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Eötvös University, P.O. Box 32, 1518 Budapest, Hungary

Received 7 February 2017 / Received in final form 21 March 2017
Published online 21 June 2017

Abstract. We analyse the effect of the Basset history force on the sedi-
mentation or rising of inertial particles in a two-dimensional convection
flow. We find that the concept of snapshot attractors is useful to un-
derstand the extraordinary slow convergence due to long-term memory:
an ensemble of particles converges exponentially fast towards a snap-
shot attractor, and this attractor undergoes a slow drift for long times.
We demonstrate for the case of a periodic attractor that the drift of
the snapshot attractor can be well characterized both in the space of
the fluid and in the velocity space. For the case of quasiperiodic and
chaotic dynamics we propose the use of the average settling velocity of
the ensemble as a distinctive measure to characterize the snapshot at-
tractor and the time scale separation corresponding to the convergence
towards the snapshot attractor and its own slow dynamics.

1 Introduction

Recent studies have demonstrated the importance of the history force in the advection
of small inertial particles in different flow types (see e.g., [1–9]). An important effect
that characterizes the dynamics in the presence of this force is the appearance of
extraordinary long, diffusive type, transients [5,7,10,11].
The plethora of possible dynamical behaviors in the cellular flow was explored

without the history force in [12] and in the presence of this force in [5] for both
bubbles and aerosols. Due to the afore-mentioned slow convergence, it was possible
to make only approximate statements about the attractors. Here we concentrate on
a few cases only, but carry out long term simulations. We make use of the so-called
snapshot attractor approach which enables one to explore a time-scale separation, and
identify a short term exponential convergence and a long-term power law behavior.
The paper is organized as follows: we start with the main description of the

flow and the equation of motion for inertial particles in Section 2; then a short
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overview follows about the concept of snapshot attractors and how it will be applied
for this system in Section 3. A detailed analysis of the inertial dynamics with
periodic, quasiperiodic, and chaotic attractors is given in Sections 4.1, 4.2, and 4.3,
respectively. Conclusive comments follow in Section 5.

2 Model

We consider small rigid spherical particles of radius rp carried by a fluid of kine-
matic viscosity ν. The trajectories of such particles are evaluated according to the
Maxey-Riley equation [13,14], including the corrections by Auton and coworkers [15].
This equation describes the dimensionless evolution of the particle position x(t) and
velocity v(t) = dx/dt in a flow field u(x, t) as

dv

dt
= A(u− v) +AWn+ 3R

2

Du

Dt
−
√
9AR

2π

∫ t
0

d(v−u)
dτ√
t− τ dτ, (1)

where Du
Dt
= ∂u
∂t
+ u · ∇u represents the full derivative along a fluid element, du

dt
=

∂u
∂t
+ v · ∇u the derivative along a particle trajectory, and n is a unit vector point-

ing upwards. The last term of this equation represents the Basset history force, the
consequences of which will be discussed in this paper. The form (1) implies that the
initial velocity of the particles coincides with that of the flow: v(0) = u(x0, 0), what
we shall assume throughout the paper.
The parameters of the Maxey-Riley equation are: the inertial parameter

A = R
9ν

2r2p

L

U
, (2)

where L and U are the characteristic size and velocity of the flow (the reciprocal of
A is called the Stokes number), the dimensionless settling velocity in a fluid at rest

W =
gL

U2
R

A

(
3

2
− 1
R

)
, (3)

with g as the gravitational acceleration, and the density ratio

R =
2ρf

ρf + 2ρp
(4)

where ρp and ρf stand for the particle and fluid density, respectively. The value of R
divides the particles into aerosols (R < 2/3) and bubbles (R > 2/3), and relation (3)
expresses the fact that aerosols tend to sediment (W < 0) and bubbles to rise (W > 0).
The velocity field u(x, t) is chosen to be a paradigmatic two-dimensional model

of a convective cell flow, introduced in [16] in its time independent form. It consists
of oscillating cellular vortices in the plane (x, y), where y is the vertical coordinate
increasing upwards. Taking L and U in (2) as a characteristic size and the maximal
velocity within one vortex, respectively, the dimensionless velocity field is written as

u(x, t) = (1 + k sinωt)

(
sin(πx) cos(πy)

− cos(πx) sin(πy)

)
. (5)

The flow is doubly periodic in both directions with a dimensionless spatial period
of 2. We define the unit square containing a single vortex as a box, and the two-
by-two square of four vortices as a cell (with two vortices in the horizontal and
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Fig. 1. Velocity field at time t = 0, represented by small arrows, in the elementary cell, the
cell containing the origin. The left lower box is shaded to indicate that the initial conditions
of Section 4 will be taken from this box.

two in the vertical directions), see Figure 1. Each vortex is rotating in the opposite
direction of its four neighbours, and is subjected to a periodic forcing of dimensionless
period T = 2π/ω. The flow parameters are chosen traditionally as k = 2.72 and ω = π
[17–19], i.e., the dimensionless period is T = 2.
The integration of equation (1) has been performed by a special algorithm which

handles the history force appropriately. The details are described in [5], where an
adapted version of the algorithm presented in [4] was implemented.

3 The snapshot attractor view

In the classical view based on single trajectories, we concluded in [5] that the
attractor can be reached after a very long time only. There is, however, an alternative
view, that of particle ensembles, also available. In autonomous systems the two views
are equivalent, which is not so obvious in non-autonomous problems, like the Maxey-
Riley equation (1). In this class, one defines a snapshot attractor [20] as an object that
attracts all the trajectories initialized in the remote past. It can be obtained by mon-
itoring an ensemble of particle trajectories all subject to the same non-autonomous
equation of motion, the members of which do not interact with each other. After
a characteristic dissipative time, the ensemble traces out a snapshot attractor. This
attractor might, however, move continuously in time. The concept is known for many
years (see e.g., [21,22]), found recent applications in climate dynamics [23–25] and
the ensemble concept also motivates a novel type of experimental approach [26,27].
If the driving is persistent, the snapshot attractor is typically a fractal-looking
object whose shape is evolving in time. With vanishing driving, however, the
snapshot attractor might be nonchaotic and have a time-dependence that ceases
asymptotically [28–30].
In our problem when bubbles rise they often become captured by one of the vor-

tices. In such cases a slow convergence towards a traditional periodic attractor takes
place. One can than assume that close to this attractor the effect of the history
force for neighboring members of the particle ensemble can locally be considered as a
non-autonomous perturbation superimposed on the usual memoryless inertial parti-
cle dynamics. An ensemble of particles might then converge to a snapshot attractor,
a fixed point on the stroboscopic map, after some time. This snapshot fixed point
attractor is then slowly drifting towards the asymptotic traditional attractor. Here a
separation of time scales is expected to occur since the convergence to the snapshot
attractor is a usual dissipative effect, and hence this decay should be exponential,
whereas the slow drift is due to the diffusive Basset kernel, and this leads to a long-
term power-law dependence of the location of the fixed point-type snapshot attractor.
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Fig. 2. Left panel: basins of attraction of different attractors on the plane of initial con-
ditions. Different shades (colors) indicate the periodic attractors located at n units (boxes)
higher. The basin of permanent rising is marked as cross hatched area. In black we indicate
particles that move horizontally across the border to the next box at the left and become
captured there. Central and right panels: the time evolution of the center of mass (black
dots) of the n = 0 ensemble surrounded by a colored disc of the radius of the standard
deviation in the configuration and in the velocity space, respectively. Time is given in units
of the period T . Isolated squares represent the traditional fixed point attractor.

This can be shown by plotting the average distance of the ensemble from the asymp-
totic fixed point attractor on a stroboscopic map taken with the period T , in which
after an exponential initial decay an asymptotic power law approach can be observed.
This behavior was pointed out in [7] for open flows, our study generalizes thus this
approach to spatially periodic or closed flows.
Quasiperiodic or chaotic asymptotic attractors are typical in our problem for the

sedimentation dynamic of aerosols, where the presence of gravity introduces new
aspects for the dynamics. Although a change of the snapshot attractor can also be
observed in these cases, the distance of the ensemble from the asymptotic attractor
is hardly possible to determine. We have found that a physically interesting quantity
of the snapshot attractor is the average settling velocity taken over the ensemble at
any instant of time. It is in this average (as well as in other averages or standard
deviations) in which a short term exponential decay can be identified, followed by a
long-term t−1/2 decay. This observation supports that the phase of exponential decay
can be identified with the convergence towards a (quasiperiodic or chaotic) snapshot
attractor. This attractor exhibits a long-term power law drift towards an asymptotic
traditional attractor.

4 Results

4.1 Periodic attractor

First we consider bubbles with parameters R = 1, A = 5, W = 0.5. Initially N =
10800 such particles are homogeneously distributed in a large portion of the left
lower box of the elementary cell shown in Figure 2. Since light particles are typically
attracted towards vortex centers, the advection dynamics even in the presence of
the history force brings a considerable amount of these particles towards the central
region of this same box, where a periodic attractor is located. A smaller portion of
the ensemble, nevertheless, leaves the box of initialization and moves to the left or
upwards. In Figure 2 we represent with different colors the initial conditions that
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Fig. 3. Average distance of selected ensembles of particles to the usual attractors located
at (x∗n, y

∗
n) as a function of time. The fitted decay exponent is a = 0.15. The dashed curve

shows the time dependence of the average distance in periodic representation (see text).

correspond to attractors in different boxes. The initial conditions of particles that
move to the neighboring box on the left (−1 < x < 0) and are captured there are
indicated with black. Particles that move upwards might be trapped in one of the
next cells, always in the lower left box of the cell, i.e., an even number of boxes
above the box of initialization. The basins of attraction of these periodic attractors
are indicated with different colors (shades) in Figure 2. Initial condition belonging to
a permanent rising upwards are indicated by the cross hatched area.
As a first attempt of the snapshot approach, we consider the sets of particles

that remain in the original box: n = 0, and those who are captured n = 2, 4 or 6
boxes higher. The size of these ensembles are N0 = 5225, and N2 = 444, N4 = 136
and N6 = 66, respectively. On a stroboscopic map taken at integer multiples of T ,
the periodic traditional attractors are found by following single trajectories up to
time about t = 104T to lie at (x∗n, y∗n) = (0.45696165, 0.62604046 + n). We evaluated
the average distance of the ensembles n = 0, ...6 from the corresponding traditional

attractors, i.e., the quantities 〈d〉 = 1/Nn
∑Nn
i=0

√
(xi(t)− x∗n)2 + (yi(t)− y∗n)2, where

i indicates the index of the particles in the ensemble. The results for the functions
〈d〉 vs t are shown in Figure 3 both in a log-lin representation (left panel) and in a
log-log representation. Here and in all the figures of the paper time is measured in
units of T , of the period of the flow. The left panel shows that after some transients
an exponential decay sets in for about 20 periods with the same slope −0.15 in all
cases. The inset is in lin-lin representation and indicates that before being captured at
a box, the rise is approximately linear, and the exponential approach starts only after
the box of final destination has been reached. This exponential phase we attribute to
the approach to a periodic snapshot attractor as such approach to attractors is typical
in dissipative systems. The right panel indicates that after about 80T all ensembles
exhibit a t−1/2 convergence towards (x∗n, y∗n). The size of the ensembles is by this time
very small (less than 10−3, see Fig. 4), thus the time dependence in this phase arises
from a slow drift of the fixed point snapshot attractor to the traditional asymptotic
fixed point attractor. This drift is illustrated by the two right panels of Figure 2 where
the location of the center of mass, i.e., of the fixed point snapshot attractor of the
n = 0 ensemble is plotted as a function of time both in space and velocity. The radius
of the disc about these points is set by the standard deviation of these ensembles. The
fact that their values are negligibly small on the scale of the flow (of a box) supports
the view that these attractors can be considered fixed point attractors. One sees in
the right panels of Figure 2 that the fixed point snapshot attractor still moves after
500T and has yet to reach the traditional attractor represented by the isolated black
squares.
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Fig. 4. Standard deviation of the ensemble of particles σr =
√〈x2〉 − 〈x〉2 + 〈y2〉 − 〈y〉2 for

ensembles n = 0 and n = 2 as a function of time. The fitted decay exponent is a = 0.15. The
gray line in the left panel represents the same for the n = 0 ensemble in the memoryless
dynamics, i.e., by neglecting the history force, and decays with an exponent a0 = 0.3.

The dashed curve in Figure 3 is obtained as the average distance of all the particles
from the single traditional attractors in periodic representation, i.e., after shifting all
coordinates back vertically into the original box whenever the elementary cell is left.
While the power law behavior is exactly the same as in the individual ensembles,
there is no straight line behavior in the left panel. We thus conclude that a periodic
representation of these data would not indicate the exponential behavior since it sets
in after different transients in the ensembles of different n values. Therefore the curve
resulting in the periodic representation is bent.
To make the picture more complete, we evaluated the standard deviations in

the configuration space of the ensembles at any instant of time, which correspond
to the average size of the ensemble in the flow. These quantities are conceptually
different from the distances used above since they are independent of the location
of the traditional attractor, and are thus also easier to determine. The results for
the two largest ensembles n = 0 and n = 2 are plotted in Figure 4. The left panel
shows again an exponential decay up to about 40T with the same slope −0.15 for
both ensembles. Here we also indicated the size of the n = 0 ensemble without the
history force (gray line) whose decay is exponential, too, but much faster, of the
slope (−0.30). This clearly illustrates that the history force makes the dynamics
less dissipative than the memoryless dynamics, as observed by several authors (see
e.g., [1,3,7,10]). We note that the standard deviation in the velocity space (not shown)
reveals the same decay rates as those in the left panel of Figure 4, followed by a t−1/2
asymptotics.

4.2 Quasiperiodic attractor

To study quasiperiodic attractors we chose the case of aerosol particles with parame-
ters R = 0.5, A = 5, W = −0.5. We note that there are also parameters where the
dynamics of bubbles are governed by quasiperiodic attractors, however this type of
motion is more typical for sedimentation. Aerosols with these parameters fall through
all the cells and their motion is governed by four different quasiperiodic attractors,
depending on the initial condition. We illustrate the approach to two traditional at-
tractors in Figure 5. In fact, using the moral learned in the periodic case, we take
snapshot attractors which are assumed to be close to the traditional ones after long
times, here at t = 1000T . Remember that the distance between the traditional and
the snapshot fixed point attractors at this time was on the order 2× 10−3 in Figure 3.
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Fig. 5. Left: two quasiperiodic snapshot attractors (one marked in black and the other one in
blue/grey) after 1000T on the stroboscopic map in periodic representation. The inset shows
both attractors in the velocity space. Right: the shape of the ensembles at earlier times:
red/dark grey dots at 300T , light grey dots at 500T . For these plots we took an ensemble of
N = 104 particles initialized within a square: x ∈ [0.33, 0.66] vs. y ∈ [0.33, 0.66], uniformly
distributed. The ensembles are then split into two according to the coloring in the left panel.

For simplicity, a periodic representation of the snapshot attractors is used here, i.e.,
the points of any trajectory on the stroboscopic map are shifted back to the ele-
mentary cell, the left half of which is shown in the figure. An ensemble of N = 104

points is initiated in the middle of this region. At 1000T one sees that the points can
be grouped in two disjoint sets, two snapshot attractors exist. The one consisting of
loops is marked in blue/grey, the other one in black. The right panel illustrates how
this pattern evolves in time.
The larger pattern (red/dark grey) belonging to the earlier time instant appears

to trace out a loop and an arch which are connected. In the smaller pattern (light
grey) of a later time instant, the loop and the arch are detached (their shape slightly
differs from the red ones and both are thinner than in red/dark grey). This indicates
that the single snapshot attractor bifurcates into two disjoint ones at about 500T .
The time evolution of the snapshot attractor can be quantified in a compact way

by following any averaged quantity taken over the ensemble as a function of time. In
the context of sedimentation, perhaps the most natural choice is the average vertical
velocity 〈vy〉. We evaluated this average over both attractors and found a very slow
convergence towards a constant terminal velocity (which are slightly different on the
two attractors). In Figure 6 we show the results for the black ensemble only. The left
upper panel shows 〈vy〉 on the stroboscopic map as a function of time. The fact that
an oscillatory behavior appears here to be superimposed on a smooth dependence is a
clear sign of the quasiperiodic nature of the problem: besides T , other frequencies are
also present in the dynamics. Inspite of the fluctuations, one sees a fast first increase
in the average falling speed up to about 50T . After this, a plateau is formed on
which a slow converges to a constant occurs. As a first approximation to the terminal
settling velocity W ∗ we take the last value of 〈vy〉, 〈vy〉(1000 T ) = −0.7258. Plotting
the difference 〈vy〉 −W ∗ as a function of time on a log-log plot, an asymptotic straight
line of slope −1/2 can be observed, similar to what is visible in the right panel. By
slightly changing the value of W ∗, it was possible to find in some cases a better fit
to a straight line. In a self-consistent way, we considered the W ∗ value to be the true
terminal velocity which provides the best long term power law fit to the difference,
and this is plotted in the right panel. The left lower panel shows the same quantity
on a log-lin representation and reveals an exponential decay of slope −0.075.
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Fig. 6. Convergence towards a terminal velocity on the attractor marked in black in Figure 5,
represented by an ensemble of 2582 particles from the total ensemble. Left upper panel: 〈vy〉
vs time. Dashed red line represents the value ofW taken in (1). The terminal velocity is thus
faster in our flow than in a fluid at rest. Right panel: the quantity ln (〈vy〉 −W ∗) vs. ln t
with W ∗ = −0.732. Left lower panel: ln (〈vy〉 −W ∗) vs. t and a linear fit of slope a = 0.075
over the range 10− 40T .

Fig. 7. Snapshot chaotic attractors on the stroboscopic map in periodic representation in
time window [100T, 110T ] in black, overlaid with the ones from the window [990T, 1000T ]
in red/dark grey.

4.3 Chaotic attractor

As a last example we take aerosols with parameters: R = 0.5, A = 1.27, W = −2.05.
In this case a single asymptotic chaotic attractor governs the sedimentation. We start
with an ensemble of N = 3600 particles initialized in the left lower corner of the
cell: x ∈ [0, 0.66], y ∈ [0, 0.66]. In this system, additionally to the chaotic attractor,
there is a regular attractor which corresponds to particles falling at the division
between cells, i.e., along the vertical line x = 0, x = 2. All particles that converge to
this simple attractor are carefully eliminated, thus we discuss quantities attributed
only to particles advected chaotically.
Figure 7 exhibits the snapshot attractor on the stroboscopic map, the instanta-

neous pattern traced out by the ensemble, in a time window about t = 100T in black,
superimposed on this with red/grey the snapshot attractor in a time window about
t = 1000T . Both patterns are fractal like, but differ from each other, i.e., the snapshot
chaotic attractor is also changing in time.
The ensemble average of the settling velocity 〈vy〉 changes similarly as in the left

panel of Figure 6, therefore we do not show this graph here. The only difference is
that the settling velocity with such particles is smaller in this cellular flow than in a
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−1.9479, a = 0.2. The ensemble was initialized in the square: x ∈ [0, 0.66] vs. y ∈ [0, 0.66].

still fluid. In Figure 8 we plot the average settling velocity on the snapshot attractor
and its convergence towards a terminal velocity. Here again a long-term power-law
decay is found with a fitted terminal velocity W ∗ = −1.9479 (left panel) preceded by
an exponential decay (right panel) of slope −0.20.

5 Conclusion

We have applied the concept of snapshot attractors to interpret the transient dynam-
ics in the advection of inertial particles subjected to gravity in the presence of history
force. This approach offers a clear interpretation of the well-known extraordinary slow
convergence of single trajectories to attractors by applying an ensemble view. This
shows a separation of the dynamics into two phases: a short-term exponential conver-
gence of the particle ensemble towards a snapshot attractor, followed by a very slow
drift or deformation of this snapshot attractor both in the space of the fluid and in the
full phase space. This latter phase is governed by a power law decay as a consequence
of the diffusive nature the history kernel. These two phases can also be observed in
any average taken over the ensemble. In the context of sedimentation, a physically
relevant ensemble average is that of the settling velocity in which we also find a short-
term exponential decay, followed by a t−1/2 convergence towards a constant terminal
velocity. Our results imply that stationary statistics of the particle motion with the
history force are expected to set in after very long transient periods only. This can be
also expected for processes like collisions and aggregation-fragmentation, which are of
high importance for environmental phenomena, e.g., in the formation and settling of
marine snow [11,12,19]. Based on our findings, we claim that also for these processes
the snapshot attractor approach is a useful tool for the understanding of the transient
non-stationarity of the statistics.

The authors would like to wish Ulrike Feudel a happy birthday!
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