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Abstract

Patterns obtained by using tracer particles to visualize open hydrodynamical flows are inves-
tigated. As an example, the advection problem of passive tracers in the time-periodic velocity
field of leapfrogging vortex pairs is considered. We show that the patterns are fractal if the
tracer dynamics is chaotic, i.e., there exists a chaotic saddle, and if the initial conditions overlap
with the stable manifold of this chaotic set (that is itself a fractal). Dye particles not advected
away very quickly then accumulate on the unstable manifold of the chaotic saddle and the frac-
tal dimension of such patterns is thus independent of the initial conditions. The time evolution
of the fractal patterns appearing on snaphsots is followed within one period of the velocity field.
We investigate which features of the chaotic dynamics determine the fractal properties. They
turn out to be independent of when the snapshots are taken. The entropy function of the local
Lyapunov exponents is computed based on the scattering motion of the tracer particles, along
with the f(a) spectrum of the chaotic saddle.
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1. INTRODUCTION

Fractal patterns can often be seen in open hydro-
dynamical flows with the naked eye. In this paper
we concentrate on patterns traced out by ensem-
bles (e.g., droplets) of dye particles. These passive
tracers are assumed to have negligible inertia and
the same density as the fluid, so that they simply
follow the local velocity field.1*3 An interesting ob-
servation is that turbulence is not a necessary condi-
tion for the existence of fractal structures; the latter
can appear in any nonstationary flow with smooth
instantaneous streamlines. Time-periodic cases pro-
vide the simplest class with potential fractal pat-
terns. To understand this we recall that stream-
lines and particle trajectories coincide in stationary
flows only.! In the presence of any time-dependence
they can drastically differ since particles have to
follow a streamline pattern changing continuously
with time. Our aim is to find conditions for the
fractality of tracer patterns. We shall show that
the chaotic motion of the particles is the origin of
such patterns and investigate which features of the
chaotic dynamics determine the fractal behavior.

As an illustrative example we consider a simpli-
fied model of the so-called leapfrogging motion of
two vortex rings. With some experience, smokers
can make such rings. Having the same sense of ro-
tation, these rings travel in the same direction. In
cases where they happen to move along the same
axis, the rear vortex ring attempts to pass through
the front one. The leading ring then widens due
to mutual interaction and slows down. Simultane-
ously, the other ring shrinks, travels faster and pen-
etrates the first one. The process is then repeated
again and again. A detailed simulation of particle
trajectories in the field of leapfrogging vortex rings
in viscid fluid has been carried out recently,*® and
good agreement with smoke visualization pictures
reported in experiments® has been found. For fur-
ther experiments with vortices see Ref. 7. We shall
study the two-dimensional analogue of this process
in an inviscid incompressible flow: advection by two
pairs of ideal point vortices of the same strength ex-
hibiting leapfrogging motion and generating a time
periodic velocity field.

The analysis of this problem requires a dynamical
system approach and also leads to the description
of the emerging fractal patterns. The main results
from the point of view of dynamical system theory
have been summarized in Ref. 8. Here, we concen-
trate on the fractal aspects without giving too much
mathematical details. Instead, we can also discuss

numerical results that have not been presented in
Ref. 8, for example, the different ways of approach-
ing the fractal pattern, the time dependence of the
latter within one period of the velocity field, and
multifractal properties.

The paper is organized as follows. In Sec. 2
we qualitatively describe the motion of leapfrogging
vortices and the associated advection problem (the
equations of motion are given in the Appendix). Re-
sults of numerical experiments are presented show-
ing how dye droplets of different shapes approach
the same fractal pattern. A more detailed descrip-
tion of the process is provided by plotting in dif-
ferent color tracers injected into the flow in front of
the vortex system during different full periods of the
velocity field. We shall see that the so-called invari-
ant set of the tracer dynamics discussed in Sec. 3
play a fundamental role in understanding the ad-
vection of tracer ensembles. Bounded trajectories
corresponding to tracer particles trapped forever by
the vortex system form a nonattracting chaotic set,
a chaotic saddle for short. This set is a fractal,
of measure zero, resembling the direct product of
two Cantor sets. It has a stable manifold, a folia-
tion of the fluid in front of the vortices along which
the chaotic saddle can be reached. Since this foli-
ation is also a fractal of measure zero there is no
finite probability for tracer particles to reach the
chaotic saddle and to be trapped forever among the
vortices. The chaotic saddle also has an unstable
manifold, the stable manifold of the time reversed
tracer dynamics. We point out that fractal patterns
of the tracer dynamics coincide with the unstable
manifold of the chaotic saddle. The time evolu-
tion of the invariant sets is followed numerically on
snapshots taken within one period of the velocity
field. Afterwards (Sec. 4) we study the mixing and
transport properties and show how the motion of
the manifolds’ lobes, the so-called lobe dynamics,
determine the time spent around the vortices and
the stretching and folding of material lines. Finally
(Sec. 5), the escaping process and the multifractal
properties of the chaotic saddle are discussed. The
paper concludes with an extension of the results to
general open flows and a brief discussion of potential
experimental implications.

2. NUMERICAL RESULTS FOR
THE TRACER DYNAMICS

The description of tracer dynamics implies
the solution of two types of problems: first the
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Fig. 1 Geometry of two leapfrogging vortex pairs. Relative
and center of mass coordinates are indicated.

determination of the velocity field, and then the so-
lution for the tracer trajectories in this field.

An isolated point vortex of strength x generates
at distance r from its center a circulational flow with
a velocity field proportional in modulus to «/r.1° In
an n-vortex system, each vortex is simply advected
by the flow induced by the others, i.e., the velocity
of a given vortex is the vectorial sum of the veloci-
ties generated at its position by the n —1 other vor-
tices. We consider the situation depicted in Fig. 1
corresponding to the motion of two vortex pairs of
equal strength (k3 = kg = —k3 = —Kk4 = 1) that
move in the same direction along a common symme-
try axis perpendicular to the extension of both pairs
(x1 = x4, y1 = —y4, T2 = x3, Y2 = —y3). It is easy
to write down the equations of motion of these vor-
tices, and since the symmetry with respect to the z
axis is assumed to hold during the motion, only vor-
tices 1 and 2 are independent. These equations turn
out to be integrable by simple quadratures and pos-
sess strictly periodic solutions describing a leapfrog-
ging motion. We set the origin of time ¢ = 0 so that
it corresponds to a configuration when the upper
two vortices have the same y-coordinate.

Using the law describing the velocity around a
given vortex, it is also easy to determine the veloc-
ity field v at any point r = (z, y) of the plane. This
velocity is, however, explicitly time dependent be-
cause the vortex centers move as determined above.

A passive tracer particle located at r at time ¢
simply follows the local velocity field v of the flow;

therefore, its equation of motion is:

r=v(r,t). (1)

This is a set of nonautonomous ordinary differential
equations containing v, the result of the vortex dy-
namics, as an input. In the case of leapfrogging, the
velocity is time periodic with some period T. The
advection problem is then similar to the dynamics
of driven nonlinear oscillators that are known to be
chaotic in general.!! The phenomenon is especially
simple in a frame comoving with the center of mass
zo = (x1 + z2)/2 of the upper two vortices, and
all the numerical results will be given in a reference
frame whose origin is at (zo(?), 0).

We have numerically solved Eq. (1) with several
initial conditions to find tracer trajectories r(¢). Be-
cause of the periodicity of the velocity field, it is
convenient to represent the results by taking snap-
shots of the tracer positions at integer multiples of
the period T. This defines a so-called stroboscopic
map of the tracer dynamics that we shall extensively
use in what follows.

In this section we present results obtained with
ensembles of tracer particles injected in front of the
vortex system into the flow. In Fig. 2 we take a
droplet of circular shape close to the z axis, and
follow it while it is being transported by the flow.
One can clearly see that the droplet is very strongly
stretched and after one period (Fig. 2(b)) it is al-
ready so narrow that it cannot be distinguished
from a line segment. This line is then elongated and
deformed further. After three periods (Fig. 2(c))
a part of this segment has flown out of the range
shown but its other part stays inside. This segment
becomes longer and longer and seems to trace out
a complicated pattern surrounding the upper two
vortices. Because of the symmetry of the vortex
problem, tracer particles can never cross the z axis.
However, if we had initiated a droplet on the lower
half plane at the mirror image position of what is
shown in Fig. 2(a), we would have obtained the mir-
ror images of Figs. 2(b)-2(f) with respect to the z
axis. Figure 2 is taken at ¢t = 0 mod T and the
vortex centers are located at z = 0.5, y = 0.5.
Note that the tracer particles do not penetrate the
immediate vicinity of the vortex centers.

Figure 3 shows an analogous series of pictures
obtained with another ensemble of tracer particles
now distributed along a horizontal straight line seg-
ment 2 < x < 3.96, y = 0.1. Although the first 3
steps are rather different, the part of this material
line that remains for long around the vortices seems
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Fig. 2 Motion of a droplet of dye particles on the upper half of the stroboscopic plane taken at ¢ = nT with n an integer
between 0 and 5 (a—f). 5-10* tracer particles were started from a disc of radius 0.05 centered at (2,0.1). Observe that after
only five time steps the ensemble of dye particles converges to a fractal pattern. The vortex centers are denoted by dots.
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Fig. 3 Motion of a material line on the stroboscopic plane taken at t = nT with n = 0,...,5 (a—f). 5-10* evenly distributed
tracer particles were started from a horizontal straight line segment {2 < z < 3.96, y = 0.1}. The ensemble of dye particles
traces out asymptotically the same pattern as in Fig. 2(f). The vortex centers are denoted by dots.
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Fig. 4 Motion in a fluid whose color is changing. Dye particles are injected along the vertical line £ = 4. The color is
changed after each full time period T. The index used in the legend of color coding indicates the color of tracers injected in
the period (n — 1)T <t < nT. Light red marks tracers injected more than 12 periods before. The red regions corresponds to
the vortex cores not reachable by tracers coming from outside, and can formally be considered as regions of infinite lifetimes.
Part (a) displays the distribution of differently colored tracers at to = 99 7. (Numerically it has been convenient to obtain it
by starting trajectories on a grid of 800 x 400 points in the range shown, iterating the tracer dynamics backward, and coloring
the initial points according to the time the tracers needed to cross the z = 4 line.) Figs. b—e show how these material regions
evolve in time by taking snapshots at t —to = 0.356 T', 0.5 T, 0.644 T, T. Note that Fig. 4(e) is the same as Fig. 4(a) but the
color code has been shifted by 1.
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to converge to the same pattern as the droplet of
Fig. 2.

The white ellipsoidal regions around the vortices
(see e.g. Figs. 2f and 3f) are obviously not accessi-
ble by incoming trajectories. These are the regions
where the effect of one vortex dominates that of
any other one and can therefore be called the vor-
tex core for the tracer dynamics. Inside this core
the other vortices produce just a weak perturbation
of the rotational motion generated by the vortex in
the center. Tracer particles injected directly into
this regime can therefore have simple trajectories.

A more detailed description of the convergence
toward a complicated pattern can be obtained by
introducing color coding according to the time spent
in the vicinity of the vortex system. Figure 4(a) ex-
hibits the result of a numerical experiment in which
particles have been injected into the flow along the
vertical line x = 4, y > 0 continuously but by
changing the color of the dye after each full pe-
riod T: a domain of color (n + 1) is the image
of the domain of color (n) under the stroboscopic
map. The boundary between domains of different
colors is thus the image of the material line z = 4,
y > 0 after a certain multiple of T. Notice that the
boundary between different colors converges in cer-
tain regions to a curve. An example is the curve
crossing the = axis approximately perpendicularly
around z = 1.1 and appearing as the left boundary
of the light gray domain. Although here all the col-
ors have to accumulate, the convergence is so fast
that not even light magenta can be seen on the pic-
ture. In the next section we shall see that this curve
is a well defined mathematical object, the unstable
manifold of a periodic orbit. That a layer of light
magenta is present around this curve becomes clear
by considering the upper left loop where the con-
vergence is slower. In other regions, for example,
in the loops behind the vortices, no sign of conver-
gence can be observed; a broad light magenta band
is present.

Another point of interest is that the light ma-
genta domain (the image of the light gray one) pen-
etrates from two directions, the surrounding of the
vortices, which we shall call the interaction region
(see Sec. 4). A narrow filament very close to the
z axis enters this region and broadens considerably
forming patches, for example left above the left vor-
tex and around x = 0, y = 0.05. The other light
magenta band comes in above the first loop behind
the vortices and surrounds the multicolored region
with a single layer that is quite broad below the

right and above the left vortex but nearly invisible
at other places. These observations illustrates the
fact that while the bulk of the domain of a given
color is transported away, filaments of it remain
trapped around the vortices. The thickness of these
filaments is decreases greatly with time: yellow and
blue is much less dominating around the vortices
than magenta. Despite their complex forms, each
domain of a given color forms a single connection
domain. Note that in certain regions, for exam-
ple, between the vortices and around the x axis, an
efficient stretching takes place: the dark magenta
filament is very narrow and hardly visible, respec-
tively, in these regions. Parallel to this there is a
continuous escape of the tracers that have ever en-
tered into the interaction region and, consequently,
no finite amount of matter will be trapped by the
vortex system forever. There is however, a finite
portion of tracers that is trapped for a long time,
and it is this amount of matter that will be strongly
mized and transported away by the vortices.

It can also clearly be observed that particles with
long lifetimes between the vortices (from blue to
light red) trace out the same pattern as that of
Figs. 3(f) and 4(f). The longest lifetimes can be
found around the outer surface of the vortex cores.
Their insides, formally of infinite lifetimes, are col-
ored by red.

The series of pictures 4(b)-4(e) shows how do-
mains of different colors evolve during a full period.
It nicely illustrates that some parts of the compact
light gray domain of Fig. 4(a) are stretched and
rolled up between the vortices. Some other parts are
transported simply to infinity or are just smoothly
deformed. The huge light gray domain below the
vortices in Fig. 4(a) appears to be cut from the rest
of the light gray domain in Fig. 4(b) and trans-
ported further to the upper left lobe of Fig. 4(e).
Similarly the thin light gray tongue in the middle
of Fig. 4(a) seems to be cut from the rest in Fig. 4(b)
and is shifted to the bottom light gray patch around
z =0, y = 0.05 of Fig. 4(e). Stretching and folding
illustrated by these plots is known to be the basic
mechanism for chaotic dynamics!! and is responsi-
ble for the creation of fractal structures.

3. THE CHAOTIC SADDLE
AND ITS STABLE AND
UNSTABLE MANIFOLDS

The existence of sets that are invariant under the
time evolution of maps plays an essential role in
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the theory of dynamical systems. Such invariant
sets are fixed points or other periodic orbits, chaotic
sets, and their stable and unstable manifolds.!!
The key observation in understanding the for-
mation of fractal patterns by tracer ensembles is
the existence of an invariant chaotic saddle® in the
configuration space of the flow. The concept of a
chaotic saddle is an extension of that of a saddle (or
hyperbolic) point. Roughly speaking one can say
that the former contains an infinity of saddle points
corresponding to unstable periodic orbits. All the
trajectories of the tracer dynamics that after a full
period (or integer multiples of it) return exactly to
their initial points belong to the set. Interestingly,
the number of such trajectories increases with the

unstable manifold

period and the invariant set contains thus an infin-
ity of points. This set is globally nonattracting and
cannot be reached exactly. Particles, however, can
come arbitrarily close to it and exhibit chaotic mo-
tion before escaping. The chaotic saddle is itself a
fractal with a local structure resembling the direct
product of two Cantor sets in certain regions (see
the schematic Fig. 5).

There exists a powerful numerical method!? to
construct the chaotic saddle by finding a long se-
quence of short pieces of trajectories that straddle
a true orbit on the set. The chaotic saddle plot-
ted in this way is shown in Fig. 6. Only the upper
half-plane is displayed since the full set is symmetric
with respect to the x axis.

able manifold

Fig. 5 Schematic diagram of the direct product structure of the chaotic set’s hyperbolic component on the stroboscopic
map. The building blocks, the Cantor sets C, and Cu, are indicated.
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The set can clearly be divided into two parts.
One of them contains structures of double fractal
character. The deltoidal form A along the y axis
and structures B and C at the two sides of the plot
of Fig. 6(a) taken at ¢t = 0 ( mod T') are of this
type. Each of the two latter forms is mapped after a
period T onto itself. The elongated structure D on
the bottom of the figure and the deltoidal form A
are images of each other after time T although the
direct product structure of D is less striking because
of the strong stretching along the z axis. These four
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blocks, that we shall call the Ayperbolic component,
contain the strongly unstable periodic orbits of the
dynamics. It is worth noticing that two hyperbolic
periodic orbits, P, and P, of period T, lie on the
z axis (see Fig. 6(a)) and are the extremal points
of the chaotic saddle. The hyperbolic component
is equivalent to the direct product of two Cantor
sets, Cs and C, as depicted in Fig. 5. Because of
the time reversal symmetry, both Cantor sets must
have the same fractal dimension dy. The hyperbolic
component is thus of dimension 2dy. The other, the
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Fig. 8 The chaotic saddle at time t = 0, 0.356 T, 0.5 T, 0.644 T (mod T') on the upper half plane. Note the direct product
structure of the hyperbolic part (see regions A, B, C, and D) and the dense spirals around the vortex cores forming the

nonhyperbolic part. The vortex centers are denoted by dots.
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nonhyperbolic, component is the dense part around
the outer surface of the vortex cores where weakly
unstable periodic orbits accumulate. On very fine
scales this component appears to have fractal di-
mension 2 on the stroboscopic map.!3

It is instructive to see how the chaotic saddle it-
self evolves in time during a full period (Figs. 6(b)-
6(d)). By t = 0.356 T (Fig. 6(b)) the deltoidal form
A becomes deformed and is transported to the left
side of the lower vortex core. Simultaneously, struc-
ture D is pushed over to the positive half plane but
still stays on the bottom of the picture. Form B
(C) has been strongly stretched and rotated so that
it is located now below and right (above and left)
from the lower (upper) vortex core. Certain points
come close to the midpoint between the two vortex
centers. These components are deformed further
so that after half a period (Fig. 6(c)) form A goes
over into the left part of the “whiskers” on the bot-
tom and its mirror image with respect to the y axis
now coincides with structure D. The hyperbolic
parts B and C are located on the right and left
side of Fig. 6(c), respectively. The shape of the

chaotic saddle at ¢t = T"—1; is just the mirror image
with respect to the y axis of that obtained at ;.3
Thus Fig. 6(d) belonging to time ¢t = 0.644 T is the
mirror image of Fig. 6(b) and helps to understand
how the configuration of Fig. 6(a) will be restored
again by t =1T.

Just like an isolated hyperbolic point, a chaotic
saddle also has a stable manifold, an invariant set
of curves along which the set can be reached. It is
essential that the stable manifold of a nonattracting
chaotic set is an object of measure zero and provides
a fractal foliation of the space. This is why a particle
has zero probability to fall on the manifold and to be
thus trapped forever by the chaotic saddle. Figure 7
displays the stable manifold of the chaotic saddle on
the stroboscopic map taken at ¢ = 0 mod T. One
can show that the unstable manifold of the periodic
point P; is a very good approximation to the stable
manifold of the full chaotic saddle.

Tracer particles can approach the chaotic saddle
only if their initial points lie close to a branch of
the stable manifold. If this is not the case, like in
the example shown in Fig. 8, the droplet will just

1.2 T .
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0.2t
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Fig. 7 The stable manifold of the chaotic saddle at t = 0 (mod T). The droplets of initial conditions for Fig. 2 (da,shefd)
and Fig. 8 (dotted) are also indicated. The manifold has been obtained by letting several particles start in a tiny semidisk
around P; and following their time reversed tracer dynamics on the stroboscopic map.
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Fig. 8 Motion of a droplet of dye particles that initially do not overlap with the filaments of the chaotic saddle’s stable
manifold. Observe that the ensemble of particles is only smoothly deformed and is transported away rapidly. 5 - 10 tracer
particles were started from a disc of radius 0.05 centered at (2,0.2).
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Fig. 9 The unstable manifold of the chaotic saddle at t = 0 (mod T') obtained by letting several particles start in a tiny
semidisk around P, and following their direct tracer dynamics on the stroboscopic map.
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be deformed a little and then transported away by
the flow. It is easy to check that the set of initial
conditions used in Figs. 2-4 have indeed common
parts with the stable manifold.

The chaotic saddle also has an unstable manifold
that is a fractal, too, and can be defined as the sta-
ble manifold of the time reversed dynamics. This
manifold is presented in Fig. 9 and is approximately
the same as the unstable manifold of the periodic
point P,. Note that due to an internal symmetry of
the problem, at t = 0 (mod T') this is just the mirror

image of the stable manifold taken with respect to
the y axis. More generally, the unstable manifold
at time ¢ is the mirror image of the stable manifold
at (T —t) mod T taken with respect to the y axis.

The actual form of both manifolds is time-
dependent but periodic with the same period as the
flow. The manifolds on the stroboscopic map can
be obtained as the direct products of a line and a
Cantor set. Let C, (Cs) denote the Cantor set ap-
pearing as the intersection of the stable (unstable)
manifold with one smooth branch of the unstable

Table 1 Hyperbolic Fractal Sets and Their Dimensions

Fractal Set Dimension
Cantor sets C,, Cy, do
Set of singularities in the time delay function do
Saddle’s hyperbolic component (stroboscopic map) 2do
Saddle’s hyperbolic component (phase space of Eq. (1)) 2do+1
Stable or unstable manifold (stroboscopic map) do +1
Stable or unstable manifold {phase space of Eq. (1)) do+2

Fig. 10 Unstable manifold of the full chaotic saddle (the shape of the droplet of Fig. 2 at t = 10 T and its mirror image
with respect the z axis) on large scale. It shows a similar form as the flow visualization pattern in an experiment with
three-dimensional vortex rings.®
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(stable) one in the hyperbolic part of the chaotic
saddle (see Fig. 5). One thus concludes that the di-
mension of both manifolds is dop+1 on any snapshot
of the stroboscopic map. Since the trajectories are
smooth curves in the time continuous dynamics, the
manifolds are dg + 2 dimensional in the phase space
of Eq. (1).

Fractal patterns observed in the tracer dynamics
are attributed to the double foliation of the space
by the two manifolds. If the initial points of the
tracer trajectories lie close to one branch of the
stable manifold, particles will approach the chaotic
saddle along this branch, stay a relatively long time
around the set, and finally escape along its unsta-
ble manifold. Thus, we conclude that dye particles
not advected away quickly to the asymptotic region
lie close to the unstable manifold of the chaotic sad-
dle. A comparison of Figs. 2(f), 3(f) with Fig. 9 sup-
ports this observation. The approach to this mani-
fold might strongly depend on the initial conditions
used, for example on the shape of the droplet, but
the final form is independent. Consequently, the
fractal dimension of the tracer pattern is on any
snapshot the same dp + 1 as that of the chaotic
saddle’s unstable manifold. In Table 1 we have
collected the different fractal sets that play a role
in the tracer dynamics and have nontrivial fractal
dimensions.

It is also worth returning to the observations of
Fig. 4 in view of the double foliation just discussed.

R e - 2.
? ;

Strips of different colors accumulate with a rapid
convergence on a fractal curve, the unstable man-
ifold, in a region around the chaotic saddle. Fur-
ther away from this set, like for example, in the
loops behind the vortices, the pattern at a given in-
stant of time is just very slightly deformed and is
transported away without any sign of convergence
due to the lack of a stable foliation in these regimes.
The region containing dots of several colors is a
good approximation to the unstable manifold of the
chaotic saddle. Figure 4 thus also illustrates how
this manifold is evolving in time within a full pe-
riod. This figure also provides us with information
concerning the time evolution of the stable mani-
fold, too, due to the symmetries mentioned above.

The shape of the structure traced out by the en-
semble of droplet particles after time ¢t = 10 T is
given in Fig. 10, letting both the upper and lower
half-plane and a few lobes from the tail of the
chaotic saddle’s unstable manifold to be seen. The
resemblance to a flow visualization picture of two
leapfrogging vortex rings reported in® is striking al-
though the latter was obtained with three-
dimensional rings in a real fluid.

4. MIXING AND TRANSPORT
PROPERTIES

To understand the mixing and transport proper-
ties of the advection problem and their connection

Fig. 11 Schematic diagram of the stable and unstable manifolds W{ and W3 of the fixed points P; and P;, respectively,
on the stroboscopic map. Note that in the full problem the invariant manifolds have other branches that can be obtained as
the mirror images of Wy and W3 taken with respect to the z axis. Lobes E; and D; are indicated. The bold dashed line
represents lobe D_; whose width is comparable with the thickness of the line. In order to keep the plot clear, lobe E._3 is not

presented.
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Fig. 12 Lobe dynamics. Lobe E_; (gray) and its subsequent images (Eo: blue, E1: green, E2: magenta) are shown. The
full lobe Dj is colored by brown. The white and light red region are E3 U E4 and U; F;, ¢ > 5 (outside of Dj3), respectively.
The colored region is contained in the rectangle {—2.9 <z <1.2,0<y < 1.2}.

Fig. 13 Lobe dynamics subdivided according to escape. The color coding used: Ep N Do: dark blue, Eo N .D_1: cyan, rest of
Ejp: light blue; Ey N Dy: dark green, Fy N Dy: yellow, rest of E1: light green; E2 N Dp: dark magenta, E2 N D;: light magenta,
rest of Ey: light gray. The other colors are the same as in Fig. 12.
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with the fractal features, it is worth studying
the nontrivial manifolds of the fixed points P;
and P, (denoted by W7 and W¥, respectively). If
the velocity field were stationary, the stable man-
ifold W} of P and the unstable manifold W3 of
P, would coincide with each other and with the
streamlines reaching the z-axis at these fixed points.
The velocity field is, however, time-periodic and
so the manifolds W{ and W3 produce several
intersections.

Let us first consider the schematic Fig. 11 illus-
trating the most important topological features of
the intersection pattern of the manifolds. One can
define an interaction region S bounded by segment
PO of W3 and segment P,O of W7, where O is
the first intersection point along both manifolds.
Lobes formed by the unstable manifold W3 and the
boundary P, O of the interaction region are denoted
in the interior (exterior) of S by E; (D;) for 7 > 0.
The tracer dynamics transforms each lobe E; (D;)
after t =T onto F;+1(D;41). This rule extends the
definition of the lobes for ¢ < 0. We use the con-
vention that the first (last) lobe that lies inside the
interaction region has label 7+ = 0. Due to the in-
compressibility of the flow, the area of all the lobes
is equal.

It is instructive to follow how the content
of a lobe is evolving, i.e., the so-called lobe
dynamics.?'41% One can observe that points from
E;ND; spend time (i — j + 1) T inside S. In par-
ticular, points escaping the interaction region after
T, independently of when they entered S, lie in Dy.
Those spending just one time unit 7" in the interac-
tion region lie in Fy N Dy.

A direct numerical computation of the manifolds
W and W3' shows that their actual form is much
more complicated than those depicted in the
schematic diagram. To illustrate the lobe dynamics,
Fig. 12 displays the images of the material content
of lobe E_; (gray) after a few periods on the stro-
boscopic map. The compact lobe E_; is mapped
onto the complicated form of Ey (blue). The next
image E, (green) is so strongly elongated in certain
regions, especially on the right side of the multi-
colored region, that it does not appear to be con-
nected (although it is). This is even more pro-
nounced in the case of E; (magenta) that contains
all the points entering the interaction region S three
periods before. The union of points that entered the
interaction region 4 or 5 steps before is white. It
defines a band around the unstable manifold. A
good approximation to the latter is provided by the

union of points that entered the interaction region
more than 5 steps before (light red).

A more detailed picture of the inside of the lobes
is obtained by dividing them according to the time
of escaping the interaction region. In Fig. 13 we
divide lobe Ej into subregions escaping after one,
two or more steps, and indicate the images of these
subregions. Points from lobe Ej that escape im-
mediately (i.e., points of Ey N Dy, dark blue) are
after one and two steps in £y N D; (dark green) and
E; N D, (dark magenta), respectively. The bound-
ary between dark and light green and dark magenta
and gray traces out — by definition — pieces of
the outermost branch of the stable manifold. It is
worth noting that points of Ey escaping after one
step (EoND_1, cyan) form a rather narrow filament.
In contrast to the schematic Fig. 11, D_; has 24
intersection points with Ey. Because of the very
strong stretching, the cyan domain is in certain re-
gions quite close to the internal branches of the sad-
dle’s stable manifold. Its first and second images
are coded by yellow and light magenta. They can
be seen around the midpoint between the vortices
and at the tips of the two internal white-red tongues
inside D;, respectively. Points of the light blue re-
gion close to the cyan filament can, however, stay
for a very long time in the interaction region.

These observation indicate that the set EgnD_,
(Dg N E,), or more generally, E; N D_,, (D; N Ey,),
provide with n — oo and ¢ fixed an ever refining
approach to the stable (unstable) manifold of the
chaotic saddle inside the interaction region.

5. MULTIFRACTAL ANALYSIS

Tracer particles injected into the fluid in front of
the leapfrogging vortices exhibit, with the excep-
tion of a set of initial conditions of measure zero,
an asymptotically simple motion, with a compli-
cated, chaotic part restricted to a finite domain in
both space and time. The particle motion is thus
analogous to a scattering process that is chaotic in
the region of strong interaction. Recent develop-
ments in the field of chaotic scattering'® can thus
be taken over and used to characterize fractal and
multifractal properties of the tracer dynamics.

A central object in the theory of chaotic scat-
tering is the time delay function describing how
the time spent in the interaction region depends
on the initial conditions. In practice, one takes
a one-parameter family of initial conditions (say a
straight line on the (z, y) plane) and measures the
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number of periods the particle needs to leave a pre-
selected region around the vortices as a function of
the parameter. In our numerical experiment 5 - 10*
trajectories were started with uniform distribution
on a vertical segment of length 0.1 at z = 1.3 cut-
ting through the lobe £_;. We then measured after
how many time periods of T they crossed the ver-
tical line at * = —1.3, and thus left the vortices.
This function depicted in Fig. 14 takes on an in-
finite value whenever the initial condition falls on
the stable manifold of the chaotic saddle. These in-
finities thus appear in a fractal pattern. The set of
infinities is a kind of projection of the Cantor set C,,
along the stable manifold (see Fig. 5). The former
has thus the same dimension dy as the dimension of
the Cantor set C,.

Trajectories characterized by different time de-
lay values mark different levels in a hierarchy. We

define on each level n length scales lz(") that de-
note the length of intervals where the time delay

function takes on a value greater than or equal to
nT (the first two levels are indicated at the bottom
of Fig. 14). The set of intervals at level n is prac-
tically the cross-section of the complement of lobes
D_9;,D.3,...,D_, inside E_, with the x = 1.3
line. This is so because the lifetime of particles
in ;N Djis (i — j+ 1)T inside S. Thus we con-
clude that the hierarchy seen in the time delay func-
tion also reflects the hierarchy of the lobes D; with
j < 0. The relation between these hierarchies fol-
lows from our previous observation claiming that
E_; N D_, approaches to the stable manifold for
increasing n.

The set of intervals taken represents a refining
coverage of the singularities in the time delay func-
tion, i.e., of a fractal set of dimension dy. Let the
total number of such intervals at level n be de-
noted by N(n). It is usually an exponentially in-
creasing function of n in the large n limit. The
total interval length, however, decreases with n,
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Fig. 14 Time delay function. 5 - 10* trajectories were started on the £ = 1.3 line with 0.01 < y < 0.11. The first two
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Fig. 15 The entropy function S(F) of the local Lyapunov
exponents of the chaotic saddle’s hyperbolic component ex-
tracted from the coverage of the singularities in the time
delay function of Fig. 14 via Eq. (4) (a), and the corre-
sponding f(a) spectrum (b). The straight lines represent
the diagonals. The support of the entropy function and
the f(e) function is E- = 0.80 < E < E4 = 5.92 and
a- = 073 £ a £ a4 = 0.96, respectively. Considerable
numerical uncertainties are due to the difficulty of an accu-
rate determination of the rapidly shrinking intervals. Such
regions are plotted by dashed lines.

Ef’:(? ) ll(-") ~ exp(—vyn) where - is called the escape
rate.

Having found a hierarchically nested set of char-
acteristics, we can carry out a multifractal type
analysis of the length scale statistics in the same
spirit as for any fractal with a hierarchical organiza-
tion.!” We introduce scaling indices E by writing:

1. (n
Ei=_51nz§ ). (2)

They tell us how rapidly the length scales decrease
with n and can be considered as local Lyapunov
exponents. The range in which the values E; lie is
typically a finite interval (E_, E).

As n grows, there are in the coverage more and
more intervals of the same exponent E. Their num-
ber W(n, E) also grows exponentially, and we can
define an entropy function S(FE) of the local Lya-
punov exponents as the growth rate of W:

W(n, E) ~ 5Em (3)

valid for large n. Alternatively, it can be obtained as
the Legendre transform of the so-called free energy
BF (), extracted from a weighted sum of the length
scales via the relation:

' (n) F
> (M)P ~ e AFER, (4)

1

where (3 is an arbitrary real number, and n > 1.

The function S(FE) characterizes the length scale
distribution of the intervals covering the singulari-
ties in the time delay function. These intervals are
transported away by the flow along the stable man-
ifold, are slightly deformed, and come after a cer-
tain time close to the Cantor set C,. The Cantor
set’s coverage has thus the same scaling properties
as the intervals in the time delay function. There-
fore, the same entropy function S(E) characterizes
the chaotic saddle, t00.18 The entropy function of
local Lyapunov exponents for the tracer dynamics
obtained from the time delay function of Fig. 14 is
displayed in Fig. 15(a).

Local Lyapunov exponents can also be deter-
mined directly by following the deformation of ma-
terial lines.!® Our approach based on the analogy
with chaotic scattering seems to be simpler than
previous ones since it requires the analysis of only
straight line segments on an interval.

One can prove!”!® that the value of E that be-
longs to the point with slope unity of S(E) is the
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average Lyapunov exponent A of the dynamics. The
horizontal distance of this point from the diagonal
S = F is the escape rate 4. The dimension dy can
be read off as the slope of the straight line passing
through the origin and being tangent to the graph
of S(E). In our problem we obtain for the frac-
tal dimension, the average Lyapunov exponent, and
the escape rate the values dop = 0.83, A = 1.18 and
~ = 0.22, respectively. Notice that the range of
local Lyapunov exponents is rather broad.

One can define a natural distribution on the
chaotic saddle describing how often different pieces
of the set are visited by trajectories staying for a
long time around it. It turns out that the measure of
a box taken with respect to this natural distribution
is proportional to its linear size. The natural mea-
sure of the set is thus a geometrical multifractal.?
More precisely, the measure of each interval cover-
ing the Cantor set Cs or C, is proportional to the
length of the interval. Normalization implies that

en,(") can be considered as the interval measure. It
is easy to see then that the f(a) spectrum?! taken
with respect to this measure can be expressed en-
tirely by the Lyapunov spectrum S(E) as'":

flo) = 22 - )

E=y/(1-a)

The graph of this multifractal spectrum is plotted
in Fig. 15(b).

Time reversal invariance also implies that the
Cantor sets C; and C,, the building blocks of the
hyperbolic component, have identical multifractal
properties. Consequently, if dy denotes the general-
ized dimension?? of one Cantor set computed from
Eq. (5), 2d, is the order ¢ dimension of the full
chaotic saddle’s hyperbolic component.

The considerations above show that the fractal
patterns in chaotic advection are examples where
the underlying dynamics uniquely determines the
fractal properties. By taking the derivative of ex-
pression (5) with respect to a at oy = di, where the

slope of f is unity, we recover a basic relation?3:

di=1-—7/X. (6)

It says that the deviation of the information dimen-
sion from unity is a ratio of numbers measuring the
global repulsion (v) and the local instability ().
Sets repelling stronger are more rarified and have
smaller information dimensions (provided their A is
the same). In our example d; = 0.815. Relation (6)
is again a nice example of how the chaotic dynamics
determines fractality.

6. SUMMARY AND DISCUSSION
OF EXPERIMENTAL
IMPLICATIONS

The general observations of this paper are obviously
valid for any two-dimensional time-periodic incom-
pressible flow that is asymptotically simple.24~26 By
the latter we mean that the time dependence of the
velocity field is restricted to a central region, and
further away upstream or downstream the veloc-
ity is practically stationary. In such cases tracer
trajectories can be unbounded, and, because of the
asymptotic simplicity of the motion, the particle
dynamics can be considered as a type of scattering
process. If the tracer dynamics is chaotic, this type
of chaos is unavoidably of a transient type, i.e., re-
stricted to finite times scales. The key observation
in understanding the phenomenon is the existence
of an invariant chaotic saddle in the flow. This in-
variant set is globally nonattracting and cannot be
reached exactly. The chaotic saddle is itself a fractal
with a local structure resembling the direct product
of two Cantor sets in certain regions.

A chaotic saddle also has a stable manifold, a
curve along which the set can be reached, an object
of measure zero that provides a fractal foliation of
the space. This is why a particle has zero proba-
bility to be trapped forever by the chaotic saddle.
Analogously, the set also has an unstable manifold
that is fractal, too.

Fractal patterns observed in the tracer dynam-
ics can be attributed to the double foliation of the
space by the two manifolds. An adequate charac-
terization of the advection requires the study of an
ensemble (droplet or line segment) of tracers. If
the initial points of some the tracer trajectories lie
close to one branch of the unstable manifold, par-
ticles will approach the chaotic saddle along this
branch, stay a long time around the set, and finally
escape along its unstable manifold. Thus, dye par-
ticles not advected away very quickly to the asymp-
totic region accumulate on the unstable manifold of
the chaotic saddle. We conclude that a fractal pat-
tern can always be found if the tracer dynamics of
the flow is chaotic and the set of initial conditions
used happens to overlap with the stable manifold
of the chaotic saddle (see also Refs. 4, 14, 24, 26
and 27). This is an extension of results obtained in
closed flows28:2930 claiming that dye particles move
asymptotically along unstable manifolds of periodic
orbits embedded in the chaotic sea. We pointed out
that fractal and multifractal properties can easily be
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derived by studying the singularity structure of the
time delay function, a basic characteristics of the
scattering tracer dynamics.

Our findings make even in a laboratory experi-
ment, the determination of the chaotic saddle and
its invariant manifolds, possible. Inject a droplet
into the flow in front of the central region where
the velocity field is strongly time-dependent. Dye
particles that have not yet escaped this region af-
ter several periods trace out the unstable manifold.
By means of modern video technique,3! the stable
manifold can also be obtained. It contains points
that approach the chaotic saddle and stay there for-
ever. Since the manifold is a set of measure zero,
such points are unlikely to be found. One can, how-
ever, locate narrow bands surrounding the branches
of this manifold that contain points staying around
the chaotic saddle for a long time before escaping.
In particular, by taking a video record of several
such tracer trajectories, their initial points provide
a good approximation to the stable manifold.

The chaotic saddle itself can also be located in
a laboratory experiment by means of the so-called
ensemble or sprinkler method.?332:° One distributes
a large number of particles in a preselected region
around the chaotic saddle and follows their motion.

Only particles staying in this region for a long time
are considered. Their trajectories contain sections
describing the approach to and the escape from the
chaotic saddle; therefore, these sections have to be
discarded. The trajectories truncated in this way
characterize the motion on a close neighborhood of
the chaotic saddle.

These methods can be comprised in one single
approach. Set a critical number ng of periods and
take a record of several trajectories that escape the
central region of the flow in a time period longer
than ng. The initial and final points of such tra-
jectories, and the ones in the middle, trace out
the stable and unstable manifolds, and the chaotic
saddle, respectively, with an accuracy increasing
with ng.33 The statistics can be improved by
overlapping points obtained at different values of
ng. To illustrate this method, we plotted in Fig. 16
points that escape the interaction region in the field
of the leapfrogging vortex pairs later than 5 periods
in both the direct and the time reversed dynam-
ics. These are points that belong simultaneously
to both the stable and unstable manifold specified
with a finite resolution. This corresponds to levels
n > ng/2 = 5 of the hierarchy defined by the lobe
dynamics or the time delay function. A comparison

Fig. 16 Chaotic set plotted by recording points which stay longer than a given number of steps within the scattering region
both in the forward and backward dynamics. The union of sets E; N D_;, 5 < i, j < 13 is shown in yellow. Tracers with a
life-time longer than 13 in both the direct and time reversed dynamics are colored by red and mark the nonhyperbolic part of
the chaotic saddle. The colored region is contained in the rectangle {|z| < 1.114, 0 < y < 0.81}.
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with Fig. 6(a) shows that the resolution is nearly as
good as the one obtained there but the present vi-
sualization of the saddle can in principle be carried
out in laboratory experiments, too.
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APPENDIX: ADVECTION BY
LEAPFROGGING VORTEX PAIRS

The dynamics of point vortices in two-dimensional
flows is a classical field of research in hydro-
dynamics.!® The equations of motion of a system of
such vortices in an ideal incompressible fluid can be
cast into a canonical form by introducing a Hamil-
tonian that in suitably chosen units reads as:

H({zi, yi}) = = Y_ kikjlnrij . (7)

1<j

Here (z;, y;) stands for the position of vortex i(¢ =
1,...,n) in the (z, y) plane, r;; is the distance
between vortices ¢ and j, and k; denotes the di-
mensionless vortex strengths. The value Ey of the
Hamiltonian is constant in time and can thus be
called the energy of the vortex system. The equa-
tions of motion of vortices is of Hamiltonian type!:

_OH
ox;

Kii = ——, Kl = (8)

9y
Note the analogy with the canonical equations of
point mechanics when one identifies, for example,
z and Ky with the generalized coordinates and mo-
menta, respectively. We consider the motion of two
vortex pairs of equal strengths (k1 = K2 = —k3 =
—k4 = 1) that move in the same direction along
a common symmetry axis perpendicular to the ex-
tension of both pairs (r1 = x4, y1 = —ys, T2 =
x3, Y2 = —y3) as depicted in Fig. 1. It follows from
the conservation of the momentum (y-coordinates)
that 1 + y2 is a constant and we shall take this
quantity as the length unit in the calculations. It
is worth using a frame comoving with the center of
mass of the upper two vortices z9 = (z1 + z2)/2.
Note that the velocity &g of the center of mass is
now not constant (Eq. (11)). The equations of mo-
tion for the relative coordinates z,, y, are obtained

as®:
1+ 22
T, = -2y - (9
=TI @ T ) )

b= S T+ 2D (=2 + 42)

They are decoupled from the center of mass

dynamics:

_ -yl +2
(1-y)(1+a2)°

(11)

T

It is easy to check that the vortices undergo a
strictly periodic motion, i.e., they are leapfrogging,
if the energy Ep of the vortex system is positive.
In this paper we have fixed the energy value to
Ey = In2 that corresponds to loosely bounded vor-
tex pairs. The period of the vortex motion is then
2 T = 2.16 in dimensionless units.

The streamfunction (r,y), whose cross
derivatives yield the velocity components v, vylo
(cf. Eq. (13)), is —xInr. In the system of n vor-
tices these contributions are superimposed, and one
obtains:

¢($, Y, t) == Z Kj In Tj(t)a (12)
J

where 7;(t) stands for the distance of point (z, y)
from vortex j. The vortices follow their own dynam-
ics, thus the distances r;(t), and consequently also
the streamfunction, are time-dependent. The ve-
locity components at a given point (z, y) and time
t are then obtained as:

o

0
vm(xa Y, t) = _3—?75 '—_w' .

w(@, 3 ) =—3E.  (13)
Because of the interchangeability of the vortex pairs
(k1 = k2), the velocity field is of period T if the
leapfrogging motion has period 2 T.

A passively advected particle simply follows the
local velocity field; therefore, its equations of mo-
tion are given by:

Y(z, y, t) W=y 1)

= dy y= ox

(14)
Note again the canonical character of the problem
in which the streamfunction plays the role of the
Hamiltonian.

In the reference frame used whose origin is co-
moving with the point (z¢(t), 0) along the z-axis
(the Center of Mass System) the streamfunction is:

wc’MS(x’ Y, t) = w(m’ Y, t) - .’Eo(t)y , (15)
The difference when compared with the vortex dy-
namics is that the problem is now nonautonomous
and it is the motion of the vortex centers that brings
about the time dependence, and leads to chaotic
time evolution of tracer particles.



