig. 2. The annual mean surface temperature 1" of a single gridpoint in the Southern Pacific
ocean (at 180°E and about 64°S) as a function of time: the dark blue [dark gray in print|
thick line marks the ensemble average taken over the ensemble initialized at t; = 610yr,
and the black thick line stands for the average on the attractor (represented numerically
by an ensemble initialized at to = 0); see the main text for details. The time evolutions of
the 192 individual members of the newer ensemble (the third ensemble considered in this
paper) are included in light blue [light gray in print], as thin lines. For better visibility,
the last unperturbed year, which is year 609, is also included for the graphs of the newer
ensemble. In this year, all members of the newer ensemble, and thus also their ensemble
average, coincide with the originating member of the first ensemble. The time evolution of
this member is indicated by a dark gray thin line. In the inset, we show the difference AT
of the dark blue [dark gray in print] and the black thick lines as a function of time with
an exponential fit for the interval [613,631] yr which yields a relaxation time 7 ~ 27 yr. The
CO2 concentration, i.e., the forcing, is also included (in orange, in the bottom plot), as
well as t(, and t*” (the time instant up to which the convergence takes place). The vertical
dot-dashed (dashed) line in gray marks the beginning (end) of the linear ramp in the CO2
concentration.

which ¢/, = 57. This observation illustrates that the black line indeed corresponds to
a snapshot attractor: it attracts any ensemble, whenever it is initialized, and it is
unique. This is why the black line characterizes the climate for any ¢, even along the
COy ramps. In the period t{ <t < t*' the average taken over the second ensemble
(red line) differs from the average characterizing the climate (black line). We see here
that ensemble results taken before convergence are, of course, misleading also in a
period of climate change.

Figure 2 concerns a third ensemble which is initialized on the increasing ramp
of the CO5, concentration: we took one member of the first ensemble on the turn of
year 609 to 610 (i.e., at tj = 610yr)®, and perturbed its surface pressure field by an
amount on the order of 0.1 hPa. This way we obtained 192 approximate replicas of
a weather situation (that of ¢ = 610yr in the chosen ensemble member) occurring
practically on the snapshot attractor. Letting our third ensemble evolve in time is
done in the very same spirit as what is performed by [10]; this way we simulate how
the internal variability emerges from approximate observational data corresponding
to a particular time instant.

In Figure 2, showing the annual mean surface temperature as a function of time
in one particular arbitrarily chosen gridpoint of the Southern Pacific, one can observe
how the different members of the third ensemble (in light blue [light gray in print])
spread out from one point, corresponding to year 609. By t*” ~ 650 yr, the ensemble

5 Note that our calendar starts with year 0.
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average taken over the third ensemble (dark blue line [dark gray in print]) converges
to that taken over the natural distribution of the snapshot attractor (i.e., to the black
line)%, thus ¢/ ~ 40yt here.” A precise estimation of a relaxation time 7 is, in this case,
more difficult, but we estimate it to be 7 ~ 27 yr. It is clear that from ¢*’ ~ 650 yr on,
i.e., after a “fast” (exponential-like) convergence, the third ensemble (which emerges
from realistic initial conditions, i.e., from those that are on the snapshot attractor
but are localized to some particular region of the attractor only) also represents the
natural probability distribution.

As a main consequence which illustrates the importance of the convergence, the
dark blue line [dark gray in print] of Figure 2 represents the response of the system to
the increasing COy concentration faithfully for ¢ > t*" ~ 650 yr (i.e., after a merger
with the black line), but not earlier.

3 General conclusions

The results in Section 2 suggest that a similar investigation of the convergence to
the natural probability distribution of the attractor would be informative also in any
GCM. More generally, this strategy is to be followed in the investigation of any dis-
sipative dynamical system with drifting parameters, both high- and low-dimensional
ones, since all such systems call for a description in terms of snapshot attractors and
ensembles.

High-dimensional systems, like GCMs, have, however, several different time scales
for relaxation; it has been reported e.g. in [10] that: the time scales determined by
the atmosphere, the land and the sea ice are short (up to years), those by the upper
ocean are on the order of several decades, while those by the abyssal circulation are on
the order of thousands of years. The deep ocean was, at the same time, observed by
the authors to change very little during the investigation period of a few centuries. In
this case, we believe, it might be useful to consider the abyssal circulation “frozen-in”
rather than aiming to explore its own internal variability. If the abyssal circulation
proves to be approximately the same in all members of the ensemble, it is meaningful
to concentrate on the internal variability of the rest of the system.

Viewing of a slow dynamics to be “frozen-in” can be relaxed in the following spirit.
The described situation with a large time scale separation appears and is exploited
also in other research areas (e.g., that of subgrid-scale process parametrizations).
Such systems are called “fast-slow systems” [26]. The standard approach separates
variables (possibly after an appropriate coordinate transformation) into two groups:
representing fast and y representing slow variables. Just the opposite to parametriza-
tions, these are the fast x variables that are of (primary) interest regarding climate
change. Regarding y as a parameter a traditional attractor can be defined in the
x-space; and in case of a time evolution of y independent of x (obtained in the spirit
of a so-called deterministic parametrization) a snapshot attractor is present in the
x-space. In our example the abyssal ocean dynamics can be represented by the vari-
ables y, and the rest of the system (including the upper ocean) by the variables x.

5 We represent the snapshot attractor and its natural distribution in this case by an en-
semble initialized at to = 0 and consisting of 192 members — we have 152 additional members
beyond those constituting the ensemble discussed in Figure 1, i.e., the first ensemble of the
paper.

" Tt is illuminating to see the drastic difference between an ensemble property (the thick
blue line [dark gray in print]) and the single time series (the dark gray thin line) of the chosen
originating member. The latter oscillates about the average over the snapshot attractor (the
thick black line) in the entire time span shown, while the former rapidly converges to this
average. This illustrates the clear advantage of the ensemble view.
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However, beside the y terms, in the equations for z genuine external forcing terms
may also be present that have other time scales than y, such as e.g., industrial CO4
emissions or a volcano eruption.

Having numerically constructed the said snapshot attractor for the z variables
alone for the investigation period, the convergence of the ensemble initialized at some
to to the natural probability distribution can be studied in detail. We emphasize that
for such an investigation it suffices to perturb any subset of the = variables, e.g., the
atmospheric variables only (without the upper ocean), as already done in our examples
and in [10]. This would allow identifying the time ¢* from which on the plethora of
the ensemble characterizes appropriately the probabilities of all possibilities that are
permitted by the climate dynamics. As discussed in Section 1, the further evolution of
the ensemble, i.e., for t > t* = tg + t., reflects accurately any changes in the climate,
i.e., in the snapshot attractor and its natural distribution, due to the used external
forcing.

The investigation described here may also be necessary to carry out in any climate
model, in order to obtain solid knowledge and correct results about the climate change
in the particular model that is subject to some particular forcing scenario. Our method
for numerically determining the forced response eliminates the uncertainty of any
single-realization climate projection that originates from the internal variability of
the dynamics. Instead, it offers an opportunity to study also the dynamical structure
and the time evolution of the internal variability itself.
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