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Finite-size Lyapunov exponents: a new tool for lake dynamics
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Chaotic motion of particles in fluid flows was recognised

decades ago but this phenomenon has only been

acknowledged recently in civil engineering. Herein it is

shown that chaotic advection has a wide range of

important hydraulic and environmental applications. The

most important characteristics of chaotic particle

transport, such as the filamentary (fractal) distribution of

advected particle ensembles and their importance for

active chemical or biological processes, which has far-

reaching ecological or environmental consequences, are

reviewed. An important tool to discover and describe

the filamentary distribution is the finite-size Lyapunov

exponent. As a particular example, its application to an

idealised shallow, wind-driven lake is presented. It is

shown that the finite-size Lyapunov exponent provides a

useful tool to investigate, for example, the spatial

distribution of pollution in the lake – it can help to

determine the most exposed shore segments and

identify effectively mixed or stagnant regions in the lake.

NOTATION

A0 initial surface of area

At area covered by the particles at a later time t

d0 initial deviation

df final separation

r(t ) position of the particle at time t

t time

t0 the starting time

V0 initial volume covered by particles

Vt volume covered by the particles at a later time t,

v(r, t ) velocity field of the fluid

� time required to reach a separation df

1. INTRODUCTION

Transport in fluid flows is a very important phenomenon in

nature and in industry. On a large scale, the motion of

pollutants (Wolff, 2008) and the formation of the ozone hole

(Edouard et al., 1996; Solomon, 1999) in the atmosphere, the

advection of plankton (Abraham, 1998; Abraham et al., 2000;

Bracco et al., 2000; Martin, 2003; Neufeld et al., 2002) or oil

spills (Károlyi and Grebogi, 2007) in oceanic flows are all

examples of this phenomenon. On the smallest scale, the

carrying of cells in blood flow (Schelin et al., 2009) or motion

in microfluidics devices (Bottausci et al., 2004; Stroock et al.,

2002) are examples of such transport. It is usually activities in

the intermediate scale that are found in everyday civil

engineering practice; for example, transport in rivers (Fischer

et al., 1979) or mixing in lakes (Kranenburg, 1992; Liang et al.,

2006, 2007; Pattantyús-Ábrahám et al., 2008).

The present study investigates the way in which the mixing of

particles (such as pollutants) in lakes is characterised.

Traditionally in engineering practice mixing is associated with

molecular (on a small scale) or turbulent (on larger scales)

diffusion. However, in addition to diffusion, stirring by fluid

motion also makes a very important contribution to mixing

processes. On the smallest scales, below the Kolmogorov scale,

viscosity dominates and the flow field is smooth; hence the

motion of fluid parcels is governed by smooth driving imposed

by the flow field. On the largest scale, diffusion is dominated

by coherent flow structures such as eddies, of which the two-

dimensional (2-D) ones have a relatively long lifetime, and

hence govern the large-scale motion. The relative importance

of advection with respect to diffusion is characterised by the

Péclet number Pe ¼ LU/D, where L is the characteristic length,

U is the velocity scale and D is the diffusion coefficient (see for

example Landau and Lifshitz, 2000). In many cases relevant to

civil engineering practice the Péclet number is very large and

hence advection is much more important than diffusion. For

example, in a lake of length L ¼ 10 km, with typical velocities

of the order of U ¼ 0.1 m/s, even with an effective turbulent

diffusion coefficient D ¼ 1 m2/s, it is found that Pe ¼ 1000.

In this regime the motion of particles is governed by the fluid

velocity field, namely by advection. In the simplest

approximation, called passive advection (Aref, 1984; Ottino,

1989), the particles take on the velocity of the fluid

instantaneously, without inertia, and the particles’ motion is

governed by the simple equation

dr=dt ¼ v r, tð Þ1

where r(t ) is the position of the particle at time t, and v(r, t ) is

the velocity field of the fluid. In words, the motion of the

particle is the same as the motion of a fluid element in a

Lagrangian sense. If the flow is stationary, that is v(r, t) ¼ v(r),

the trajectories covered by the particles coincide with the

streamlines of the fluid flow. However, if the velocity field

depends on time, the motion of the particle deviates from the

streamlines, the latter becoming an instantaneous feature of the

flow field. Even a simple, smooth, periodic time dependence is
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Delivered by ICEVirtualLibrary.com to:

IP:  147.8.31.43

On: Tue, 07 Dec 2010 21:24:12

enough for the particle trajectories to become chaotic (Aref,

1984; Ottino, 1989), and no turbulence is necessary for

creating very complex particle motion.

In the next section this phenomenon, the chaotic motion of

particles in fluid flows, is addressed and the most important

properties of chaotic stirring are summarised. In Section 3,

some applications from civil engineering are briefly discussed

and Section 4 is dedicated to the results obtained from

numerical simulations in a shallow lake model. In particular,

the manner in which the finite-size Lyapunov exponents can

be used to characterise stirring is shown. Section 5 contains

further discussions and conclusions.

2. CHAOTIC ADVECTION IN PERIODIC FLOWS

The word chaos means, in dynamical systems theory, that the

motion is irregular and sensitive to initial conditions (Tél and

Gruiz, 2006). In fluid flow it implies that particles released in

the flow close to each other typically deviate from each other

in the course of time. This deviation is very fast: the distance

between any pair of particles grows exponentially. The

exponential deviation is well characterised by the Lyapunov

exponents. Choosing two nearby particles at a distance d0, their

distance changes in time as

dt ¼ d0e
º t2

Here

º r, d0, t0, tð Þ ¼ 1

t
ln

dt

d0
3

is the finite time or local Lyapunov exponent, which depends

on the choice of the initial location r, the initial deviation d0,

the starting time t0, and the time t of the separation. The long

time and small initial deviation limit of Equation 3 defines the

Lyapunov exponents

º(r) ¼ lim
t!1

lim
d0!0

1

t
ln

dt

d0
4

In particular, at each point the rate of separation can be

different for different orientations of the initial separation, d0,

and it is maximum in a certain direction. When this largest

Lyapunov exponent º1 is positive in almost all points at least

in an extended region, the system is called chaotic.

For typical initial directions the exponential separation has the

same rate, º1, after sufficient time. There are, however,

exceptional directions in each point of the flow where

separation has a different rate or there is convergence. The

number of directions with different long time rates of

separation (or convergence) is the same as the number of

independent directions. In a three-dimensional fluid flow, in

case of passive advection, the number of different Lyapunov

exponents is thus three: º1, º2, º3.

In a similar manner to Equation 2 one can investigate how a

surface changes due to the transport by the fluid. Choosing an

initial surface of area A0, covering it with particles, and

measuring the area At , covered by the particles at a later time

t, one finds the relation

At ¼ A0e
º1þº2ð Þ t

For long times, this relation defines the second largest

Lyapunov exponent º2. Similarly, covering an initial volume,

V0, by particles and measuring the volume Vt , covered by the

particles at a later time t, the smallest Lyapunov exponent, º3,
can be defined by the relation

Vt ¼ V0e
º1þº2þº3ð Þ t

In incompressible fluids, the total volume does not change and

hence the sum of the three Lyapunov exponents must be zero:

º1 + º2 + º3 ¼ 0.

In case of passive advection in 2-D fluid flows, as in shallow

lakes or in layered fluids, there are only two Lyapunov

exponents. Typically, the largest Lyapunov exponent, º1, has
the most important role. Indeed, this governs the rate of

exponential divergence; this term will determine the growth

described by Equation 2. In incompressible planar flow the

smaller Lyapunov exponent, º2 is just the negative of the

larger one, º2 ¼ �º1

If the Lyapunov exponents are not zero in a region of the 2-D

flow, that is, º2 , 0 , º1, there is a strong stretching in the

fluid. Injecting many particles into the fluid in a compact

patch, like a blob of dye, the patch is strongly stretched along

the fastest separating direction at each point. The particles

eventually accumulate along curved lines, called filaments. The

fastest separating direction is typically different at each point,

which results in a highly distorted filament as the shape of the

blob of particles. Along these lines the particles diverge from

each other exponentially due to the positive Lyapunov

exponent, º1 . 0, but particles from further away approach

these filaments due to the negative Lyapunov exponent,

º2 , 0. In other words, the particles accumulate along these

complicatedly winding curves after a short time. Chaos is

always associated with a strong stretching and folding action,

and this manifests itself in a quick alignment of passively

advected particles along filaments. In dynamical systems

jargon these filaments are called the unstable manifold of the

chaotic set, the latter containing the unstable periodic particle

orbits (Tél and Gruiz, 2006). The name unstable manifold

indicates that behaviour along them is very unstable due to the

exponential separation. Such filaments are easily observable in

streams or lakes (see Figure 1 for an example), and one can

also see them while stirring cream in coffee. Due to the

exponential separation of initially nearby particles, mixing is

very fast in these chaotic regions.

In regions of the fluid where the local Lyapunov exponents are

zero (or, in practice, close to zero), the exponential separation

does not occur. These regions are often associated with eddies,

gyres or vortices in the fluid, because in many cases these non-

chaotic regions can be associated with vortical flow structures.

However, these non-chaotic regions are not immediately
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connectable to Eulerian characteristics of the fluid – the

particle orbits in a non-stationary flow are not the same as the

streamlines. Anyway, mixing in the non-chaotic regions is

much slower than in the chaotic regions.

Chaotic and non-chaotic regions are separated from each other

by impenetrable boundaries, although the boundaries can

wander in time. In practice, it is very important to distinguish

between chaotic and non-chaotic regions of the flow. For

example, if one is interested in how pollution is distributed by

fluid stirring, it is of interest to know in which region the

source is located – whether it is in the chaotic or in the non-

chaotic region of the flow. Identifying the vortex boundaries

and barriers to transport has already been identified as a major

step in understanding mixing in fluid flows (Boffetta et al.,

2001; d’Ovidio et al., 2004; Haller, 2000; Iudicone et al., 2002).

3. APPLICATIONS IN CIVIL ENGINEERING

Horizontal stirring is of particular importance in shallow

environmental flows. Its understanding and accurate modelling

are essential for water exchange mechanisms, interpreting

plankton movements, or planning and operating pollutant

outfalls. In order to understand the properties of the particle

transport, the Eulerian description of the fluid velocity field is

not enough. One has to apply a Lagrangian description, which

gives more direct information on particle transport. The

connection between the Eulerian and Lagrangian descriptions

of fluid motion is not trivial, and if one wants to get

information on the particle distribution, the Lagrangian

approach is the natural one.

As a particular civil engineering example, Liang et al. (2009)

have investigated shallow water covers of reactive sulfide mine

tailings produced by mining and milling of metallic ores (e.g.

uranium). The wind-driven resuspension of the

environmentally hazardous materials may occur in stormy

weather, and they investigated the transport and chemical

activity of the hazardous material in the lake. They found that

the effects of chaotic advection on the chemical activity follow

closely the theoretical findings by Károlyi and Tél (2005).

Looking at wind-driven sediment transport in shallow lakes, a

more complete description comprises resuspension, horizontal

transport and deposition, as a combined effect of flow and

waves. In such a system horizontal advection of suspended

solids would be accompanied by a source and sink term, the

two latter modifying, but not cancelling, the effects of chaos.

Another very important and up-to-date field is the

investigation of the effects of climate change on transport

processes in fluids, be it oceans (Toggweiler and Russell, 2008),

lakes (Lam and Schertzer, 1999) or rivers (Whitehead et al.,

2009). A very important effect of climate change is on the

water level dynamics of lakes. These effects are most

pronounced in shallow lakes, where small fluctuations in water

level result in significant changes in the depth, thus having

important consequences for transport processes. In the next

section the effect of water level change on the horizontal

stirring in a shallow lake is investigated.

It has been shown (Károlyi et al., 2000; Scheuring et al., 2000)

that the filamentary patterns generated by chaotic fluid motion

have a very important effect on aquatic populations. For

instance, phytoplankton populations trace out filamentary

structures, most remarkably during plankton blooming

(Abraham 1998; Abraham et al., 2000; Bracco et al., 2000;

Martin, 2003; Neufeld et al., 2002). Zooplankton, that are able

to actively swim while grazing on phytoplankton, follow a

similar distribution (Sandulescu et al., 2008), just like top

marine predators (Tew Kai et al., 2009). The filamentary

distribution has a very important role in the biological activity

of plankton. In fact, it has been suggested as a possible

mechanism that explains the paradox of plankton. According

to traditional population biological equations assuming that

plankton is homogeneously mixed in the water, the number of

coexisting species cannot exceed the number of limiting

resources. This means that the number of coexisting species in

a well-mixed environment cannot exceed, say, 10. That this is

evidently not the case for plankton population can be

explained by the non-homogeneous mixing caused by the

chaotic motion in fluid flows that generate filamentary

distribution of plankton (Károlyi et al., 2000; Scheuring et al.,

2000).

Horizontal fluid stirring, as will be seen in the next section, is

characterised by a filamentary distribution of particles. It is

very important to know where the filamentary structures, the

unstable manifolds reside, as they govern the properties of

stirring in fluids. In order to investigate the emergence of the

filamentary structures, a simple but realistic wind-driven

shallow water model is investigated in the following section.

4. FINITE-SIZE LYAPUNOV EXPONENTS IN A

SHALLOW LAKE

In order to investigate the particle motion in a realistic fluid

flow, the velocity field in a wind-driven shallow lake is

computed numerically. For simplicity, the lake has a square

shape of horizontal dimensions 2 km 3 2 km, and its depth is

varied linearly between 2 m at the shore and 2.5 m in the

centre (Figure 2). The lake is forced by a wind of velocity

components 10 m/s in both north and either east or west

directions, with the wind changing direction at every 4 h from

north-east to north-west and vice versa. The transition in the

wind direction takes 20 min – during this time the north

component is kept constant while the east component decays

to zero and the west component increases or vice versa. This

kind of forcing is reminiscent of the one used by Kranenburg

(1992) and Liang et al. (2006, 2007), and results in a highly

unsteady periodic flow of period T ¼ 8 h. The near-surface

wind and the surface shear stress field are estimated

considering an atmospheric internal boundary layer over the

Figure 1. Patterns generated by advection behind a power
plant in Loch Faskally, Scotland (photo by Gy. Károlyi)
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water surface using semi-empirical formulae justified by field

data and numerical modelling (Curto et al., 2006; Józsa et al.,

2007). In sufficiently strong wind conditions the horizontal

water mass exchange in a shallow lake can be reasonably

approximated in a depth-integrated horizontal manner,

allowing the use of the 2-D shallow water equations for the

numerical flow simulation (Curto et al., 2006; Vreugdenhil,

1994). A uniform Manning bed roughness of n ¼ 0.025 s/m1=3

is assumed and the effects of Earth’s rotation are neglected, due

to the moderate extent of the lake. As boundary conditions, no

normal flow is allowed along the shore, and there is perfect slip

of the tangential flow component. The numerical solution is

obtained using a standard, spatially second-order accurate

finite difference method (Vreugdenhil, 1994) on a rectangular

grid of 40 m cell size. The flow state variables are assigned to

this grid according to the Arakawa C layout: the components

of the specific discharge are represented at cell edges whereas

the water depth is cell-centred. The time integration is done

using an explicit Euler scheme with a time step of the order of

10 s governed by the Courant stability condition. The Eulerian

velocity components obtained on this grid are stored at time

steps of 600 s for the particle trajectory calculations; see for

example the left image in Figure 3. Then the advection

Equation 1 is integrated by a fourth-order Runge–Kutta

scheme using the velocity components obtained by bilinear

spatial interpolation within the grid cells and by linear

interpolation between the stored time levels.

The definition (Equation 4) of the Lyapunov exponents

involves that the rate of separation needs to be measured for

very long times. This is not feasible either in numerical or real

experiments. Also, in practice the limit d0 ! 0 cannot be

effectively measured. Instead, the concept of finite-size

Lyapunov exponents (FSLE) has been introduced (Aurell et al.,

1997; Boffetta et al., 2001). To measure the FSLE at a point r, a

reference particle is started from r at time t, simultaneously

with another particle at a distance d0 from r. The time �
required to reach a separation df is measured, and the FSLE is

defined as

º r, t , d0,dfð Þ ¼ 1

�
ln

df
d0

5

Large values of the FSLE mark regions in the flow where

neighbouring particles are subjected to large stretching, where

dependence on the initial conditions is sensitive, hence where

chaos reigns. Figure 4 shows a plot, for different initial times t,

of the FSLE distribution in the model lake obtained by

releasing 381 3 381 particles in total, in the nodes of a regular

grid of 5 m resolution, excluding the 50 m wide littoral belt.

For the calculations, in each of the grid points the average

separation of the four initially diagonally adjacent particles are

used (d0 ¼
ffiffiffi

2
p

� 5 m) and the average time � for the separation
to reach df ¼

ffiffiffi

2
p

� 250 m is measured.

As Figure 4 shows, the high values in the FSLE distribution

trace out filamentary structures. The filaments are the results of

the strong stretching and folding characteristic to chaotic

systems (Tél and Gruiz, 2006). They indicate the unstable

manifold – that is, the largest stretching direction in the fluid.

Between the filaments of high FSLE values there are ‘valleys’ of

lower values. This means that nearby points can have quite

different FSLE values if they are lying on different filaments.

There are extended regions, however, where the FSLE values

are low (close to zero): these indicate regions with poor mixing.

As can be seen from Figure 4, the shape of the filaments and

the shape of the region with low FSLE change with time. For

example, the low FSLE regions seem to be rotating. Despite this

time-dependence, between regions of strong and weak mixing

there is no exchange by stirring, there is a barrier to transport.

Therefore, it is of great importance to distinguish between the

chaotic and non-chaotic regions. For example, if pollution is

injected in a region of poor mixing, it remains there for a long

time. However, pollution injected in a chaotic region spreads

rapidly in the whole chaotic domain due to the high stretching

rates (large FSLE).

The extent of the regions with filamentary structures indicates

the strength of chaos. The size of the chaotic, well-mixed

regions of the flow depends in a non-trivial way on the

Eulerian characteristics of the flow. Changes in the

environment (such as water depth through varying

precipitation or evaporation), alterations in land usage around

the lake (through roughness that changes the wind forcing field

over the lake) are factors that modify the flow field in the lake,

namely the Eulerian characteristics of fluid motion. The

modifications to the flow field in turn alter the Lagrangian

patterns traced out by the advected particles.

4.1. Effect of water level decrease

To verify the effects of the environment on the filamentary

structures further simulations were carried out. Figure 5 shows

the FSLE distribution when the water level is decreased by 1 m.

In the shallow model lake, a 1 m decrease of water level

enhances the relative depth between various parts of the lake:

in this case the depth varies between 1 and 1.5 m. This implies

a difference in the flow field (Figure 3), which manifests itself

in a different FSLE distribution (Figure 5). It can be seen from

Figure 5 that filamentary structures emerge in this case as well

as in the original case. However, the patterns traced out by the

filaments are different. An interesting difference is that in the

shallower case regions of low mixing cannot be seen: the

filaments visibly cover the whole lake. This is true even though

vortical structures are still present in the Eulerian velocity field

(Figure 3b). In fact, unchanged wind forcing imposed on a lake

Z
Y

X

0

1000

2000
0

1000

2000

�2·5 m

�2·0 m

�
2·

0
m

Figure 2. Axonometric view of the model lake geometry
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Figure 3. Instantaneous flow pattern in the model lake with (a) original and (b) decreased water level at time t ¼ T
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Figure 4. The FSLE distribution in the model lake with different initial times t as a fraction of the period T ¼ 8 h. The shading
indicates the FSLE values in units of 1/h, obtained with initial and final separation distances of d0 ¼

ffiffiffi

2
p

� 5 m and df ¼
ffiffiffi

2
p

� 250 m,
respectively. Starting with the lake at rest, 45 full wind periods were simulated before the FSLE calculation. Grey circle indicates
instantaneous position of a periodic particle orbit
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with overall reduced depth and at the same time enhanced

relative depth gradients results in stronger rotation of the lake-

wide large gyres. It implies a larger displacement of particles in

one period, the alternation of which will then generate

enhanced, more extended regions with chaotic stirring. The

mean FSLE averaged over the whole lake was compared and

found to be 0.1185 1/h for the original case, and 0.1622 1/h for

the case with decreased water level. This confirms that chaos

and hence mixing is stronger when water level is decreased.

4.2. Effect of coastal land use

Figure 6 shows how land use can modify the particle transport

in the lake. The relevant changes are those that occur upwind,

since they also alter the velocity profile and, in consequence,

the shear stress distribution over the lake. In the original case,

the shore was assumed to be smooth, for example bare land

with aerodynamic roughness height z0 ¼ 0.005 m. If the shore

or the littoral zone is assumed to be covered by reed (Figure

6(a), z0 ¼ 0.15 m) or by tall trees or buildings (Figure 6(b),

z0 ¼ 0.5 m), the overland aerodynamic roughness increases,

which ultimately alters the flow velocity field in the lake (Józsa

et al., 2007). Again it is observed that the filamentary

structures are different in the case of the reed-covered (Figure

6(a) panel) or built-in (Figure 6(b) panel) shore from that in the

case of less rough shore, but the large FSLE values still trace

out filamentary patterns. As the roughness of the shore

increases, the wind-shear unevenness also increases, which

results in higher values of the FSLEs: the measured average

FSLE values are 0.1185 1/h (original), 0.1579 1/h (reed covered)

and 0.1950 1/h (built-in or woody shore). Furthermore, as the

shore roughness increases, the non-mixing regions are

gradually destroyed as chaotic stirring extends to the whole

lake.

4.3. Non-periodic wind forcing

So far it has been assumed that wind direction is perfectly

periodic, the period being 8 h. This is, obviously, never the case

for real winds. Now a check is made of what happens if the

wind direction changes between north-east and north-west with

partly random periodicity. The length of the period is varied

between 4 and 12 h randomly with uniform probability (see

Figure 7 for a sample time series). Despite the non-periodic
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Figure 5. The FSLE distribution in the model lake with (a) original water level and (b) water level decreased by 1 m. The shading
indicates the FSLE values in units of 1/h, obtained with initial and final separation distances of d0 ¼

ffiffiffi

2
p

� 250 m and
df ¼

ffiffiffi

2
p

� 250 m, respectively. The snapshots were taken at t ¼ T

2000

1500

1000

500

0
0 500 1000 1500 2000

2000

1500

1000

500

0
0 500 1000 1500 2000

λ: 1/h

0·6

0·5

0·4

0·3

0·2

0·1

0

(a) (b)

Figure 6. FSLE distribution in the model lake with rough reed-covered shore (a) (aerodynamic roughness height of z0 ¼ 0.15 m)
and even rougher built-in or woody shore (b) (z0 ¼ 0.5 m). The shading indicates the FSLE values in units of 1/h, obtained with
initial and final separation distances of d0 ¼

ffiffiffi

2
p

� 5 m and df ¼
ffiffiffi

2
p

� 250 m, respectively. The snapshots were taken at t ¼ T
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wind forcing, very little change in the FSLE distribution can be

seen in Figure 8 in comparison with Figure 4, in particular, the

filamentarity remains intact. There is no visible change in the

width of the filaments, and the high FSLE values are to be found

roughly at the same locations in both figures. This shows that

the filamentary distribution is not an artifact of the periodicity

of the model. There is one important change, however: the FSLE

patterns do not repeat in time with any period. This non-

periodicity is responsible for the lack of non-mixing regions:

despite having extended regions of low mixing, the particles

can escape the low FSLE regions after a long time.

4.4. Pollutant behaviour

A very important application of the FSLE is that it allows for

the prediction of the behaviour of pollutants. Pollutants that

are initiated inside a low FSLE region are expected to persist

there for a long time without much dispersion. However, if the

pollution starts in the chaotic regime, where the FSLE are large,

it will quickly spread in the whole chaotic domain. As an

example, Figure 9 shows how pollution reaches near-shore

regions originating from different parts of the lake. The four

shades of grey indicate which near-shore region is visited first

from a point inside the lake. White regions indicate particles

that never approach any of the near-shore regions. By

comparing Figures 9 and 4 it can be seen that the regions from

where the pollution never reaches the shore coincide with the

low FSLE regions, whereas particles with high FSLE values are

drifted to one of the shores. Which shore is visited by a particle

is highly unpredictable due to the chaotic motion and the

sensitivity to the initial location in these regions. Anyway, the

unpredictable regions coincide with the regions of high FSLE

values.

5. FURTHER OUTLOOK AND CONCLUSIONS

In the present study some further understanding of the

importance of the filamentary distribution of passive particles

transported in fluid flows has been obtained. As an illustrative

example, a simple wind-driven shallow lake model was

investigated to see whether strong mixing is associated with

chaotic motion of particles. The regions with large deviation

between particles trace out filamentary patterns, that can be

visualised using the finite-size Lyapunov exponents. As a very

important application, it has been shown that the

unpredictability of where a patch of pollutant reaches the shore

depends largely on the stirring properties in the lake, which

can be well characterised by the FSLE distribution. The FSLE

has predictive power on whether the pollution remains inside a

non-chaotic region or reaches the shore.

The manner in which large-scale environmental changes affect

the mixing properties in the lake was also investigated.

Whether it is the change of water level or the change in land

use around the lake, the filamentary distribution of the FSLE

remains. However, the exact distribution of the strongly mixed

regions can change dramatically due to external effects, which

is very instructive in the light of current climate change. For

example, warming can decrease the level of the lake and

change the vegetation or land use around the lake, leading to a

dramatic effect on stirring and hence on aquatic ecosystems.

The effect of diffusion on the FSLE distribution has been

studied by Pattantyús-Ábrahám et al. (2008). It was found that

the combined effect of diffusion and stretching does not alter

the existence of the filamentary structures. Furthermore, in the

presence of diffusion (either molecular in small scales or

turbulent in large scales) the barriers between strongly and
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Figure 7. Non-periodic variation of the easterly component of
the wind vector in time, with the period T randomly
perturbed in the range 4 to 12 h. The northerly component is
held constant at WN ¼ 10 m/s
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poorly stirred regions become penetrable, but in the case of

large Péclet number the water exchange remains slow. It was

also found that the structure of the FSLE distribution is

unchanged as the resolution of the applied numerical grid is

increased. With an enhanced resolution, however, the finer

details of the filaments emerge.

Throughout this study several simplifying assumptions were

made on the investigated aero- and hydrodynamic conditions

(wind having only two steady directions, two-dimensionality,

etc.) and on the transport of particles (being passive). Previous

theoretical studies (Tél et al., 2005) indicate, however, that the

results outlined herein are not expected to be altered

significantly by including more precise models for either the

lake or the particles’ transport, such as considering the effects

of three-dimensionality, more random wind forcing or the

inertia of particles.

Finally, it is noteworthy that an alternative approach to

visualise the filamentary structures has been suggested by

Haller (2000), Voth et al. (2002) and Mathur et al. (2007),

which finds finite time stable and unstable manifolds. In fact,

the FSLE implemented in the current case is easier to compute

numerically, although the two techniques lead to essentially

the same result.
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Károlyi G, Péntek Á, Scheuring I, Tél T and Toroczkai Z (2000)

Chaotic flow: the physics of species coexistence. Proceedings

of the National Academy of Sciences 97(25): 13661–13665.

Kranenburg C (1992) Wind-driven chaotic advection in a

shallow model lake. Journal of Hydraulic Research 30(1):

29–46.

Lam DCL and Schertzer WM (eds) (1999) Potential Climate

Change Effects on Great Lakes Hydrodynamics and Water

Quality. ASCE, Reston, VA, USA. p. 232.

Landau LD and Lifshitz EM (2000) Fluid Mechanics. Elsevier,

Butterworth-Heinemann, Oxford, UK.

Liang Q, Borthwick AGL and Taylor PH (2006) Wind-induced

chaotic advection in shallow flow geometries. Part I, Circular

basins; Part II, Non-circular basins. Journal of Hydraulic

Research 44(2): 170–179 and 180–188.

Liang Q, Borthwick AGL and Taylor PH (2007) Particle mixing

and reactive front motion in unsteady open shallow flow –

modelled using singular value decomposition. Computers

and Fluids 36(2): 248–258.

Liang Q, Taylor PH and Borthwick AGL (2009) Particle mixing

and reactive front motions in chaotic but closed shallow

flows. Computers and Fluids 38(2): 382–392.

Martin AP (2003) Phytoplankton patchiness: the role of lateral

stirring and mixing. Progress in Oceanography 57(2): 125–

174.

Mathur M, Haller G, Peacock T, Ruppert-Felsot JE and Swinney

HL (2007) Uncovering the Lagrangian skeleton of turbulence.

Physical Review Letters 98(14): 144502.

Neufeld Z, Haynes PH, Garcon V and Sudre J (2002) Ocean

fertilization experiments may initiate a large scale

phytoplankton bloom. Geophysical Research Letters 29:

1534.

Ottino JM (1989) The Kinematics of Mixing: Stretching, Chaos

and Transport. Cambridge University Press, Cambridge.
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