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SINATI DISORDER: INTERMITTENCY OF RANDOM MAPS?
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ABSTRACT

The properties of the escape probahility for a random walk on a one-dimensional
lattice with disorder is discussed in terms of random maps. For Lhe case of Sinai
disorder, we observe geometric and dynamic behavior similar to that found in the
case of intermittent deterministic chaos,

1. Introduction

Over the past two decades, a great effort has been devoted to the study of
deterministic equations of motion that exhibit random-like behavior. In particular,
much progress has been made in the study of one-dimensional maps that give rise to
chaotic dynamics. Such maps also occur in contexts not directly related to dynarmical
systems, renormalization equaftions from the theory of critical phenomena being a
well known example. A comparison of results obtained from different physical points
of view may then be very illuminating.

In this paper we consider another type of phenomenon from the field of nonequi-
librium processes, namely the case of a random walk with disorder! when the jump-
probability of a random walker can take on a number of possible values according to a
certain probability distribution. Such a model is used, e.g., to describe the motion of
thermally agitated particles in random systems where the actual jump-probabilities
depend on the local environment of a given lattice point. Here we restrict our atten-
tion to one-dimensional random walks with binary disorder and show that they can
be discussed in the context of one-dimensional random maps. The situation is some-
what similar to that encountered previously in the study of the partition function for
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the random field Ising chain®73, but the physics of the problem and the details of the
maps are very different.

Special attention will be paid to the case of Sinai disorder which corresponds to
a disorder with local bias, but with overall average bias equal to zero®. We point out
that the corresponding maps are characterized by geometric and dynamic properties
similar to those observed in the case of intermittent deterministic chaos, even though
now these properties are not the outcome of a single map, but rather of a set of
random maps.

2. Escape Probability in a One-dimensional Random Walk

Let us consider a continuous time random walk, including trapping, on a one-
dimensional lattice. The walk is characterized by the site dependent probability
densities 17 (7) and @;(7). Here 4] (r) and 4 (7) stand for the waiting time densities
to jump from site ¢ to site i + 1 and ¢ — 1, respectively, after sending time 7 at site
i, without first jumping to other neighbors. Furthermore, ¢;(7) is the probability
density that the particle is (permanently) trapped after time 7 on site .

To calculate escape probabilities, let us consider the first passage time density
Fi(t) to go from site i to 7 + 1 for the first time at time 1 irrespective of any type
of excursions to the left of ;. Such a first passage from site ¢ to site 1 + 1 can be
realized by a number n of excursions to ¢ — 1, each followed by a first. passage back
to i, and finally by a jump from ¢ to 7 + 1. Thus, one finds different contributions
to Fi(t). The simplest possibility is a direct jump to 7 4+ 1 yielding % (¢). One can
also have a jump to ¢ — 1 at some time 71, a first passage to ¢ at some later time
73 and a jump back to ¢ + 1 al { — 7, — 7. The probability of such excursions is
s dny (m) [T dra Fioi(ma)¥f (t — 71 — 7). The next more complicated possibility
differs from the previous one in that after returning to site 7 the particle again jumps
back to its left neighbor which is followed by a first passage to 7 and a final jump to
t+1. This leads to a term containing the convolution of five factors. The contribution
of higher order excursions can be computed in an analogous way. Summing them all
up, one obtains an integral equation relating F} to F;_; which can be converted into
an algebraic relation by means of a Laplace transform!?,

This method need not be used here since we restrict our attention to the global
escape probability £; at site i obtained as the integral of Fi(t¢) over all times: P =
Jo* dLF:(t). The above consideration then yields for the escape probabilities :

PI' = Z[wf H-*ljﬁ*'wf' (l}

where w = [7° dipi(#) is the probability to jump from site 7 to i+1 (sign +) or to i—1

(sign -) at any time. The trapping probability at i is f{° dip;(t) =r;i = | —wf —w; .
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Summing up this geometrical series leads to a recursion relation :

wif
R li—=any Py (2]
connecting the escape probabilities at sites ¢ and ¢ — 1.

We shall be interested in the case of uncorrelated binary disorder, i.e., the jump
rates at any site ¢ can be of two types. The jump probabilities are either w} = p; and
wi = q or wl = p; and w] = ¢y, both situations arising with equal probability, and
independently of the actual position of the site. Moreover, the disorder at different
sites is supposed to be uncorrelated. In this situation the recursion relation, Eq. 2, is
represented by a random map!?

Py = hi(PB) or hy(F) (3)

where the branches

¢ = 1,2 are taken with equal probabilities. The form of this map is schematically
given in Fig. 1. The maps h; and hy each possess a stable fixed point € (0, 1), which
we call P and P, respectively.

it 4

Figure 1: A schematic representation of the random map defined by Eqgs. 3, 4.

The question concerning the value of the escape probability in an infinite system
is answered by the random iteration of Eq. 3 for i — oo. Although both branches
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are, in general, separately contracting, the dynamics is irregular due to the jumps
caused by the randomness, and possesses a strange attractor. Consequently, the
escape probability becomes a random variable the asymptotic behavior of which is
characterized by a stationary distribution, the invariant measure of the random map,
with a support located between Py and Py. The strange attractor is a Cantor-set-like
ohject as long as there is a gap of size A = 2] — 2% > 0, and becomes the total interval
(P, P3) for vanishing gap size, i.e. when 2} < z3. Note the analogy between this
systemns and the map generating the local magnetic field in a random field Ising chain
(see also the contribution by U. Behn and A. Lange in this volume).

To illustrate the behavior of the random map, we study a one-parameter family
determined by the set

/= 0,8{1 — T‘]._, g1 = U.Z(I - T)? P2 = 0.2(1 = 'J'":]:I 2 = DS(I s 3"), [:5)

where 7 is the trapping probability, which is now constant throughout the system.
Examples of the stationary distribution are given in Fig. 2 for r = 5102 (finite gap),
r = 10~% (no gap), and r = 10~ which is very close to the case of Sinai’s disorder
(r = 0), discussed in Section 4.

3. Multifractal Properties of the Stationary Distribution

As illustrated by Fig. 2a, the stationary distribution of the escape probability in
the case of a Cantor-set-like attractor is clearly a multifractal. In order to study its
properties one can use the observation, first applied to the random field Ising model,
that the attractor of a random iteration like Eq. 3 is the repeller of the inverted map.
More precisely, consider the deterministic map f(z) defined by the inverses of the two
branches 2 and h; of the random iteration in the interval I = (P, P7). Subsequent
preimages of [ taken with respect to f(z) provide a refining coverage of the repeller
which coincides with the attractor of the random map. This opens the possibility
to apply the knowledge accumulated in the field of deterministic chaos to analyzing
random systems. [t is worth emphasizing that the connection mentioned above holds
for the geometric properties of the attractor and repeller only. When studying metric
properties, one has to take into account that the invariant measure on the attractor is
not the natural measure for the repeller. Here we also shall make use of the simplifying
fact that both branches of the random map are taken with equal probabilities. More
general cases can be studied along the lines of Refs. 6,7,

The inverse of Eq. 3 is shown in Fig. 3 for a case with a gap of size A. Interval /
has two preimages with respect to map f(z). The preimages of these intervals are 4
smaller intervals. In general, the nth preimage of I consists of 2" short pieces which
provide for n — oo a refining partition of the invariant set. Let us consider the lengths
{I" 5 = 1,...,2"} of these intervals and the sum taken over these length scales raised
to some power 3 at fixed n. When increasing n, one expects an exponential behavior
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Figure 2: The invariant density of Eqs. 3, 4 for different values of the trapping probability: a)
r=05-10"% b) r = 102, ¢) r = 10~%. The interval (P}, P7) has been divided into identical bins
and the occupation probability of bin j,j = 0,...,511 has been plotted.

in this variable, i.e.,

S 1 exp (~BF(B)n). (6)

The quantity F(3) appearing in the exponent is the so-called free energy which is
thus an important characteristics!! of the length scale distribution in the coverage of
the strange set, i.e., the repeller of f(z) or, equivalently, the atiractor of the random
map.

An easy and very accurate way for computing the free energy is from the solution
of an iteration scheme (generalized Frobenius-Perron equation!?™17)

@ula)
NBQunilr)= T ol @
wE@)= 2 TrE) P

Starting with any smooth initial function Q(z), one finds at any fixed 3 one single
prefactor A(3) (the largest eigenvalue of the equation) so that for n — oo a finite
limiting Q(z) exists, and this prefactor was shown'®'" to be related to the free energy
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Figure 3: A schematic representation of the inverted map f(z) on the interval (P, P3) for a case
when the invariant set is a fractal. The first preimages of the support are also indicated.

as A(3) = exp(—BF(F)). The numerical determination of A is based on the n-
fold iterate of Eq. 7, for large n. The essential part of it is the evaluation of a sum
containing the derivatives of the n-fold iterated map f™(z) taken at the nth preimages
of z. The dotted line of Fig. 4 shows the free energy curve obtained by iterating Eq. T
up to n = 18 for the disorder given in Eq. 5, and corresponding to the invariant
measures represented in Fig. 2a.

When the measure of the preimage intervals is a simple function of their lengths,
the free energy also contains metric information and, in particular, the spectrum
of generalized dimensions D,. We are interested here in the invariant density of

the attractor on which all intervals at level n have the same measure ;45“] = 2%
because of the equal probability in choosing the two branches of Eq. 3. Using the rule

7 a0 (see Ref. 19 ily derives'® i} implici
Tl ~ 1 (see Ref. 19), one easily derives'® that D, fulfills the implicit
equation

,!:?F{,{ﬁ)|ﬁ:“_qwq = —q¢ln2. (8)

Consequently, the fractal dimension Dy is that value of 3 at which the free energy
vanishes. (Since the natural measure of the repeller is proportional to the length
scales: ;LE“} ~ :‘,{”], a different equation holds for the generalized dimensions taken
with respect to this measure.)

We next show that the free energy is a well defined quantity even in cases
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Figure 4: The function 8#(3) vs. 2 at diflerent values of the trapping probability. Dotted line :
r=5-10"2 the fractal dimension of the attractor is Dy = 0.87; dashed line : # = 1072, the curve
intersects the horizontal axis at 8 = 1.80: full line : » = 10~4, close to Sinai’s disorder when the free
energy goes to zero asymptotically from below. All curves are passing through the point —In2 at
8 = 0 because of the binary character of the disorder.

when the intervals k(7)) and hy([) overlap (no gap exists). A set of length scales
{E,Enjjz' =1,...,2"} can then be obtained via the subsequent preimages of I taken with
respect to the branches 7' and h;' . These preimage intervals overlap, but we keep
considering them as separate entities. Note that even though the map f(z) is not well
defined becaunse of its nonuniqueness, the preimages are still unique and organized in
a complele binary tree. From their length scales a free energy can be obtained via
Fq. 6.

Moreover, one can also find a generalization of Eq. 7 allowing to determine the
free energy from an iteration. Let us consider'®!”

MB)YQuin(z) = 3 | He(2) PQulhe(a) (9)

e=1,2

where k. denote the two branches defined by Eq. 4. (Note that Eq. 9 reduces to
Eq. 7 when the inverses of k. define a single valued function f(z).) The computation
of the largest eigenvalue of Eq. 9 proceeds along similar lines as that of Eq. 7. The
results of Fig. 4 were obtained for r = 1072 and r = 107! in this way. We emphasize
that relation (8) specifying the dimensions does not hold since the measure of the
overlapping intervals is no longer uniform. They can only be determined by direct



234

numerical methods.

It is worth mentioning, however, that D,, as obtained from Eq. 8, has, neverthe-
less, some meaning. It is the order-¢ dimension of an auziliary fractal embedded in
a higher dimensional space that can be covered by circles of radii equal to (™ all of
which carry identical weights 2. In particular, the fractal dimension of this object
fulfills Eq. 8 for ¢ = 0, and is found to be larger than 1. The deviation [rom unity is
a measure of overlap.

4. Sinai Disorder

Let us first consider a site characterized by the jump-probabilities p and ¢ to g0
to its right and left neighbor respectively, in the absence of lrapping, i.e. p+¢ =1,
and without disorder. When p > ¢, one says that the random walk is biased to the
right hand side, since motion in that direction is more likely. Such a situation could
be explained by assuming that the walker corresponds to a thermally agitated particle
that has to overcome a higher potential barrier to move to its left hand side than the
one 1t encounters at its right hand side. More precisely, the difference §U7 in potential
height can be evaluated from the well-known Arrhenius relation exp (—éU) ~ p/q,
or 6U ~ In(g/p). In the absence of bias, the potential difference is of course equal
to zero. Returning now to our problem of binary disorder, we recall that the set of
Jump-probabilities to go from a site i to its right and left neighbor are chosen to be
p1 and ¢ or p; and ¢ with equal probability. We restrict our attention to the case
of a trap-free system, ie. p, +q, = 1,6 = 1,2, and note that this type of disorder
implies the existence of a random local bias or local potential differences equal to
In(q:/p1) and In (g2/p2), respectively. Of special interest is the situation, first studied
in detail by Sinai®, in which the walker has no preferred direction, at least on average.
This will be the case if the effective potential remains on average at the same level,
even though the realizations of the potential may be characterized by random walk
excursions around this constant average level. As is intuitively clear from the above
discussion, the condition for this situation reads:

ndy = 0. 10

( 57 =0 (10)
A second condition, limiting the "strength” of the disorder (a very small or large
ratio of p over ¢ can only occur with low probablity): {In*(¢/p)) < oo, has also to be
imposed in the general situation. The latter is trivially fulfilled for the case of binary
disorder (provided none of the jump probabilities are equal to zero). Taking into
account that the two types of sites occur with equal probability, the basic condition
for Sinai disorder thus reduces to In (g1/p1) + In(q2/p2) = 0.

This condition has the following interesting consequence for the random maps
discussed above. Map A; must possess then, besides P!, an additional fixed point
which coincides with Py = 1, the fixed point of hy (remember that we consider a
trap-free situation: p, = 1 — ¢q,; cf. Fig. 1). The slopes of the maps at unity are equal
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to g1 /p1 and g /p2, respectively. We thus conclude that in case of Sinai disorder the
product of these slopes is equal to 1.

It is instructive to study the dynamics of the individual maps Piyy = h(P), e =
1,2 in the vicinity of the fixed point at P = 1. One finds for the logarithm of the
deviation

In(l-PFPy)=In(l—-~4(F))=In(l — F)+In % 5 higher order terms.  (11)

(3

We conclude that Sinai disorder corresponds to the critical situation at which the
drift averaged over the choice of the random map vanishes: In(g;/p1) + In(g2/ps) = 0.
The logarithm of small deviations from the fixed point 1 then undergoes an unbiased
random walk. The left fixed point P is unstable under random iterations because
of the possibility to jump over to the upper branch h;. The global dynamics will
therefore always return for long periods to the vicinity of the fixed point at unity,
and the natural measure is singular at P = 1. In the family defined by Eq. 5, Sinai
disorder corresponds to r = 0, and the observation of Fig. 2¢ supports the divergence
of the density at unity. The situation is very similar to that found in deterministic
maps exhibiting strong intermittency where the natural density is also singular at the
intermittent point?". Moreover, in our case, the approach of the fixed point at unity
can be estimated by invoking the scaling for a diffusion process In*(1 — B;) ~ 1 or
P: = 1—exp(—constant /i), i.e., the approach is slower then ezponential. Exponential
behavior is restored as soon as the Sinai condition is violated. In this case, an average
bias (In(¢/p)) different from zero appears. When (In(g/p)) > 0 the fixed point of
the random map at 1 is no longer stable which leads to the existence of a strange
attractor.

The analogy with intermittency can also be seen in the free energy function. In
intermittent deterministic maps one observes preimage intervals with length scales
decreasing slower than exponentially?’7. In our case the preimage of (P}, 1) is equal
to itself and the length scale does not change at all. Both conditions imply that
for large positive 3, which tests the scaling of the longest intervals, the free energy
must be zero. For one-dimensional maps, however, the preimages exactly cover the
total interval, therefore, the free energy has to vanish at 3 = 1 and stay identically
zero above. This is different for random maps with Sinai disorder because of the
overlapping of the preimages, and we expect F'(#) to be negative at any finite value
of  (note thatl the function FF(f) must be monotonic increasing), and to approach
zero for § — oo . This is confirmed by the numerical results for the free energy for a
case very close to Sinai disorder, ef., Fig. 4.

5. Discussion
We have presented a description in terms of random maps for the escape in one-

dimensional random walk on a disordered lattice. In the case of Sinai disorder, we
observe intermittent behavior and a corresponding anomaly of the free encrgy. Even
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though we were led to consider this situation in the specific context of Sinai disorder,
it is clear that we can formulate a Sinai condition for a general random map. As seen
above, the essential point is that the average logarithm of the slopes is zero at the
fixed point. Therefore, we conjecture that the intermittent-like behavior observed for
Sinai disorder will occur for randem maps that have a common fixed point such that
their corresponding slopes s, obey the condition (Ins) = 0.
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