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Abstract — When injecting dye into a vertical vortex generated by a commercial magnetic stirrer,
one finds that dye remains captured around the vortex core over minutes, while it gets mixed with
the water outside this region rather rapidly. Thus, considering its horizontal motion, the dye
becomes trapped within a critical radius, even though the vortex structure (and the dyed region)
is aperiodically time-dependent due to the oscillations of the position of the stirring bar. According
to a recent paper by Haller and coworkers (J. Fluid Mech., 795 (2016) 136), three-dimensional
time-dependent vortices should be defined as rotating, material-holding tubular regions of the
fluid. We report here about a set of experiments carried out with magnetic-stirrer-generated
vortices which appears to provide the first pieces of evidence supporting the theory in a very
elementary set-up that is accessible even in high schools. Our data also provide information about
quantities not predicted by the theory, e.g., the lifetime of dye spent within the vortex. We show
that the maximum radius of the stable dye cylinders, i.e., the horizontal extent of the vortex,
hardly depends on the rotational frequency of the stirrer bar — at least in the range investigated
— but increases with the length of the bar. A generalization of this finding leads to the conclusion
that the size of the material-holding region of the vortices in nature should be proportional to the
size of the surface (or pressure) depression accompanying the vortex.
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Introduction.

— There is a recent interest in La-

latter, the elliptic LCS, has required different approaches.

grangian Coherent Structures (LCS) [1-5] and in the ap-
plication of this concept in flows ranging in size from
laboratory to planetary scales (see, e.g., [3,4]). In flows of
arbitrary time dependence, LCS provide a skeleton of ma-
terial surfaces and organize details of the tracer dynamics.
Basic examples of them are material filaments or vortex
cores. The formers, also called hyperbolic LCS, are the
generalization of stable or unstable manifolds of chaotic
sets which change in time in an aperiodic fashion, as
demonstrated also in experiments [6]. Understanding the

In two-dimensional flows a variational principle leads to
an analogy with the black holes of astrophysics based on
strict mathematical arguments (see, e.g., [7]). These vari-
ational approaches did, however, determine only the edge
of the vortex, and did not provide any hint on their inter-
nal structure.

There are several coexisting definitions of vortices [8]
even in the stationary case, based on Eulerian properties
like vorticity. In non-stationary cases the Eulerian and La-
grangian views are known to differ and the authors of [9]
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suggest a Lagrangian definition. The definition used in [9]
is based on the integral along trajectories of fluid elements
of the difference of the vorticity from its spatial mean.
This quantity is the so-called Lagrangian Averaged Vor-
ticity Difference, LAVD. A LAVD surface corresponds to
a material surface of equal rotation relative to the mean
rotation of the deforming fluid volume. The outermost
closed surface of LAVD is defined as the boundary of a
vortex, and the internal structure is predicted to be a set
of concentric tubular surfaces.

In an experiment it is practically impossible to measure
LAVD values (based on the entire high-resolution spatio-
temporal knowledge of the 3D velocity field), in our inves-
tigations we therefore consider the boundary of a vortex
to be the outermost closed material surface. It is worth
mentioning that the presence of a similarly coherent sep-
aration barrier between internal and external flow regions
has long been known in the context of point vortex advec-
tion [10,11]: for point vortices of general time dependence
there is a disk moving with each of them where passive
particles cannot enter from outside, and within which par-
ticles remain trapped forever [12-14]. The finite size of
these vortex cores is in sharp contrast with the vanishing
size of the region where vorticity is concentrated. This
is in harmony with the view of [9] according to which a
vortex should be defined via its Lagrangian properties in-
stead of vorticity. It is perhaps due to the two-dimensional
and rather singular character (v ~ 1/r) of point vortices
that this dichotomy was not realized in its full depth by
the community in the past decades and did not call for a
general definition of vortices.

Our aim here is to demonstrate the water-holding
property of a generally time-dependent three-dimensional
vortex realized in a rather elementary set-up utilizing mag-
netic stirrers.

Commercial magnetic stirrers are commonly used to dis-
solve materials in fluids. The main component of the
device is a magnet rotating at an adjustable frequency
around a fixed vertical axis below a flat horizontal cover.
The rotating magnetic field of the magnet brings a mag-
netic stirrer bar, whose axis of rotation is not fixed, into
rotation on the bottom of a tank placed onto the hori-
zontal cover. If the tank is filled with a liquid the bar
generates fluid motion, which is believed to yield efficient
stirring and mixing. The typical pattern of such flows is a
pronounced vortex above the stirrer bar [15,16] accompa-
nied with a depression of the free surface, the funnel. The
qualitative characterisation of the flow in the setup can
be used to better understand the efficiency/inefficiency of
the stirrer, and related applications [17-23]. The tangen-
tial velocity far away from the center has been measured to
be proportional to 1/r [15]. Due to the lack of reliable ve-
locity measurements! in the center, one can only speculate

11t is to be noted that although the widespread particle image
velocimetry (PIV) technique — the correlation-based feature track-
ing of tracer particles within a quasi-2D laser plane in the fluid —
seems to be a relatively straightforward way to obtain velocity fields

that there is a central region exhibiting rigid body rotation
(v ~ r) but it remains unknown where the crossover be-
tween this domain and the v ~ 1/r region lies. Note that
even if the entire instantaneous velocity field was known,
this per se would not provide direct information on La-
grangian properties [24] (like water-holding) in that given
time instant.

In order to understand mixing properties, one should
study Lagrangian features best monitored by the injection
of dye. When injecting dye into a vortex, generated by a
magnetic stirrer, one finds a surprising phenomenon: the
dye remains captured around the vortex core over minutes,
while it becomes mixed with the water outside this region
rather rapidly. It is worth noting that this phenomenon
was already observed and briefly mentioned in earlier pa-
pers but without any interpretation [15]. Reference [16]
concentrated on a related phenomenon, on the capturing
of light finite-size particles by the center of the vortex. It
was pointed out that the particle motion is then nothing
but the fingerprint of a noisy chaotic attractor in the fluid
that can be observed by naked eye. The authors of [25]
studied a fast flow through a cone-shaped nozzle. When
injecting ink into the nozzle, they observed with surprise
that an initially turbid phase cleaned out and led to the
appearance of a long-lasting dye cylinder whose diame-
ter was about that of the smaller hole of the nozzle. In
contrast to the magnetic-stirrer-generated vortex, this dye
cylinder is hollow due to the strong plughole-like [23,26]
flow through the nozzle.

The appearance of the theory of [9] provides an appro-
priate framework for the interpretation of such findings.
In this spirit, we carried out a series of experiments with
the aim of demonstrating that magnetic-stirrer-generated
vortices keep the dye captured in a finite cylindrical do-
main, and provide examples of 3-dimensional elliptic LCS.
Our aim was also to find out which quantities influence
the properties of such time-dependent Lagrangian vor-
tices which do not follow from the theory of [9], like,
e.g., the lifetime of dye spent in the vortex, its fine struc-
ture, transient phenomena, and the average width of the
vortex.

Experimental setup. — Figure 1 shows the basic
setup with a cylindrical container of radius R = 22.3 cm,
filled with tap water at room temperature up to the height
of H = 22 cm, and put on top of the magnetic stirrer. The
horizontal scale of the apparatus suggests that the bound-
ary effects originating from the vertical walls are negligible
in the central region, thus the properties observed approx-
imate those of vortices in an unbounded domain. The
stirrer (white horizontal bar with two black markers at its

at a first glance, carrying out such measurements in the central re-
gion of the vortex, however, turns out to be extremely difficult to
realize in practice. The image of this inner domain (viewed from
above) is highly distorted by the optical refraction by the funnel,
moreover, the strong perpendicular flow in any relevant plane makes
it practically impossible to obtain reliable velocity fields with current
technologies.
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Fig. 1: (Color online) The experimental setup with the video
camera on the right.

Table 1: Length and width of the stirrer bars used in the
experiments

Stirrer bar | Length a (cm) | Width ¢ (cm)

1 8 1.1
2 ) 1.1
3 4.1 0.9

end) is subjected to friction on the plastic bottom of the
container. The narrow nozzle above the midpoint of the
container was tailored to let a given volume of food dye
(practically a passive tracer) fall, in the form of droplets,
onto the surface of the liquid. For subsurface injection we
used syringes.

The most striking feature is the red columnar structure
in the middle, just above the stirrer bar, clearly separated
from the rest of the fluid which is practically transpar-
ent. Measurements are carried out with three different
stirrer bars the dimensions of which are summarized in
table 1. Regarding the video analyses, fig. 2 shows the
typical sharp and narrow tubular pattern, the lowest part
of which overlaps with the region where the rod rotates.
Our measurements concentrate on an intermediate region,
marked by a black rectangle, where the width of the dye
cylinder is approximately constant. It is in this region
where we measure the location and width of the cylinder,
and within which we determine the average lifetime 7 of
the dye within the vortex.

7 was measured by dropping a certain volume (0.4 ml)
in the middle of the funnel and counting the number of
“dark red” pixels within the black rectangle of fig. 2. To
determine which pixels are “dark red”, we set filters for
RGB values and each pixel of each frame is passed through
these filters. Only the pixels which pass the filter are
counted. The filtering values are subjective, but since the
criteria is the same for all frames and pixels, our results
can be compared between frames. The lifetime is finite
because the downwelling dye reaches the bottom of the

Fig. 2: (Color online) A typical frame from a video record with
the region, black rectangle, from which experimental data are
taken.

Fig. 3: (Color online) Initial stages of the development of a dye
cylinder.

container where the stirrer bar rotates and where strong
mixing takes place in a shallow region whose height is pro-
portional to the width ¢ of the stirrer bars (about 10 mm,
see table 1).

The frequency range scanned was limited by two fac-
tors, both due to our apparatus: first, all stirrer bars have
a maximum rotational frequency at which they undergo
a mechanical instability, and get ejected from the center
upon which stirring practically stops. Second, the min-
imal rotational frequency is given by the lowest level on
the magnetic stirrer. At this lowest level of energy in-
put, the longest bar rotates with the smallest frequency
since the frictional torque on the button is largest for this
bar. Thus, both minimal and maximal frequencies depend
on the stirrer bar used.

Qualitative observations. — It is interesting to ob-
serve the initial dynamics of a droplet placed on the free
surface of the water body close to the middle of the vor-
tex before a quasi-stationary dye cylinder is built up. One
often sees, as fig. 3 illustrates, that the sinking is not uni-
form, the innermost region is the fastest sinking one in the
form of a “worm” of gradually increasing length.
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ghost
cylinder
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Fig. 4: (Color online) Left panel: a transient “collar”. Right
panel: a “ghost cylinder” about the vortex tube of high dye

concentration.
I ’

Fig. 5: (Color online) Left and right panels: side and top view
of a dye cylinder exhibiting fine structures. Note the red tongue
in the lower part of the dyed region in the right panel, which
quickly disappears.

If a certain amount of dye is injected in a region outside
a critical radius measured from the center, it does not sink
rapidly, rather it becomes distributed along an irregular
pattern, the “collar” in the upper region of the flow (see
fig. 4, left panel), but, after some time, this amount of
dye becomes fully diluted, and hardly visible. The collar
is qualitatively similar to the non-closed LAVD surfaces
determined in the simulation of an oceanographic vortex
in fig. 13(a) of [9]. It might also happen that some dye
off the critical radius penetrates the bulk of the flow and
forms a “ghost cylinder” outside the cylinder of high dye
concentration (see fig. 4, right panel) but this also vanishes
after some time, much before the typical lifetime (minutes)
of the high concentration cylinder.

Figure 5 shows a simultaneous side and top view of a
stationary dye cylinder. In the left panel one sees that
the dye cylinder is not homogeneous, rather it appears
to consist of a set of concentric cylinders. This is consis-
tent with the observation of [9] according to which there
are material-holding tubular surfaces within the vortex.
It is the obviously inhomogeneous injection of dye which
might lead to higher or lower concentrations between the

Fig. 6: (Color online) Left panel: destructed pattern appear-
ing right after cutting the dye cylinder through with a metal
rod. Right panel: the spontaneously reconstructed dye cylin-
der about 10 seconds after the removal of the rod.

concentric cylindrical surfaces. In the top view (right
panel) we see that there is a tongue along the perimeter of
the core but it decays away in time as further observation
(not shown) indicates. This is in accordance with the find-
ing of the theory according to which a vortex experiences
only tangential material filamentation. Both features are
summarized schematically in fig. 2 of [9], and are in full
harmony with the topology of the polar vortex (deter-
mined in [27] by a variational approach) and with our own
observations.

To test the stability of the dye cylinder, we injected, at
a low stirring frequency, a certain amount of dye into the
central region and let the dye cylinder develop. After some
time, however, we started to increase the frequency gradu-
ally with a finite speed, and reached an increase of a factor
of about 3 in half a minute. The cylinder did not become
destroyed (not shown), moreover, it survived even the re-
turn to the original stirring frequency. It is worth men-
tioning that the width of the cylinder became markedly
smaller at the highest frequency, while stationary mea-
surements (see later) indicate practically no change of the
width. This is in harmony with a typical feature of exper-
iments with ramped systems [28] according to which in-
stantaneous properties on the ramp often differ from those
observed at the same parameter kept constant in time.

The robustness of the dye cylinder can be tested by im-
mersing a rod into the fluid and approaching it towards the
cylinder. One observes that even before the rod touches
the outermost closed dye surface, it becomes destructed
and an originally inner surface becomes the new outermost
one. A complete destruction takes place when the pattern
is cut through with the rod (fig. 6, left panel). Surprisingly
enough, however, after the removal of the rod, the origi-
nal cylinder is recovered, even if in a much more pale form
since most of the dye escaped the central region due to
the very strong perturbation. The water-holding property
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Fig. 7: (Color online) (a) A typical time series of the position
of a dye cylinder with the same stirrer as in fig. 1. (b) Depen-
dence of the basic Fourier frequency and (c¢) the amplitude of
oscillations on the frequency f of the stirrer.

is thus rather robust and recovers itself once the original
flow is re-established.

The qualitative observations listed here illustrate clearly
the basic Lagrangian properties of vortices. The used set-
up based on a magnetic stirrer and a cylindrical container
is relatively inexpensive, easy to run, therefore, this type
of experiment is ideally suited for the demonstration of
the recently emerged view on time-dependent vortices to
school kids or university students. The sharp boundary
of the dyed region resembles that of the domain carrying
debris, sand and water in tornadoes [29], dust devils [30]
and waterspouts [31], respectively. These observations of
outermost material-holding surfaces in the laboratory and
in nature reassure that the condition of [9], formulated in
terms of LAVD, is well founded.

Quantitative results. — Using the aforementioned
feature tracking method based on the RGB values of the
sequence of frames, we can deduce the horizontal displace-
ment of the cylinder as a function of time at a selected in-
termediate height. Figure 7 (a) indicates that the cylinder
undergoes an oscillatory motion of relatively large ampli-
tude (remember, the center of the stirring bar is not fixed).
The dominant Fourier frequency is found to increase with
the frequency of rotation, but the amplitude appears to be
practically constant (panels (b) and (c) of fig. 7, respec-
tively). The error bars along the frequency axis represent
the uncertainty originating from the fact that the control
button of the commercial magnetic stirrer contains levels
(from 1 to 10) and these positions do not correspond to
sharp frequency values, rather to intervals. The frequen-
cies of the stirrer bars f were determined by means of a
stroboscope shedding light on the stirrer bar in a periodic
fashion as in [15]. The results shown in fig. 7 are ob-
tained with the longest bar at disposal since the lifetime
of the dye cylinder is too short for a precise extraction
of the dominant frequency with shorter bars. Vertical er-
ror bars in panels (b) and (c) represent the full width
at half-maximum of the dominant frequency peaks in the
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Fig. 8: (Color online) Upper panel: a typical time series of the
number of “dark red” pixels as a function of time. Lower panel:
average lifetime as a function of frequency f with different
stirrers. Vertical error bars represent the standard deviations
of the data at a given frequency.

spectra and the standard deviation of the measured data,
respectively.

A typical time series of the number of “dark red pix-
els” within the rectangular area marked in fig. 2 is shown
in the upper panel of fig. 8. The increase at the begin-
ning is due to the downward motion of dye, starting right
after dropping in took place, within the vortex, and the
decrease at the end is a sign of all dye becoming washed
out. We therefore considered the lifetime 7 defined by the
length of the “plateaued region” whose length was deter-
mined by using a threshold value. The results obtained by
averaging over 3 trials for each frequency and stirrer bar
are displayed in the lower panel.

For the small bars there is practically no dependence on
the frequency, while the lifetime function with the longest
bar appears to start with a plateau which is followed by
a decrease. Observe that the lifetime on this plateau is
about 5 times as large as with the other bars. This is
why we carried out the Fourier analysis of fig. 7 with the
longest bar only.

We also measured the position of the tip of the tran-
sient “worms” shown in fig. 3 with different stirrer bars
in a few cases. The left panel (a) of fig. 9 indicates a
rather disordered set of patterns in the tracks with appar-
ent vertical fluctuations superimposed on the downward
motion that seem to be coupled to the irregular horizon-
tal oscillations of the vortex demonstrated in fig. 7. The
effect of these fluctuations is reflected also in the velocity
vs. frequency diagram of panel (b). Considering points
belonging to a given bar (given color in the right panel),
one is hardly able to extract any simple functional form,
but considering the full set of points suggests that the av-
erage sinking velocity v of the innermost “worm” fulfills
the relation v o< f.

In order to determine the width d of the dye cylinders,
we injected dye into a region broader than the anticipated
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Fig. 9: (Color online) Examples of time series of the vertical
coordinate of the tip of the dyed region (a) and average tip
velocities (b) for different frequencies f and stirrer bars. These
average velocities were obtained via linear fits to time series like
the ones shown in panel (a). The vertical error bars represent
the fit error (standard deviation).

width. After the “collar” and the “ghost cylinders” dis-
appeared, considerable local variance remained and the
measurement could be carried out only by naked-eye ob-
servation of the video records. We determined the width
at different heights along the dye cylinder, and at differ-
ent times (long before the cylinder disappeared) with any
available frequency and stirrer bar, and by taking an av-
erage. The width is in principle the diameter of the outer-
most closed material surface. A surface of slightly larger
diameter becomes, however, disrupted rather slowly, and
might disappear after our measurement is over. We argue
therefore that the relatively large error bars indicated for
d are consequences of the inherent variability of material-
holding vortices. Figure 10 summarizes all our width mea-
surements with the three different bars used. We find
practically no tendency with the frequency, but one sees
a characteristic increase with the length a of the bar.
When trying to find a correlation of the average vortex
width d with other quantities, the length a of the stirrer
bar is a natural candidate since strong shear builds up in
the flow within a cylinder of approximate diameter a. The
viscous length scale \/v/ f estimated with the smallest fre-
quency f &~ 2Hz is on the order of mm’s, much smaller
than d, therefore, viscosity is not expected to play a major
role in the formation of the observed coherent dye pattern.
A simple argument can then be found for the frequency
independence of d: Assuming the bars of identical width,
and boundary effects to be negligible, the only two remain-
ing length scales are a and g/ f? with g as the gravitational
acceleration. Any size related to the flow can then only
depend on these parameters. For quantities which can be
assumed to be not sensitive to gravity, the only choice is
being proportional to the length of the stirrer bar. The
width of the dye cylinders appears to behave like this?.

20ther features of the flow, e.g., the funnel-like shape of the free
surface (a consequence of the pressure minimum and approximate
hydrostatic balance) is related to gravity and the funnel depth is

23 T T T T T
ar . ®-®bar#l (a=8cm) -1
& - =0 A-Abar#2(a=5cm)
g B m-m bar #3 (a=4.1 cm)

251 | ¥l -
5. g
<

15 —

;xR A - |
LS L 3
i ok gt 1]
| L | I | L |
0.
)52 4 6 8 10

Fig. 10: (Color online) The measured average width d of dye
cylinders as a function of frequency f with different stirrers.
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Fig. 11: (Color online) Cross-correlation between the dye cylin-
der and funnel widths (d and b). The dotted straight line marks
the diagonal.

Vortices occurring in Nature are, however, not gener-
ated by stirrer bars. It is therefore natural to search for
fluid dynamical length scales which correlate well with
the width. We found that it is the width of the funnel
on the free surface which correlates the best. We deter-
mined the average funnel width b (taken at the middle
between the free surface and the funnel’s lowest point)
with different bars and different frequencies from the video
records, and found that the width b is also practically in-
dependent of f. Figure 11 displays the function b vs. d.
The diagonal clearly fits very well to the data, suggesting
the relation d ~ b.

Discussion and outlook. — The observations found
can be summarized in traditional fluid dynamic terms as
follows. In a reference frame comoving with the center
of the vortex (such a frame is generally hard to find) the
flow within the vortex is laminar. The very middle of it is

indeed proportional to f2, as reported in [15].
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in solid body rotation but laminar region extends further
out. The boundary of the vortex is set by a local shear
instability. The regular dye pattern and its long lifetime is
due to the lack of turbulent fluctuations within the vortex.

In large-scale vortices in Nature viscosity is negligi-
ble [32], similarly to our experiment. Thus, the above
argument of d =~ b is expected to hold there as well.
Our main non-trivial conculsion is that such three-
dimensional vortices hold material in a Lagrangian tubu-
lar structure whose radius should be proportional to the
size of the (pressure or surface) depression accompanying
the vortex, an Fulerian quantity. In the particular case
of planetary-scale geophysical flows the horizontal size of
vortices of general time dependence is set by the Rossby
radius of deformation (which might also contain stratifi-
cation effects), a quantity expressing the relevance of the
Coriolis force on these scales [32]. Thus, our results may
imply that the domain in which water parcels are trans-
ported by oceanic eddies is approximately of the size of
the local Rossby radius.
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