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SUMMARY

1. Recent developments in the field of chaotic advection in hydrodynamical/environ-
mental flows encourage us to revisit the population dynamics of competing species in
open aquatic systems.
2. We assume that these species are in competition for a common limiting resource in
open flows with chaotic advection dynamics. As an illustrative example, we consider a
time periodic two-dimensional flow of viscous fluid (water) around a cylindrical obsta-
cle.
3. Individuals accumulate along a fractal set in the wake of the cylinder, which acts as
a catalyst for the biological reproduction process. While in homogeneous, well mixed
environments only one species could survive this competition, coexistence of competi-
tors is typical in our hydrodynamical system.
4. It is shown that a steady state sets in after sufficiently long times. In this state, the
relative density of competitors is determined rather by the fractal nature of the spatial
distribution of the advected species, and by their initial conditions, than by their
competitive abilities. We argue that two factors, the strong chaotic mixing along a
fractal set and the boundary layer around the obstacle, are responsible for the coexis-
tence.

Keywords : chaotic advection, environmental flow, fractal set, hydrodynamical flow, population
dynamics

Introduction

The problem of coexistence of competing species is a
classical question in theoretical ecology. In most natu-
ral habitats, numerous competing species are able to
coexist, while generally only few resources (niches)
limit these communities. This fact contradicts the
classical theoretical and empirical studies predicting
competitive exclusion of all but the most perfectly
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adapted species for each limiting factor (Gause &
Witt, 1935; Hardin, 1960).

This puzzle, originally presented by Hutchinson
(1961), is most strikingly present in phytoplankton
communities. Hutchinson asked the question: ‘How
is it possible for a number of species to coexist in a
relatively isotropic or unstructured environment, all
competing for the same sorts of materials?’ To solve
this so called ‘paradox of the plankton’, he put for-
ward the idea that seasonal environmental changes
prevent competitive exclusion in natural phytoplank-
ton communities. Thus, the species in the community,
at least on the time scale of ecological observation, are
in non-equilibrial coexistence.

Since then, numerous investigations have rein-
forced the notion that many different mechanisms,
including the spatial and temporal heterogeneity of
habitat, predation, disturbance, coevolution etc.,
might increase the probability of competitive coexis-
tence. Naturally, under the word ‘competition’, many
different biological phenomena are collected together,
which influence the coexistence of species in different
ways. Thus, the original problem changed into find-
ing the most relevant mechanisms which maintain
diversity in particular situations (Connell, 1978; Hus-
ton, 1979; Wilson, 1990; Tilman & Pacala, 1993;
Bartha, Czárán & Scheuring, 1997). Despite the lively
debate in this field of ecology, there is now a consen-
sus that climatic periodicities and fluctuations play
the main role in causing species’ persistence in phyto-
plankton communities (Gaedeke & Sommer, 1986;
Reynolds, 1993; Sommer et al., 1993). Freshwater ecol-
ogists frequently argue that an intermediate distur-
bance (Connell, 1978) is the most adequate hypothesis
for the explanation of high diversity in aquatic sys-
tems (cf. Reynolds, 1998). According to this view, the
environmental fluctuations (e.g. wind blows and
storms) disturb ecosystems in a spatially and tempo-
rally non-uniform manner. If this disturbance is nei-
ther too intense and frequent nor too weak and rare,
the community behaves as a complex mosaic of dif-
ferent non-equilibrial subsystems. This qualitative ar-
gumentation is convincing and supported by
microcosm (Gaedeke & Sommer, 1986) and field ex-
periments (Reynolds, 1986 and references therein).
However, to determine the relevant spatiotemporal
scales of disturbance and community dynamics is still
a great methodological challenge for ecologists
(Collins & Glenn, 1997; Bartha et al., 1997).

Our aim here is to show that a pure hydrodynami-
cal phenomenon, chaotic advection (Ottino, 1989;
Jana, Metcalfe & Ottino, 1990; Aref, 1994), ensures a
peculiar small-scale spatial heterogeneity that allows
the coexistence of competing species. For phytoplank-
ton populations, this provides a novel possibility for
explaining coexistence. In fact, the mechanism pro-
posed by us could also be a consequence of some
intermediate disturbance. Frequent but moderate
winds may drive the water sufficiently to generate
chaotic advection, thus supporting coexistence.

Our model of competition and its interaction with
hydrodynamics is chosen deliberately to simulate a
realistic mixing situation: in a perfectly mixed envi-
ronment the dynamics of competition allow for the
survival of the most fit species only, while in flows
with non-chaotic advection, the coexistence of two
species is possible but in spatially separated patches
only, without real competition. It is thus the flow-
induced imperfect mixing (Epstein, 1995) which can
maintain coexistence in aquatic systems.

Because the reader of Freshwater Biology is unlikely
to be an expert in hydrodynamics and chaos theory,
in the following section, we present a qualitative
description of the relevant physical process (details
can be found in the references). Then we summarize
previous results on chemical activity in chaotic advec-
tion. Based on these results, we propose a model for
plankton coexistence. After that, the actual numerical
algorithm is detailed. We then present the results
obtained with the proposed model, and discuss why
it leads to coexistence of competing species. Finally,
the most important findings are summarized.

Passive advection in open flows

Chaotic advection in open hydrodynamical flows is a
ubiquitous phenomenon. A flow is considered locally
open if there is a net current flowing through the
observation region (Lamb, 1932). It became clear in
the last decade that passive advection, even in simple
time-dependent flows, is typically chaotic (Péntek,
Tél & Toroczkai, 1996; Károlyi & Tél, 1997). These
flows, characterized by strong imperfect mixing, lead
to the fractal spatial distribution of advected particles
also observed in laboratory experiments by Som-
merer, Ku & Gilreath (1996). For a review of the
subject, see Péntek, Tél & Toroczkai (1996) and
Károlyi & Tél (1997).
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Let us now briefly summarize the most important
characteristics of chaotic advection in open flows for
the typical case of the flow around an obstacle. For
medium inflow velocities, the flow in the wake is
time-dependent but still spatially regular. These fea-
tures are sufficient for the appearance of chaotic advec-
tion, and the presence of turbulence is not necessary.

Tracers advected past the obstacle are often tempo-
rarily trapped in its wake. This indicates the existence
of tracer paths bounded to the wake. A detailed
investigation shows that there is an infinity of periodic
and non-periodic bounded paths in this regime. The set
of all paths permanently trapped in the wake is called
the chaotic set which forms, at any instant of time, a
fractal cloud of points in the wake. Although the union
of all these paths as a whole is an unstable object, there
are exceptional initial tracer positions from where the
flow advects the particles exactly onto this set. These
positions form the stable manifold of the chaotic set,
which extends into the far upstream region from the
wake. Tracers being trapped around the chaotic set will
eventually leave it along its unstable manifold, extend-
ing to infinity in the downstream region. This object
can thus be considered as the avenue along which
particles spending a long time in the wake are trans-
ported away. As a result of the fractality of the chaotic
set, both types of manifolds are curves on which
particles can move. This dynamical characteristic of the
flow named as fractal foliation. Among these fractal
objects the unstable manifold is the one directly ob-
servable by the naked eye and, therefore, is of primary
importance: droplets of tracers injected into the flow
upstream and being trapped in the wake for a while
will trace out the unstable manifold for a long time
(Sommerer et al., 1996).

As a result of viscosity, there is a narrow boundary
layer in the close vicinity of the obstacle’s surface,
within which the flow is laminar and slow. Of partic-
ular interest are the stagnation points on the obstacle’s
surface (cf. Fig. 1). The unstable manifold of some of
the stagnation points is entangled in a very compli-
cated manner with those of the chaotic set, which leads
to an interesting and complex interplay between the
effects of the boundary layer and that of the fractal
manifolds in the wake.

Next, we illustrate the above observations in the
simple case of a time-periodic flow around a cylinder.
The flow is considered two-dimensional, i.e. the veloc-
ity field does not depend on the third coordinate,

Fig. 1 Flow around a cylindrical obstacle. The fluid flows
from left to right forming vortices (not shown) in the wake
behind the cylinder. The advected tracers form the unstable
manifold of the chaotic set in the wake of the cylinder, a
snapshot is shown obtained at a given instant in a numerical
simulation. Three basic stagnation points, Q, R and S are
shown on the cylinder surface. The stable manifold of the
whole chaotic set (not shown) foliates the inflow (or
upstream region. Tracers close to the stable manifold get
trapped in the wake for a long time, then leave it along the
unstable manifold, leading them to the far downstream
region. The smooth stable manifold of stagnation point S is
also shown (dashed line).

depth. Its incompressibility can always be assumed for
velocities much below the speed of sound. A uniform
inflow velocity can lead to a periodic detachment of
vortices in the wake with a period T, which forms the
so-called von Kármán vortex street (Shariff et al., 1991;
Jung & Ziemniak, 1992; Jung, Tél & Ziemniak, 1993;
Ziemniak, Jung & Tél, 1994; Péntek et al., 1995, 1996;
Sommerer et al., 1996; Toroczkai et al., 1997). For
numerical simplicity, we use an analytical model of
this flow introduced by Jung et al. (1993).

Fig. 1 shows the unstable manifold in the wake at a
given instant of time. Its complicated winding fractal
structure is striking. Three stagnation points on the
surface of the cylinder, denoted by Q, R and S, are also
shown. The front stagnation point, S, acts as a saddle
point separating the upper and lower part of the
cylinder. It has its own stable manifold but this is a
smooth curve lying close to the symmetry (x) axis. It
leads tracers towards the cylinder’s surface, thus they
can penetrate into the boundary layer. This stable
manifold is a kind of watershed between fluid particles
moving around the disc of the cylinder along its upper
or lower semicircle.

We emphasize that the qualitative features of the
fractal patterns and of the boundary layer, which are
essential for our study, are robust and can be found in
any open, time-dependent flow. The shape of the
obstacle, two-dimensionality, time periodicity and
even incompressibility of the flow are considered only
for convenience and ease of presentation.
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Chemical activity in open flows

As a next step, we consider the advection of active
particles in open flows. The particles are assumed to
have no feedback on the flow, activity is assumed to
be of chemical origin in the simplest possible form,
when the reaction outcome is a kind of ‘infection’ (for
chemical reactions in closed flows, see Metcalfe &
Ottino, 1994; Neufeld, López & Haynes, 1999). This
leads to a change of certain properties, e.g. colour,
neighbouring particles. Particles with new properties
are the products. As the effect of infection is most
pronounced for particles staying for a long time
around the chaotic set and for those leaving it around
the unstable manifold, it is natural to expect that the
products accumulate along the unstable manifold and
trace out this fractal object.

It has been shown by Toroczkai et al. (1998) and
Károlyi et al. (1999) that the unstable manifold of the
chaotic set is the skeleton of the reaction. The newly
born components cover the branches of the unstable
manifold with a well defined average width. Thus, an
effective fattening of the fractal takes place as a result
of the activity of the tracers. This implies that, on
linear scales smaller than this width, fractality is
washed out, but a clear fractal scaling of the material
(with the same dimension as that of the unstable
manifold in the reaction free flow) can be found.

The permanent outflow of reagents is balanced by
the chemical reactions and, most typically, a kind of
steady state sets in after a sufficiently long time. In
the case of time-periodic flows of period T, the
asymptotic state is typically also periodic with T, i.e.
the reaction becomes synchronized to the flow. Thus,
a chaotic particle dynamics can be consistent with a
non-chaotic reaction dynamics.

Interestingly, as a result of the small-scale inhomo-
geneities, the kinetic equations derived for the macro-
scopic distribution of the chemical components
deviate strongly from those valid in well stirred con-
tainers. They reflect a strong enhancement of chemi-
cal activity catalysed by the spatial fractal structures.

A model of phytoplankton competition

We are interested in the dynamics of populations in
relatively slow flows in the wake of rocks, islands or
peninsulas. Depending on the size of the obstacle, for
inflow velocities of about a few cm s−1, the character-

istic time T of the flow in the wake can be on the
order of hours or days. The ‘reproduction time’ t of
the species investigated is on the order of T.

Our model of phytoplankton competition can be
considered as an extension of the above mentioned
model of chemical activity for active components
competing for the same background material A. It is
a simple kinetic model of reproduction and competi-
tion with point like particles (species) of type B and
C. There is a constant inflow of material A into the
system. Species B (C) catalysed by material A repro-
duce instantaneously at time intervals tB (tC), only if
their centres come within a distance sB (sC) of parti-
cles of type A. The reproductive rates g are propor-
tional to s/t. As a result of the open character of the
flow, the particles will drift downstream, therefore,
leaving the mixing region of the wake. In addition,
there is a spontaneous decay of individuals with
mortality rates dB and dC. Two autocatalytic processes
A+B D

gB 2B, B dB

c A and A+C D
gC 2C, C dC

c A, thus de-
scribe the reproduction and competition process. It is
well known that in well mixed homogeneous envi-
ronments species with lower g/d ratio will be outcom-
peted (Gurney & Nisbet, 1998).

The above reproduction process is superimposed
on our open flow around the cylinder. We emphasize
that particles are again assumed to have no feedback
on the flow. Therefore, in addition to the spontaneous
decay (death) of the individuals, the number of
microorganisms in a fixed region in the wake is also
decreased by the advection dynamics. As the flow is
open, individuals are transported away at a constant
rate which is the same for all species in the wake.

The individuals are advected passively, and they
interact with each other via competition for material
A. Material A is the common limiting factor for both
species B and C. It is worth mentioning that, in a
purely chemical context, one is interested in the limit
of a very small reaction lag, t, corresponding to a
time continuous reaction. In this work, however, we
are interested in describing species whose reproduc-
tion time is comparable with that of the flow.

An important feature of the advection dynamics is
their purely deterministic nature. This implies that
we work at the limit of weak diffusion. We assume
that the mutual molecular diffusion coefficient be-
tween any pair of the constituent particles is small.
For the pair B–C, this is quite natural because both
are planktonic. For pairs B–A and C–A, the limiting

© 2000 Blackwell Science Ltd, Freshwater Biology, 45, 123–132



A model for resolving the plankton paradox 127

factor A could be the available habitat or some kind
of chemical material as well. Therefore, even if no
molecular diffusion is explicitly included in the
model in the form of random forces, the reaction
ranges sB and sC play the role of the inter-diffusion
distance between B–A and C–A, respectively.

The numerical algorithm

For convenience, we carry out the simulations on a
uniform rectangular grid of lattice size o0, covering
both the incoming flow and the mixing region in the
wake of the cylinder. This o0 also corresponds to the
average distance between nearest-neighbour organ-
isms. If there is an organism inside a grid-cell, it is
always considered to be in its centre. The range of
activity is bounded from below by the lattice size:
o05sB, sC

The process starts with nearly all grid-cells contain-
ing A, the background material, for which the compe-
tition is going. Few grid-cells contain B or C at the
beginning of the simulation. One iteration of the
process consists of two steps. The first step models
the advection of the replicators on the chosen grid,
while the second step is the instantaneous active
process (i.e., the ‘replication’) occurring on the same
grid of cells. The advection phase also includes the
random death of individuals, with a probability spe-
cific to its type, B or C. In fact, in any closed region
considered, there is a loss of the individuals resulting
from the advection and the finite life-time, but also a
gain resulting from the reproductions.

If the different species (B and C) are advected into,
or born in the same grid-cell, only one type of organ-
ism can survive in that grid-cell. In our simulations, a
random process selects the survival at two stages.
First, after the advection step, and later after the
reproduction step, the coexistence of different kind of
individuals in the same grid-cell is checked. If in a
grid-cell both species are present, one of them is
selected for survival with equal probability, the other
dies out.

In fact, we checked our results with the most ex-
treme selection rule also, when the organism with
superior competition properties was always the win-
ner in this conflict: the weaker organism was locally
eliminated. Even this strong advantage was not
enough in most cases fully to outcompete the inferior
species.

Results

We turn now to the presentation of our numerical
findings. Initially, we place two droplets of organisms
from species B and C into the flow in front of the
cylinder with sB=0.0067, sC=0.0034 and dB=0.5,
and dC=0.0001. The radius R of the cylinder and the
period T of the flow are taken as the length and time
units. The fixed region of observation is a rectangle
containing the cylinder and the wake. We monitor
the number of organisms present in this region dur-
ing the competition process. Fig. 2 displays the rela-
tive densities for both species, N (n)

B /N (n) and N (n)
C /N (n),

vs. the number n of birth cycles (time). N (n)
B(C) denote

the number of B(C) particles, and we therefore have
N (n)N (n)

B +N (n)
C . After an initial rapid increase, the

number of B and C cells becomes stationary in about
12 flow periods. A periodic time dependence sets in
synchronized to the flow. This means that the num-
ber of individuals being born during a period is the
same as the number of individuals disappearing as a
result of the advection dynamics and of the mortality
rate for both species. Similar steady states with non-
zero numbers for both species has been found with
several different parameters.

We emphasize that both species can coexist in-
definitely in the wake of the cylinder in spite of their
different g/d ratio. This property is a clear conse-

Fig. 2 The dependence of the number of B (circles) and C
(diamonds) species present in the computational domain on
time. Note the stationary time-periodic behaviour reached
after about 12 birth cycles. The model parameters are
sB=1/150, sC=1/300, dB=0.5, dC=0.0001 and t=1/5, while
the grid size is 1/300.
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quence of the chaotic set, which traps the incoming
particles for a long time in the wake. Both species B and
C are pulled on the unstable manifold of the chaotic set,
as their initial position overlaps with its stable mani-
fold. Thus, both species B and C are trapped in the
wake, and are accumulated along the filaments of the
fractal unstable manifold. This leads to an enhancement
of their activity, with both of them having increased
access to the background A for which they compete.
Along the fractal set, B and C can be separated quite
efficiently by filaments of A. As a result of the imperfect
mixing, the competition is reduced by spatial separa-
tion. This leads to the coexistence of the competing
species for a wide range of parameter values.

Besides the number of individuals, it is instructive
to see their spatial distribution as a function of time.
Fig. 3 shows a series of snapshot of the organisms in
the region of observation from zero up to time
20 periods of the flow. Note that in the asymptotic state
species B covers the surface of the cylinder, while
species C mainly occupies the wake.

A closer look reveals that, besides the chaotic set,
the boundary layer also plays an important role in
the coexistence of different species. The outcome of
the dynamics strongly depends on the initial positions
of droplets B and C. In general, the initial droplets of
B or C might overlap with the stable manifold of the
front stagnation point S. In our example, only the B

Fig. 3 The region of observation is shown at times t=0, 0.4, 0.6, 1.0, 1.4, 1.6, 2.0 and 20 on the snapshots. Note the stretching
and folding of the initially small droplets of species B (green) and C (red); they are eventually pulled along the unstable
manifold. The stationary state is reached after a short time: the last two snapshots (taken at t=2 and t=20) are almost the
same. Species B (green) occupies the boundary layer around the cylinder, while C (red) is trapped on the chaotic set in the
wake. The model parameters are the same as in Fig. 2.
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droplet overlaps with this line. B organisms, there-
fore, after reaching the front stagnation point, gradu-
ally spread along the surface of the cylinder and
occupy the boundary layer. This results in a continu-
ous supply of B to the wake from the boundary layer.
The droplet of C was initially placed off the stable
manifold of the stagnation point S, but overlapped
with the stable manifold of the chaotic set. Individu-
als of C are thus outcompeted from the boundary
layer, but trapped in the wake of the cylinder on the
chaotic set. There is a strong competition here: B is
supplied from the cylinder surface, and tries to out-
compete C from the wake, while C tries to penetrate
into the boundary layer from the chaotic set. These
two effects balance each other in the steady state.

The species trapped around the front stagnation
point has clear advantage, as it generates a kind of
source for itself after occupying the boundary layer.
The initial conditions can determine which organism
can grow greater in number, but they do not effect
the fact that both organisms can survive—provided
that both organisms are initially overlapping with the
stable manifold of the chaotic set, and thus, they have
a chance to penetrate the wake. It can be seen in Fig.
2 that B, despite its inferior competitive properties
(sB/dBBsC/dC), outnumbers C because of its better
spatial position. This underlines the fact that, in the
presence of imperfect mixing, the traditional picture
is broken: the weaker organism can become dominant
over the stronger one as a result of the advection
dynamics. Besides the filamental structure, the
boundary layer has an important role in maintaining
species’ coexistence. The speed of advection is very
limited here and mixing is extremely slow. Individu-
als trapped in this area continuously transport new
organisms for populations competing along the un-
stable manifold.

To illustrate the robustness of these effects, we
carried out a series of further simulations. We now
consider the case of equal ‘reaction ranges’ sB=sC,
but different reproduction times, tB"tC. Here, tB and
tC are to be understood as average reproduction
times. While the dynamics of species B is the same as
above, species C gives birth simultaneously with B,
except that it may ‘skip’ every k-th replication when
it does not reproduce itself. Thus, C is the weaker
competitor, i.e. its average reproduction time tC is
larger than that for B, tC\tB. In Fig. 4a, we show the
same relative densities as in Fig. 2. Here, tC=1.2tB.

As one observes, the coexistence is present in this
case as well, showing the robustness of the effect. The
simulation corresponding to Fig. 4a was made with
the full chaotic set, including the boundary layer. The
next question one may ask is: could the long-term
coexistence be caused solely by the boundary layer,
where the flow is very slow, or is it generated by the
fractal component of the wake? To answer this ques-
tion, we made simulations where we ‘eliminated’ the
boundary layer by cutting out a ring of width Dr=
0.01 from the dynamics around the cylinder (see Fig.
4b): if, during the advection, a particle approached
the surface of the cylinder to a distance smaller than
Dr=0.01, it was completely discarded (it died out).
The thicker (darker) line represents particle B, the
other is C. We repeated the above simulations with
various initial conditions and different reproduction
times. We found the coexistence to be robust against
all these variations over a finite range of the repro-
duction time deviation tB−tC, showing the enhance-
ment of survival by the mixing dynamics working
against the selection process, that otherwise would
lead the weaker species to extinction in non-mixing
(or equilibrium) environments.

Fig. 4 The relative numerical density (a) with the full set, (b)
with boundary layer excluded from the dynamics. In both
cases, tB=1, tC=1.2 and sB=sC=0.005. There is no
spontaneous mortality in this simulation, i.e. dB=dC=0.
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Discussion

The above numerical simulations show that the co-
existence of competing species is a generic feature
and is expected to hold in a variety of open flows
that exhibit chaotic advection.

The existence of a chaotic set is of primary im-
portance. This set, and its fractal manifolds, ensures
that all advected components, the species and the
resource, evolve narrow filaments in the wake.
These filaments of a given component intrude in
originally wide filaments of some other component,
thus splitting the latter into narrower filaments.
This refining process goes on until a smallest
filamental average width is reached, corresponding
to a steady state. As a result of the permanent
inflow, this property also holds for the resource.
Thus, in the steady state, small regions of biologi-
cally relevant size can contain all components in
considerable amount, which corresponds to a per-
sistent coexistence of the species.

Besides the filamental structures, the boundary
layer also has an important role in this coexistence.
The speed of advection is very limited here, so mix-
ing is extremely slow. Individuals, trapped in this
area, continuously transport new organisms for
populations competing along the unstable manifold.
The biological importance of slow- and non-flowing
areas of rivers is well known (cf. Young & Wallis,
1987; Reynolds, Carlin & Beven, 1991; Reynolds,
Descy & Padisák, 1994). The biomass in these so-
called ‘dead zones’ is much higher than in the main
streams. Observations of Arı́stegui et al. (1997) sup-
port our view even more directly. They studied the
chlorophyll distribution around the Canary Islands.
According to remote sensing images, they con-
cluded that chlorophyll content is high near and
downstream of the islands. The fractality of chloro-
phyll distribution is obvious in the downstream re-
gion. We showed that our ‘dead zone’, the
boundary layer around the cylinder, and the fractal
filamental structure retains not only a higher con-
centration of individuals, but it enhances competi-
tive coexistence.

Models assuming perfect mixing suggest that the
result of population interactions can be forecasted
merely from the population dynamical parameters.
This view is criticized by terrestrial plant ecologists
because the better competitor could be the species

which arrives first or starts to grow earlier (Grime,
1979; Tilman, 1994). Similarly, the presence of algal
species in the water are highly dependent on which
phytoplankton ‘seeds’ are recruited from the sedi-
ment under a given environmental situation
(Hansson, 1993). However, the spatial positions and
timing of arrival of populations are the most basic
factors that determine the relative density of com-
petitors in our model system (cf. Fig. 2). The expla-
nation is clear: to arrive at the unstable manifold
and to get a good position in the boundary layer is
crucial for the future success of the competitor.

It might seem to be contradictory that, while we
studied open flows, oceans and lakes are closed sys-
tems, at least in a hydrodynamical sense. However,
fluid parcels in oceans tend to return close to their
inflow position only after years (after months in
lakes). In contrast, our time scale on which physical
conditions (the average temperature, nutrient sup-
ply, the light etc.) are approximately constant is, at
most, some weeks. Consequently, advection can be
considered open on our time scale.

It is worth noting again that, although our model
flow is two-dimensional, this was just a technical
assumption making the treatment easier. The basic
ingredients leading to the conclusion of coexistence,
however, do not rely either on this planar feature
or on the model used here. In any three-dimen-
sional flows producing chaotic advection, there are
fractal filaments along which activity can be en-
hanced. On the other hand, filamental structures are
present in two-dimensional turbulence (Babiano et
al., 1994). Therefore, we expect to see coexistence in
similar competitive models of particles advected by
either three-dimensional open chaotic flows or by
two-dimensional turbulent flows. In fact, the chaos-
induced imperfect mixing is the most essential
property. Coexistence can also occur in closed
chaotic flows (like those of lakes on long time
scales), provided that the biological dynamics are
sufficiently open (there is a continuous resource
supply).

The keystone role of vertical transport in plank-
ton ecology is well known (see e.g. Denman &
Gargett, 1995). We would like to emphasize here
that studying the small-scale physical characteristics
of horizontal advection gives a new and more real-
istic insight into the population dynamics of aquatic
systems.
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Péntek Á., Tél T. & Toroczkai Z. (1996) Transient
chaotic mixing in open hydrodynamical flows.
International Journal of Chaos and Bifurcations, 6,
2619–2625.

Reynolds C.S. (1986) Experimental manipulations of
phytoplankton periodicity in large, limnetic enclo-
sures in Blelham Tarm, English Lake District.
Hydrobiologia, 138, 43–64.

Reynolds C.S. (1993) Scales of disturbance and their
role in plankton ecology. Hydrobiologia, 249, 157–
171.

Reynolds C.S. (1998) The state of freshwater ecology.
Freshwater Biology, 39, 741–753.

Reynolds C.S., Carlin P.A. & Beven K.J. (1991) Flow
in river channels: new insights into hydraulic reten-
tion. Archiv für Hydrobiologie, 121, 171–179.

Reynolds C.S., Descy J.P. & Padisák J. (1994) Are
phytoplankton dynamics in rivers so different from
those in shallow lakes? Hydrobiologia, 289, 23–42.

Shariff K., Pulliam T.H. & Ottino J.M. (1991) A dy-
namical systems analysis of kinematics in the time-
periodic wake of a circular cylinder. Lectures in
Applied Mathematics, 28, 613–646.

Sommer U., Padisák J., Reynolds C.S. & Juhász-Nagy
P. (1993) Hutchinson’s heritage: the diversity dis-
turbance relationship in phytoplankton. Hydrobiolo-
gia, 249, 1–8.

Sommerer J.C., Ku H.-C. & Gilreath H.E. (1996) Ex-
perimental evidence for chaotic scattering in a fluid
wake. Physical Review Letters, 77, 5055–5058.

Tilman D. (1994) Competition and biodiversity in
spatially structured habitats. Ecology, 75, 2–16.

Tilman D. & Pacala S. (1993) Species diversity in
ecological communities: the maintenance of species
richness in plant communities. In: Biogeography and
Biodiversity (ed. R. Ricklefs), pp. 13–25. University
of Chicago Press, Chicago.
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