
OFFPRINT

Chaotic explosions

Eduardo G. Altmann, Jefferson S. E. Portela and
Tamás Tél

EPL, 109 (2015) 30003

Please visit the website
www.epljournal.org

Note that the author(s) has the following rights:
– immediately after publication, to use all or part of the article without revision or modification, including the EPLA-

formatted version, for personal compilations and use only;
– no sooner than 12 months from the date of first publication, to include the accepted manuscript (all or part), but

not the EPLA-formatted version, on institute repositories or third-party websites provided a link to the online EPL
abstract or EPL homepage is included.
For complete copyright details see: https://authors.epletters.net/documents/copyright.pdf.



A LETTERS  JOURNAL  EXPLORING  
THE  FRONTIERS  OF  PHYSICS

AN INVITATION TO 
SUBMIT YOUR WORK

www.epljournal.org

The Editorial Board invites you to submit your letters to EPL

EPL is a leading international journal publishing original, innovative Letters in all 

areas of physics, ranging from condensed matter topics and interdisciplinary 

research to astrophysics, geophysics, plasma and fusion sciences, including those 

with application potential. 

The high profile of the journal combined with the excellent scientific quality of the 

articles ensures that EPL is an essential resource for its worldwide audience.  

EPL offers authors global visibility and a great opportunity to share their work  

with others across the whole of the physics community.

Run by active scientists, for scientists 

EPL is reviewed by scientists for scientists, to serve and support the international 

scientific community. The Editorial Board is a team of active research scientists with 

an expert understanding of the needs of both authors and researchers.

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 105  Number 1 

January  2014

ISSN 0295-5075 www.epl journal.org

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 103  Number 1 

July 2013

ISSN 0295-5075 www.epl journal.org

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 104  Number 1 

October 2013

ISSN 0295-5075 www.epl journal.org

www.epljournal.org



 www.epljournal.orgA LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Quality – The 50+ Co-editors, who are experts in their field, oversee the 

entire peer-review process, from selection of the referees to making all 

final acceptance decisions.

Convenience – Easy to access compilations of recent articles in specific 

narrow fields available on the website.

Speed of processing – We aim to provide you with a quick and efficient 

service; the median time from submission to online publication is under  

100 days.

High visibility – Strong promotion and visibility through material available 

at over 300 events annually, distributed via e-mail, and targeted mailshot 

newsletters.

International reach – Over 2600 institutions have access to EPL,  

enabling your work to be read by your peers in 90 countries.

Open access – Articles are offered open access for a one-off author 

payment; green open access on all others with a 12-month embargo.

Details on preparing, submitting and tracking the progress of your manuscript  

from submission to acceptance are available on the EPL submission website 

www.epletters.net.

If you would like further information about our author service or EPL in general, 

please visit www.epljournal.org or e-mail us at info@epljournal.org.

Six good reasons to publish with EPL
We want to work with you to gain recognition for your research through worldwide 

visibility and high citations. As an EPL author, you will benefit from:560,000
full text downloads in 2013

OVER

24 DAYS

10,755

average accept to online 

publication in 2013

citations in 2013

1

2

3

4

5

6

www.epljournal.org

EPL is published in partnership with:

IOP PublishingEDP SciencesEuropean Physical Society Società Italiana di Fisica

“We greatly appreciate 

the efficient, professional 

and rapid processing of 

our paper by your team.”

Cong Lin

Shanghai University



February 2015

EPL, 109 (2015) 30003 www.epljournal.org

doi: 10.1209/0295-5075/109/30003

Chaotic explosions

Eduardo G. Altmann1, Jefferson S. E. Portela1,2 and Tamás Tél3

1 Max Planck Institute for the Physics of Complex Systems - 01187 Dresden, Germany
2 Federal Technological University of Paraná - Pato Branco, PR, Brazil
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Abstract – We investigate chaotic dynamical systems for which the intensity of trajectories
might grow unlimited in time. We show that i) the intensity grows exponentially in time and
is distributed spatially according to a fractal measure with an information dimension smaller
than that of the phase space, ii) such exploding cases can be described by an operator formalism
similar to the one applied to chaotic systems with absorption (decaying intensities), but iii) the
invariant quantities characterizing explosion and absorption are typically not directly related to
each other, e.g., the decay rate and fractal dimensions of absorbing maps typically differ from
the ones computed in the corresponding inverse (exploding) maps. We illustrate our general
results through numerical simulation in the cardioid billiard mimicking a lasing optical cavity,
and through analytical calculations in the baker map.

editor’s  choice Copyright c© EPLA, 2015

Introduction. – Fractality is a signature of chaos ap-
pearing in strange attractors and in the invariant sets of
open dynamical systems [1–3]. Here we are interested in
systems in which trajectories have associated to them a
time-varying intensity. In a recent work [4] we showed
that fractality in chaotic systems in which the intensity
of trajectories decays due to absorption can be described
by an operator formalism and that absorption leads to
a multi-fractal spectrum of the decaying state. In this
work we investigate the dynamical and fractal properties
of systems containing gain (i.e., negative absorption). In
systems with gain the energy or intensity of trajectories
increases in time, e.g., the intensity of a ray grows while
it is in a gain medium or is multiplied by a factor larger
than one when reflected on a wall.

Optical microcavities provide a representative physi-
cal system of the general dynamical-systems picture de-
scribed above. The formalism of open chaotic systems
has been extensively used to describe lasing properties
of two-dimensional optical cavities [5,6]. The success of
this approach relies on the use of long-living ray tra-
jectories to describe the lasing modes. This is justified
because lasing modes are induced by the gain medium
present in optical cavities and only long-living trajectories
are able to profit from this gain. The relevance of gain

led to specific investigations of its role in experiments [7]
and wave simulations [8], but we are not aware of ray
simulations which have explicitly included gain. This
is a crucial issue especially when the gain is not uni-
formly distributed in the cavity, as in the experiments of
ref. [7].

We consider chaotic billiards with gain as models of
optical microcavities. In fig. 1 we show simulations of
trajectories that bounce elastically, but whose intensities
increase exponentially in time with rate g while passing
through a gain region (the gray disc in fig. 1(a)). For long
times, the total intensity grows exponentially in time and
the spatial distribution (obtained for any t normalizing
over the phase space) approaches a fractal density ρc. We
call this phenomenon a chaotic explosion.

In this letter we show that chaotic systems with gain
can be treated with the same formalism of systems with
absorption but that the properties of these two classes
of systems cannot be trivially related to each other. We
obtain general results for the fractality and for the in-
verse map of systems with gain/absorption, which are il-
lustrated analytically in the baker map and numerically in
the cardioid billiard. For optical microcavities, our results
show how gain can be introduced in the ray description
and how it affects the far-field emission, demonstrating
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Fig. 1: (Colour on-line) Explosion in a fully chaotic billiard. (a) Cardioid billiard, whose boundary in polar coordinates is
r(φ) = 1 + cos(φ) with φ ∈ [−π, π] [9]. The gain region (gray, marked by g) is a disc of radius 0.5 in the middle of the billiard.
(b) Collision time distribution τ(�x) in the cardioid billiard (velocity modulus is unity). Birkhoff coordinates �x = (s, p = sin θ)
are used, where s is the arc length along the boundary and θ is the collision angle. (c) Reflection coefficient distribution:
R(�x) = egτg with g = 1 and τg given by the length of the intersection of the ray with the gain region. (d) Time-independent
density ρc in the phase space. (e) Time-dependence of the intensity integrated over the phase space. The explosion rate
κ ≈ 0.215 is the slope of the curve (note the log scale). The inset shows the non-exponential behavior for short times.

also in the ray description that lasing is not determined
by the shape of the (passive) cavity alone.

True-time maps with gain. – We consider an ex-
tended map which includes, besides a usual map f , the
true physical time tn and the ray intensity Jn at the n-th
intersection �xn with a Poincaré section as [10,11]

fext :

⎧

⎪

⎨

⎪

⎩

�xn+1 = f(�xn),

tn+1 = tn + τ(�xn),

Jn+1 = JnR(�xn),

(1)

where the return time τ(�x) ≥ 0, chosen as the time be-
tween intersections �x = �xn and �xn+1 = �x′ ≡ f(�x) (for
billiards, τ is the collision time between two consecutive
bounces with the wall), and the reflection coefficient R(�x)
are known functions of the coordinate �x on the Poincaré
section. Cases in which gain occurs continuously in time
(not only at the intersection with the Poincaré section)
correspond to a reflection coefficient R(�x) = egτg(�x), where
g is the gain rate and τg is the time spent in the gain region
(τg = τ if gain is uniform in the billiard table). Explosion
occurs if R(�x) > 1 for a sufficiently large region of �x.

We are interested in the density ρ(�x, t) (i.e., the col-
lective intensity of an ensemble of trajectories) at time t
in �x. Here we consider the class of (ergodic and chaotic)
maps f(�xn) for which we show that for any smooth initial
ρ(�x, t = 0) one observes for long times

ρ(�x, t) ∼ ρc(�x)eκt, (2)

where κ is the temporal rate of the total energy change (an
explosion rate for κ > 0) and is independent of ρ(�x, t = 0).

We can expect that ρc(�x) of (2) is the attracting density
of an iteration scheme for ρ(�x) of the extended map (1).
With a compensation factor e−κτ(�x) per iteration, this
scheme evolves a density ρn(�x) at discrete time n into
ρn+1(�x) at the next intersection with the Poincaré surface
of section as

ρn+1(�x
′) =

∑

�x∈f−1(�x′)

e−κτ(�x) R(�x)ρn(�x)

| Df (�x) | , (3)

where Df represents the Jacobian of the Poincaré map f .
In the special case of invertible area-preserving dynamics
(as in the billiard of fig. 1), Df (�x) = 1 and there is no sum
in (3) (map f has a single preimage).

In any extended map, there exists one κ —the one ap-
pearing in eq. (2)— for which ρc(�x) arises as the limiting
(n → ∞) distribution of ρn(�x) iterated by scheme (3).
The right-hand side of eq. (3), with the proper κ, is
an operator with largest eigenvalue unity and ρc as the
corresponding eigenfunction. The second-largest eigen-
value controls the convergence of a smooth initial den-
sity ρ0 to ρc. In agreement with the physical picture,
we see that for extended maps fext there are three dif-
ferent factors contributing to the density ρ: reflectivity
R, return times τ , and stretching of phase space vol-
ume Df . The rate κ follows from the constraint that the
compensated intensity neither increases nor decreases for
large n [3].

Comparing with our previous results [4,6], we see
that (3) is an extension to cases with R > 1 of the
Frobenius-Perron operator considered previously only in
systems with absorption (R ≤ 1 for any �x). The explo-
sion rate κ plays the role of a negative escape rate and
the attracting limit distribution ρc is the conditionally in-
variant density [6] (also known as the steady probability
distribution in the optics community [12,13]). By inte-
grating, for n → ∞, (3) over all �x′, the left-hand side is
unity due to normalization of ρn(�x), while the right-hand
side is an average taken with respect to ρc. This yields
(see also ref. [4]) 〈e−κτR〉c = 1. For chaotic explosions
this means that typically R > 1, but its reduced value
e−κτR taken with the proper explosion rate averages out
to unity if the average is taken with the ρc associated
to κ.

General features. – It is remarkable that the formal-
ism of transient chaos [2,3] can be applied with slight
modifications to describe chaotic explosions. Below we
use this formalism to explore the most interesting effects
of gain (R > 1).
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Fractality. We first derive general relations between
the fractality of ρc —the eigenfunction of eq. (3)— and
the distributions (τ(�x), R(�x)) characterizing the extended
map fext. Let us consider the map f in (1) to be invertible
and two-dimensional. We are interested in the dynamics
within a region of interest Γ only, which has a size of order
unity in appropriately chosen units. Considering the n-th
image and preimage of Γ taken with the map f , we find
for n ≫ 1 a set of narrow “columns” in the unstable di-
rection and narrow “strips” along the stable directions, as
illustrated in fig. 2. They are good approximants of the
unstable and stable foliation of the chaotic set (a chaotic
sea or an attractor in closed systems, or a chaotic saddle
in open ones) underlying the dynamics. Each of them con-
tains an element of an n-cycle [1,3], i.e., a point which is
mapped by f onto itself after n iterations.

Let us focus on such an n-cycle point at the intersection
of strip j and column i (drawn with bold lines in fig. 2).
Due to the permanent contraction in the stable direction,

the width of column i is approximately ε
′(n)
i = eλ′(n)

i
n

where λ′(n)
i < 0 is the contracting Lyapunov exponent

around the cycle point over discrete time n. Similarly, the

height ε
(n)
j of strip j is ε

(n)
j = e−λ

(n)
j

n, where λ
(n)
j > 0 de-

notes the corresponding positive Lyapunov exponent. By
construction, points starting in strip j spend the domi-
nant part of their lifetime n in the close vicinity of the

hyperbolic cycle in question (which belongs to the chaotic
set). Therefore, for large n nearly all points in the strip

are subjected to an average stretching factor eλ
(n)
j

n (in
the unstable direction). In an extended map fext, ob-
tained from f through eq. (1), these points experience an

average collision time τ
(n)
j =

∑n
k=1 τk/n and an average

gain/reflection coefficient R
(n)
j = (Πn

k=1Rk)1/n while be-
ing around the n-cycle, where τk and Rk denote the colli-
sion time and reflection coefficient, respectively, belonging
to element k of the n-cycle.

In the spirit of operator (3) valid for fext, the density
on the images of strip j is the density of strip j multiplied
(in each iteration) by a factor Rke−κτk . Starting with

an initial unit density, the area ε
(n)
j × 1 of strip j should

be multiplied in fext by a factor e−κτ
(n)
j

n+n ln R
(n)
j by the

end of n iterations. Since the n-th image of strip j with
respect to f is column i, by construction, the measure
accumulating on column i is

μ
(n)
i = e−κτ

(n)
j

n+n ln R
(n)
j ε

(n)
j = e

“

ln R
(n)
j

−κτ
(n)
j

−λ
(n)
j

”

n
. (4)

The existence of a time-independent measure implies that

with the proper value of κ we have
∑

i μ
(n)
i = 1.

In the spirit of dynamical systems theory, we associate
with strip j the measure that its points represent after n

steps. Therefore, the measure μ
(n)
j of strip j is

μ
(n)
j = μ

(n)
i . (5)

Fig. 2: Schematic diagram of the phase-space partitioning
around a hyperbolic chaotic set obtained taking the n ≫ 1
fold image and preimage of the region of interest Γ with re-
spect to the (usual) map f . These define narrow strips and
columns overlapping with branches of the stable (s) and un-
stable (u) manifold, respectively. The emphasized strip and
column belong to a n-cycle point (•) on the chaotic set.

The relation expresses that fext maps the measures of the
stable and unstable directions into each other.

We now focus on fractal properties of this measure. Sys-
tems described by closed maps f with gain have a trivial
fractal dimension D0 equal to the phase space dimension.
Their fractality requires thus the computation of the gen-
eralized dimensions [1,3]

Dq =
1

1 − q
lim
ε→0

ln
∑

k μq
k

ln 1/ε
, (6)

where μk is the measure of the k-th box in a coverage
with a uniform grid of box size ε, and the sum is over
non-empty boxes.

A general result can be obtained for the information
dimension D1. For a general one-dimensional distribution
containing measures μα in intervals of different sizes εα we
have for small εα [1,3]: D1 =

∑

α μα lnμα/
∑

α μα ln εα.
Now, take a section of strip j along the unstable foliation

(u), and associate the measure of the strip μ
(n)
j to the

interval size ε
(n)
j . In the limit n ≫ 1 the sizes are small,

and substituting eqs. (4), (5) in the D1 formula above, we

obtain the partial information dimension D
(1)
1 along the

unstable direction as

D
(1)
1 = 1 +

κτ̄ − lnR

λ̄
. (7)

The averages denoted by overbars are taken over the
chaotic set (e.g., λ̄ is the positive Lyapunov exponent on
the saddle). This is so because, as argued above, the tra-
jectory effectively experiences collision times τ , reflection
coefficients R, and local Lyapunov exponents λ (of the
usual map f) close to an unstable cycle (which belongs to
the chaotic set). Quantities characterizing the map (λ̄),
the collision times (τ̄), and the gain (lnR) determine a
fractal property (D1) via the simple relation (7). Fractal-

ity is non-trivial if D
(1)
1 < 1, implying κτ̄ < lnR (for a pos-

itive rate κ), i.e., R > 1 in a sufficiently extended region.
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Repeating the calculation along a section parallel to the

stable foliation (s) we find D
(2)
1 , the partial information

dimension along the stable direction. Since the measures
are the same (see (5)), the difference follows from the sizes

which are ε
′(n)
i now, and we find

D
(2)
1 | λ̄′ |= D

(1)
1 λ̄. (8)

The overall information dimension of the chaotic set with
the measure of fext is D1 = D

(1)
1 + D

(2)
1 . The derivation

above holds for any value of R and therefore generalizes
the results of ref. [4], where we conjectured eq. (7) (with
a negative κ) for strictly absorbing cases (R ≤ 1). The
case of usual maps (τ = 1, R = 1) follows as a limit:
if the map is closed (no loss in any sense), κ = 0, and
D1 = 1 + λ̄/ | λ̄′ |, i.e. we recover the Kaplan-Yorke
formula [1] (D1 = 2 for area-preserving maps); if the map
is open (trajectories escape), κ < 0, and eqs. (7) and (8)
go over into the Kantz-Grassberger formulas [2,3].

Inverse map. Besides the physical motivation to study
gain, a natural question that can only be answered con-
sidering both R > 1 and R < 1 is the one of the inverse of
the extended map defined in eq. (1), which we denote by
f inv
ext and define implicitly by fext ◦f inv

ext = I, where I is the
identity. If fext has R > 1, then f inv

ext should compensate
this with R < 1.

For f inv
ext to exist, the usual map f has to be invertible

(i.e., f must have a single pre-image). Consider the case
in which the dynamics is defined in a bounded region, i.e.,
f is closed. In this case the procedure for defining f inv

ext is
to take f−1 of the usual map f and attribute to x′ = f(x)
the negative of the same return time τ inv(x′) = −τ(x) < 0
and the inverse reflection coefficient Rinv(x′) = 1/R(x).
We can therefore write

f inv
ext :

⎧

⎪

⎨

⎪

⎩

�xn+1 = f inv(�xn) = f−1(�xn),

tn+1 = tn + τ inv(�xn) = tn − τ(f−1(�xn)),

Jn+1 = JnRinv(�xn) = Jn/R(f−1(�xn)).

(9)

The iteration corresponding to (3) of the inverted ex-
tended map in cases when f describes a closed map is

ρn+1(�x
′ ≡ f−1(�x)) = eκinvτ inv(�x) Rinv(�x)

| Dinv
f (�x) |ρn(�x)

= e−κinvτ(�x′) (1/R(�x′))

| 1/Df (�x′) |ρn(�x).

(10)

This equation is different from the operator of fext in
eq. (3). Therefore, for extended maps the chaotic prop-
erties (κ, fractality, etc.) of maps fext and f inv

ext typically
differ. In particular, the rate κinv of the inverse map is
not −κ (nor any simple function of κ)1.

1Even if the dynamics is volume preserving (Df = 1), the eigen-
value and eigenfunction of eqs. (3) and (10) differ. If in addition
τ(x) ≡ 1, the inverse map is equivalent to the forward map after
R(�x) is replaced by 1/R(f−1(�x)), see eq. (10).

The difference in the asymptotic rates κinv �= −κ seems
to contradict the fact that, by definition, maps fext and
f inv
ext cancel each other, i.e., the gain and loss resulting from

n applications of one map is exactly compensated by n
applications of the other map (for arbitrarily large n). The
solution of this apparent paradox is that the asymptotic
densities of the forward ρc and inverse ρinv

c maps differ.
Taking ρc (or ρinv

c ) as initial condition ρ0, κinv = −κ.
However, these are atypical ρ0. Generic ones converge
exponentially fast to the ρc of the corresponding map.

Many systems of interest are not restricted to a bounded
phase space Ω, as considered above. For instance, in
scattering systems one usually defines a bounded region
Γ of interest (which contains all periodic orbits and the
chaotic saddle), but the dynamics is defined in the full
phase space. In this case, the inverse map is defined as
above in the whole space, with the same region of interest
Γ since the chaotic saddle is invariant. Another case of in-
terest is the one of total absorption in a localized region,
i.e., R(�x) = 0 for some �x ∈ Ω. In this case, the inverse
map can be defined only as the limiting case of R → 0+.

Who wins? In a general system both gain and absorp-
tion coexist and a natural question is whether decay or
explosion is observed globally. This is a priori unclear be-
cause of the non-trivial nature of the asymptotic density
ρc(�x). When half of the phase space has RL and the other
half RR as reflection coefficients one would intuitively ex-
pect for an ergodic system that a steady state is found
with RLRR = 1. When taking the return times τi into
account, intuition says that for RLRR = 1 the behavior
that dominates is the one associated with the half space
characterized by smaller collision times (with more colli-
sions per time unit). As shown below, these two intuitions
are not generally correct.

A particularly interesting case is the one of energetic
steady states when the total energy neither grows nor de-
creases in time (κ = 0), in spite of local gains and losses.
Situations with κ ≈ 0 remain unchanged for long times
and are thus easy to observe. In this case there is no need
for any extraction of intensity and the corresponding iter-
ation scheme is given by eq. (3) without the term e−κτ(�x),
i.e., the usual Frobenius-Perron equation for closed sys-
tems (even if f is open). The density ρc is invariant (not
conditionally invariant), does not depend explicitly on the
return times τ , and D1 is given by (7) with κ = 0. As
shown below, this configuration leads to a fractal invari-
ant density even for volume-preserving dynamics.

Examples. – In this section we use specific systems
to explore the general results reported above. First, we
consider the analytically treatable closed area-preserving
baker map defined in fig. 3 [1,3]. Initially ρ0 ≡ 1. In the
next step, ρ0 is multiplied by Rke−κτk , k = 1 or 2, leading
to two vertical columns of width 1/2 lying along the x = 0
and x = 1 lines. They carry measures P1 and P2 where

Pk = Rke−κτk/2, k = 1, 2. (11)

30003-p4
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f

x
y

R2

R1

τ1

τ2 f

Fig. 3: (Colour on-line) Action of the closed area-preserving
baker map f with gain on the unit square. The map f is defined
as (x, y)′ = (x/2, 2y) for y < 0.5 and (x, y)′ = (x/2+0.5, 2y−1)
for y > 0.5 and extended —as in eq. (1)— by assigning R =
R1(R = R2) and τ = τ1(τ = τ2) to trajectories in the lower
(upper) half.

The construction goes on in a self-similar way, and the
condition that the measure after appropriate compen-
sation remains bounded (ρc is reached) corresponds to
(P1 + P2)

n = 1, even after n ≫ 1 steps. We thus find
as an equation specifying the explosion rate κ

P1 + P2 = 1. (12)

Fractality. The fractality of the baker map can be

calculated explicitly. The generalized dimensions D
(2)
q of

ρc along the stable (horizontal) direction is derived from

eqs. (6) and (11) as D
(2)
q = ln (P q

1 + P q
2 )/[(1 − q) ln 2]. In

the limit of q → 1 the D1 is obtained as

D
(2)
1 = 1 − [−κτ̄ + lnR]/ ln 2

= 1 − −κ(τ1P1 + τ2P2) + P1 lnR1 + P2 lnR2

ln 2
,

(13)

which is an equivalent derivation of the general for-
mula (7) obtained by identifying Pi with the measure on
the chaotic set.

As a particular case, consider τ2 = 2τ1 ≡ 2τ and
R1 = 4, R2 = 2. From eq. (12) a quadratic equation is ob-
tained for x ≡ e−κτ > 0, leading to x =

√
2− 1 and there-

fore a positive (explosion) rate κ = − ln (
√

2 − 1)/τ ≈
0.881/τ . Parameters P1 and P2 are then 2x and x2,
respectively. The average return time is τ̄ = τ2x+2τx2 =
2τ(2 −

√
2) while the average of lnR is found to be

(2
√

2−1) ln 2. The numerator of the fraction in the paren-
thesis of eq. (13) is 2(2−

√
2) ln (

√
2 − 1)+(2

√
2−1) ln 2 ≈

0.235. This is positive, rendering D
(2)
1 = 1− 0.235/ ln 2 ≈

0.616 < D
(2)
0 = 1, a clear sign of the multifractality of ρc.

Inverse map. The inverse of the baker map discussed
above is computed using the general relation (9). Symme-
tries and Df = 1 make the inverse map to be equivalent
(after a transformation x �→ y, y �→ x) to the forward
map after replacing Ri by 1/Ri and τ by −τ (see fig. 3).
In the example discussed above this corresponds thus to
τ2 = 2τ1 = −2τ,R1 = 1/4, R2 = 1/2, which leads to
x ≡ e−κτ = (

√
65 − 1)/4. This is larger than 1, imply-

ing a negative κinv ≈ −0.568/τ , i.e. an escape rate, a
global decay of intensity towards zero. In fig. 4 we confirm

Fig. 4: (Colour on-line) Explosion and escape rates κ in the for-
ward and inverse (extended) baker map. Points are distributed
at t = 0 uniformly in the phase space with Ji = 1 and then it-
erated using eq. (1) with f defined in fig. 3, τ2 = 2τ1 ≡ 2τ , and
R1 = 4 = 2R2. The energy density ρ(t) is computed as the av-
erage intensity of all trajectories ρ =

PN

i=1
Ji/N at time t.

The forward map shows a growing energy in time (t > 0,
blue line) while the corresponding inverse map (t < 0, red
line) shows a decaying energy. Dashed lines are the analytical
calculations.

that these analytical calculations agree with simulations
of individual trajectories. The different slopes confirm the
general result | κ |�=| κinv |. In the previous section we
related this apparent paradox to the difference between ρc

and ρinv
c , which can be quantified by D1. From eq. (13),

D
(2)inv
1 ≈ 0.783 �= 0.661 ≈ D

(2)
1 . Non-trivial fractality is

preserved despite the change of sign in κ.

Who wins? We allow for competition between gain
and absorption in the particular example defined above
by writing Ri(α) = αRi, with 0 < α < 1. Because
of (12), this leads with R1 = 4 = 2R2 to an α-dependent
explosion rate κ(α) given by e−κ(α)τ =

√

1 + 1/α − 1.
Decreasing α from unity, this quantity is less than unity
but increases with decreasing α. At α � 1/2 absorption
and gain coexist (R2(α) < 1) but explosion still domi-
nates (κ > 0). For α < αc = 1/3 absorption dominates
(κ < 0). At the critical value α = αc, κ = 0, which is
the steady state condition2, R1c ≡ R1(α = αc) = 4/3,
R2c ≡ R2(α = αc) = 2/3, P1c = 2/3, P2c = 1/3, the
average of lnR is 5/3 ln 2 − ln 3, and thus eq. (7) yields

again fractality D
(2)
1 = 1 − lnR/ ln 2 = 0.919 for any

τ1, τ2.

Even though the return times τi are irrelevant at the
steady state, the steady state is not achieved at R1R2 = 1.
In our example, R1(α)R2(α) = 8α2 = 1 for α = 1/

√
8 =

0.354 > αc = 1/3 (explosion). This remains valid in
maps (τi = 1) for any R1, R2: introducing R1 = 1/R2

in eq. (12) leads to κτ = ln ((R1 + 1/R1)/2) ≥ 0. The
steady-state condition is thus not R1R2 = 1, but rather
R1 + R2 = 2.

As a final illustration of the significance of our general
results, we perform numerical simulation of rays in an

2For general Ri and τi, eq. (12) yields αc = 2/(R1 + R2).
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Fig. 5: (Colour on-line) Ray emission from an optical cardioid
billiard with gain and transmission. (a) Asymptotic rate κ as
a function of the gain strength g. The steady state κ = 0 is
achieved at g = g∗ ≈ 1.0367, the lower inset shows the invariant
density ρc for this case. (b)–(d) Long-time (t ≫ 1) emission
E(Φ) of intensity J in the far-field angle Φ (normalized as
R

E(Φ)dΦ = 1) for (b) g = 0, no gain and decaying intensity:
κ < 0; (c) g = g∗, steady state, κ = 0; (d) g = 2, explosion,
κ > 0. The intensity of rays grows with rate g at the gain
region (gray circle, see also fig. 1) and is split between reflected
and transmitted rays for small collision angles θ. This leads
to a partial optical reflection Ro(θ) = [sin(θT − θ)/ sin(θT +
θ)]2 < 1 for | p |≡| sin θ |< 1/η, where we used η = 3 and
the transmitted angle θT is given by Snell’s law as η sin θ =
sin θT [12,13].

optical cavity with gain and absorption. Imagine that the
cardioid billiard with localized gain introduced in fig. 1 is
composed of a dielectric material (with refraction index η).
Figure 5 reports results for transverse-electric polarized
light in such a configuration. Whether explosion occurs,
depends on the gain parameter g (κ depends smoothly on
g, see panel a). At the critical value g = g∗ gain and
loss cancel each other (κ = 0) and an energetic steady
state sets in. The density ρc is fractal for any g, also at
g = g∗ (see lower inset of panel a). The transmitted rays
can be detected outside the billiard as an emission in a
given direction (represented by the far-field angle Φ, see
the upper inset in fig. 5(a)). We obtain that the (observ-
able) far-field emission (as a function of the angle Φ) is
modified by the gain (compare panels (b)–(d)). We thus
conclude that (non-uniform3) gain has to be included in
ray simulations.

3For uniform gain in the cavity (τg = τ), eq. (3) shows that κ is
re-scaled but ρc (and therefore the emission) is not changed.

Conclusions. – We considered chaotic systems in
which the intensities of trajectories may grow in time (e.g.,
due to gain or a reflection coefficient R > 1). We extended
the formalism of systems with absorption (R < 1) to show
how the theory of (open) chaotic systems can be used in
this new class of systems. For instance, we derived a for-
mula —eq. (7)— that relates the invariant properties (e.g.,
fractal dimensions and the explosion/escape rates) of sys-
tems with gain/absorption, a generalization of important
results in the theory of open systems (in which R is either
0 or 1) [2,3]. Despite the unifying formalism, our results
reveal an intricate relationship between systems with gain
and with absorption. For instance, the inverse of a system
with gain is a system with absorption, but —in contrast to
usual dynamical systems— their invariant properties are
not trivially related to each other.

For applications in optical microcavities, our results
show how gain can be incorporated in the usual ray sim-
ulations. Whenever the gain is not uniform in the cavity,
we find that the emission is modified and can be described
through our formalism of chaotic explosions. These results
can be tested experimentally by constructing optical cavi-
ties with different localized gain regions [7] and comparing
the emission to ray simulations with and without gain.
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