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Abstract. - A generalized thermodynamic potential is derived for spatially extended pattern- 
forming nonequilibrium systems whose order parameter obeys the complex Ginzburg-Landau 
equation in one spatial dimension. The real potential, generalizing the Ginzburg-Landau free 
energy, is shown to describe typical nonequilibrium phenomena like the Newell-Kuramoto and 
the Eckhaus-Benjamin-Feir instabilities. I t  is pointed out that the extremizing order parameter 
field may exhibit chaotic behaviour. Potential barriers between coexisting plane-wave 
attractors are calculated. 

Spatially extended pattern-forming systems far from thermodynamic equilibrium are 
currently under intense investigation, with the sustained hope that one might be able to 
establish some general principles governing processes of .self-organization>> in nonequi- 
librium systems [l]. A major obstacle, so far frustrating such hopes, has been the absence, 
or lack of knowledge, of something like a thermodynamic potential which would govern 
pattern-formation in nonequilibrium systems. I t  is the purpose of the present letter to 
construct such a potential within certain limits of validity for a general class of nonequi- 
librium systems and to apply it to a discussion of multistability and secondary instabilities 
typical for such systems. 

There are special cases of pattern-forming systems where a generalized thermodynamic 
potential exists, in particular those whose order parameter dynamics close to instability are 
described by the Ginzburg-Landau equation with real coefficients. The Benard instability in 
Boussinesq approximation is a well-known example [2]. However, such cases remain 
exceptions. Far from thermodynamic equilibrium the Ginzburg-Landau equation with real 
coefficients is a nongeneric special case of the generic Ginzburg-Landau equation with 
complex coefficients 
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Equation (1) is the normal form of a Hopf bifurcation from a fixed point ($ = 0) to a limit 
cycle ( l $ l  = ( ~ / b , ) ” ~ )  in a spatially extended system. $(x, t )  is the complex order parameter, a 
is the control parameter, which we choose real without restriction of generality, b = b, + ibi  
and D = D, + iDi are the complex nonlinearity and diffusion coefficients, respectively. For 
simplicity we shall only consider one-dimensional systems in the following, and we shall 
assume that b, > 0, D, > 0. Equation (1) holds in the long-wavelength limit sufficiently close 
to the bifurcation point a = 0. If bi and (or) Di are nonvanishing, eq. (1) does not possess a 
potential in the sense that its right-hand side is not proportional to the derivative of a 
functional with respect to $*. 

On the other hand, in the context of discrete dynamical systems we have argued in 
previous work, and demonstrated by numerous examples [3-51, that a generalized thermo- 
dynamic potential exists under rather general conditions. It is defined by splitting the right- 
hand side of the equation of motion into two terms, so that one of them is proportional to the 
derivative of the potential, while the second is orthogonal to the derivative. Applied to 
eq. (11, one may thus state that a potential $ exists if eq. (1) can be written as 

with 

where Q is a positive constant, playing the role of a generalized transport parameter, # and 
R(x)  are functions of $, $*. Combining eqs. (2), (3), one finds that d$/dt = - QJdx16$/6#12 < 0 
along trajectories of eq. (1). This implies that # is minimal in the attractors of (1) and, more 
generally, that 

Eliminating $, $* and R,  R* from eqs. (1)-(3) a nonlinear partial functional differential 
equation of frst order is obtained for $. This equation is of the Hamilton-Jacobi type whose 
solution can be expressed by the minimum of an action integral. Applying the usual 
procedure of classical mechanics, we obtain in this infinite-dimensional case 

is a Lyapunov functional of the complex Ginzburg-Landau equation. 

Here the minimum is taken over all paths $(z, x) starting at  7 = - in the attractors A(k) 
and ending in #CO, x) = $(x) at z = 0, and over k, i.e. over all the attractors. The function 
C(A‘k)) gives the value of $ in the attractor A@) and has to be determined independently (see 
remark after (6)). 

Equation (4) cannot be evaluated exactly. However, in the long-wavelength limit (length 
scales large compared to (D,/a)1!2) we may expand eq. (4) in the spatial derivatives of $. In 
the following we describe crucial steps of the calculation for a > 0 and give the main results. 

Putting the spatial derivatives to zero ( i . e .  formally D = 0) a continuum of degenerate 
attractors A(k) given by $A(t, x) = (a/b,.)ln exp [- iabi tlb, + ip,(x)] exists. The path $47, x) 
minimizing the action (4) turns out to  be the solution of a simple equation: d$/dz= 
= ( - a  + b*/$12)$ with boundary conditions $(O, x) = $(x) and I$(- CQ,  x)l = (a/b,)ln. Cor- 
respondingly, one finds in this order 

j0 = $1 dx [ - a1 + 1 ’  + (5 )  
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In the next order, terms linear in the Laplacian are to be kept. Since the action is extremal, 
there is no contribution to the time integral of (4) from the first-order correction of the path. 
Thus we obtain 

with $ ( T ,  x) as the minimizing path in zeroth order. Here we have put C(A@)) = #Al({p)o})7 

where the phase po(x) = (U23 In($(- x)/$*(- a, x)) has to be expressed in terms of 
$40, x) = $(XI. #AA1({po}) is evaluated in an independent calculation by a local expansion with 
respect to the phase fluctuations on the attractor[6]. The restriction to one spatial 
dimension turns out to be essential for our ability to perform this step. It turns out that plo 
can be eliminated completely from (6) before taking the minimum and this latter step 
becomes superfluous in the present case. We obtain to first order 

with the abbreviation D- = D, bi - Di b,, and omitting surface terms, for simplicity. 
Due to the phase symmetry it is desirable to proceed, in this case, to the next order of 

this expansion, at least with respect to the gradients of p, with $=rexp[ip].  New 
attractors A@) given by $k = ((a - D,k2)/b,)ln exp [ikx - it(abi + D- k2)/b,] appear in this 
order whose function C(A(k)) is again determined by an independent calculation based on a 
local expansion, using results of ref. [6]. Again, it is possible to eliminate k under the 
minimum and the minimum over the A(k) becomes superfluous. This is the reason why 
singularities of the type discussed by us in ref. [5 ]  do not appear in the present case. We 
obtain 

with 
bi Dr D- 
3b, I b I ' 

- 2 Re (io* b2) D- 
1 4 4  

P =  a=- 

We note that the terms with a and p in eq. (8) account for Q,, which is the second-order 
contribution to C(A(k)), while the remainder is the second-order contribution of the action 
integral equation (6). For global stability to this order we have to require that a > 0, i . e .  

which we assume in the following. The desired potential is now 
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It contains a Ginzburg-Landau part and a correction proportional to D- . In fact, for D- = 0, 
the Ginzburg-Landau part is an exact solution of eq. (4) [6]. The potential becomes singular 
for a > 0 if I $  I + 0, while Vi$ l#  0. If we approach this singularity, the potential is 
increasingly dominated by the Vr-terms and V2y (and higher-order derivatives in higher 
orders of our expansion) and we move out of the region of validity of our expansion. It is 
quite possible that the exact potential is, in fact, singular for i $ l +  0, but the existence and 
nature of this singularity cannot be investigated by our present methods. 

We now investigate the extrema of the potential for a>0. 
Writing 0 = JdxL(V2p, Vp, Vr,  r) the extremizing fields satisfy the Euler-Lagrange 

equations 

V J = O ,  V($$$-3L=0 ar 

with the eonserved angular momentum. J = Vy) - V(3L/a V2p). Due to the appear- 
ance of V49 eqs. (11) may have spatially chaotic solutions, despite the existence of the 
conservation law, and in contrast to  the usual Ginzburg-Landau potential (b ,  = Di = 0) and to 
our first-order result, where only V2p appears in eq. (11). 

In higher orders of the present expansion derivatives of even higher order appear in 
eq. (ll), and it becomes increasingly unlikely that the extremizing solutions r(x) ,  ~ ( x )  are 
nonchaotic. This property might be connected with the well-known turbulent behaviour of 
eq. (1) [7] and deserves further attention in particular for the case D, br + Di b, + 0, where 
the typical wavelengths of these chaotic solutions can be expected to become sufficiently 
long to validate our expansion. 

In the following discussion, we shall however restrict our attention to cases where V4y is 
negligible. Then the phase can be eliminated completely by means of the conservation law 
and we are left with the .radial)> equations described by the conserved energy 

E = T(r, Vr) + Uefl(r),  UeK(r) = 3af4(r) + 2f2(r) D,r - D- - 
brl bI2  

)+2arz-brr  4 , (12) 

where f ( r )  Vy(J,  r, V r  = 0) is defined by the conservation law and the akinetic energy. T 
is a function of r, V r  which vanishes for V r  = 0. The explicit form off and T will not be given 
here. We consider a plane-wave state r = ro, Vr, = 0, y = kx. It must be an extremum of 
UeB(r) and must satisfy f(ro) = k, which leads to ro= ( (a-  D,k2)/b,)1’2. This state is a 
minimum of 0 (and hence an attractor) if 

and 

Equations (13), (14) express stability against the built-up of phase gradients and amplitude 
gradients. Equation (13) reduces to D, b, + Di bi > 0. This condition, together with eq. (91, 
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also ensures that the coefficient ,d in the potential is positive. In eq. (14) we may take 
r ;  = alb, to the order we are considering and we obtain the condition 

D,+ DiD-/(D,b,+ Dibi)>O (16) 

for stability against amplitude gradients which seems not to have been considered before. 
Equation (15) can be evaluated explicitly and yields 

a(D, b, + Di bi) br 

3(D, b, + Di bi) b, + 20- bi g’  k2 e 

It cannot be satisfied, unless the right-hand side is positive, which is satisfied due to (9) and 
(13). Its vanishing specifies the borderline of the Newell-Kuramoto phase instability [81. If 
the right-hand side is positive, the condition is violated nevertheless if k2 is sufficiently 
large. This is the Eckhaus-Benjamin-Feir [9,10] instability. Both instabilities are well- 
known, and it is gratifying and even somewhat surprising to see that the potential we 
constructed does correctly account for them, despite the fact that a long-wavelength 
expansion has been made. The reason is that (17) results from the vanishing of a second- 
order polynomial in k2 which is constructed exactly in our expansion. 

We close this short discussion of applications by emphasizing that the potential contains 
information far exceeding a linear stability analysis of attractors. E.g .  the potential barrier 
A$ of saddle separating a given plane-wave attractor from the neighbouring ones, differing 
(infinitesimally) in wavenumber, may be computed [ l l ]  by familiar methods [12]. It takes 
the form 

A+ = Fa3”(l - k2/k35’2, (18) 

where F depends on D and b,  but the explicit.form of F will not be given here. (We remark 
that, like for the real Ginzburg-Landau equation [12], l i l /  1 has a node not at the saddle but 
somewhere in its neighbourhood. Therefore (18) can be calculated even though (71, (8) have a 
singularity for I = 0.) The potential barrier vanishes as the stability border (17) is 
approached. The height of the potential barriers furnishes a nonlinear measure of the 
stability of the attractors which cannot be obtained by other methods. In addition $ also 
determines the probability distribution of fluctuations, if eq. (1) is driven by weak Gaussian 
white noise. A discussion of this point and a detailed derivation of the results presented here 
must be left to a future publication [ll].  

Finally, we note that there have been earlier efforts t o  find an approximate potential for 
eq. (1) [4,6,13]. They were all based on polynomial expansions of the potential in the field 
variable. As can be seen from eqs. (7), (8) the potential we obtained here in the long- 
wavelength limit is a nonpolynomial functional. The general idea of another approach [141, 
based on the phase dynamics associated with eq. (1)[15], has more similarity with the 
present work. However the amplitude variations were adiabatically eliminated in [14], 
which is justified only close to the attractors, while they are treated as independent 
variables here, which is necessary if the description of saddles like (18) is desired. It is worth 
emphasizing that the potential turned out to be differentiable in the field variable (for il/ f 0). 
This is due to the one-dimensional character of the problem. We obtained indications that 
nondifferentiability may show up in higher-dimensional cases [ll].  
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