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Extensive numerical experiments are performed on tracer dispersion in global reanalysis wind
fields. Particle trajectories are computed both along an isobaric (500hPa) and an isentropic
(315K) surface in a time interval of one year. Besides mean quantities such as advection of the
center of mass and growth of tracer clouds, special attention is paid to the evaluation of particle
pair separation dynamics. The characteristic behavior for intermediate time scales is Batchelor’s
dispersion along both surfaces, where the zonal extent of the tracer cloud increases linearly in
time. The long-time evolution after 70–80 days exhibits a slower, diffusive dispersion (Taylor
regime), in agreement with expectations. Richardson–Obukhov scaling (superdiffusion with an
exponent of 3/2) could not be identified in the numerical tests. The results confirm the classical
prediction by Batchelor that the initial pair-separation determines subsequent time evolution of
tracers. The quantitative dependence on the initial distance differs however from the prediction
of the theory.
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1. Introduction

Tracer transport and mixing processes substantially
influence the distribution of chemical compounds
in geophysical flows, therefore the quantifying and
modeling of related phenomena have a long his-
tory [Weiss & Provenzale, 2008; Huang, 2010]. On
the largest scales, the same governing equations
are used both in the atmosphere and oceans, thus
the tools to study tracer advection are also sim-
ilar. Direct atmospheric experiments exist since
the seventies, the first major balloon trajectory
measurements were performed over the southern
hemisphere: the EOLE at 200 mb [Morel & Ban-
deen, 1973; Morel & Larcheveque, 1974], and the
TWERLE at 150 mb pressure level [Julian et al.,
1977; Er-El & Peskin, 1981]. Besides numerical

simulations [Rood, 1987; Staniforth & Côté, 1991],
laboratory models [Jánosi et al., 2010] provide a
deeper insight into the physical basis of the key
processes.

Here we report the results of numerical
experiments of tracer dispersion in realistic mid-
tropospheric wind fields (see Fig. 1). The key quan-
tities of interest are the mean drift of the “center
of mass” of a cloud of tracers, and the spread of
the cloud related to the average pair separation.
The literature on pair dispersion both in 2D and
3D turbulent flows is pretty controversial, in spite
of the intense research in the past decades (see
[Salazar & Collins, 2009; Bourgoin et al., 2006] and
references therein). The main difficulty is that the
dynamics obeys a series of crossover behavior from
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(a) (b)
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(e) (f)

Fig. 1. Map sequence illustrating the dispersal of a small tracer cloud of 5× 105 particles starting from 45◦N, 0◦ in a cell of
size 0.5◦ × 0.5◦ at 00 h UTC, 01/01/2000, 500 hPa pressure level. Subsequent snapshots are separated by 7 days: (a) day 7,
(b) day 14, . . . (f) day 42. The color bar indicates tracer density measured as particle number in a cell of 0.5◦ × 0.5◦.

exponential to power-law dispersion with various
exponent values, and the crossover points cannot be
easily located since they depend on several factors.
Among others, the initial separation is an essential
parameter, thus an extended tracer cloud exhibits
almost always a mixed dynamics (nearby points
behave differently from pairs of large initial sepa-
ration). Recent challenging experiments have con-
firmed the classical theory by Batchelor [1950] that
the time evolution strongly depends on the initial
pair separation [Bourgoin et al., 2006].

The numerical experiments are based on the
equations of passive scalar advection, where the
background wind field is provided by the ERA-
Interim data bank of the European Centre for
Medium-Range Weather Forecasts (http://www.
ecmwf.int/research/era/). The advection along

both isobaric and isentropic surfaces has almost
the same dynamic features. The initial transients
(short time dispersal) cannot be evaluated, because
of the limited spatial and temporal resolution of the
reanalysis wind field in the numerical tests. Pair
separation is “ballistic” for intermediate time inter-
vals, characterized by a linear growth of the zonal
extent of the tracer cloud. This dynamics is not
expected from theoretical considerations [Salazar &
Collins, 2009], but it is identified in other numerical
[Huber et al., 2001; Haza et al., 2008] and experi-
mental works [Bourgoin et al., 2006]. When strong
correlations are produced by coherent structures in
the flow decay at longer times, a gradual crossover
to diffusive dispersal can be observed.

The paper is organized as follows. Section 2
gives an overview of the ECMWF reanalysis wind
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field and the numerical methods used in the trajec-
tory calculations. The results are listed in Sec. 3, a
detailed comparison with theoretical predictions is
provided in Sec. 4. A summary is given in Sec. 5.

2. Data and Methods

The accuracy of numerically computed tracer tra-
jectories in various flow fields has improved a lot in
the past decades [Stohl & Seibert, 1998; Stohl, 1998;
Weiss & Provenzale, 2008]. In principle, precise
atmospheric trajectories can be calculated directly
from high resolution wind observations by interpo-
lating between the measuring locations and time
instants. In practice, however, trajectory calcula-
tions are mostly based on gridded output of numer-
ical models (weather forecasts or reanalyses) such
as provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF) [Uppala et al.,
2005].

In this work, the third generation ECMWF
reanalysis ERA-Interim data bank is exploited,
which is almost up to date from 01/01/1989 [http://
www.ecmwf.int/research/era/do/get/era-interim].
Zonal (u) and meridional (v) wind velocity compo-
nents of global geographic coverage are evaluated for
the years 2000 and 2009. Four values are available
each day for 00 h, 06 h, 12 h and 18 h UTC (Univer-
sal Time Coordinated) at each geographic location
with a spatial resolution of 1.5◦ × 1.5◦ (lat/long).
Note that the gridded wind fields are rather smooth,
subgrid scale turbulence or vertical convection are
not resolved. Although the wind velocity at a given
site and time is intended to represent an instanta-
neous value [Uppala et al., 2005], direct compari-
son with high resolution wind tower measurements
indicates that the velocity should be regarded as a
six-hour mean value [Kiss et al., 2009].

Contrary to the horizontal wind velocity vec-
tor (u, v), there are no routine observations for the
vertical component w. Estimates can be produced
by various meteorological models, but they are def-
initely less accurate than the fields of the horizon-
tal wind. A plausible idea is to compute the 2D
divergence field and estimate w from the results,
however it is known that this procedure has a
very large error at the limited resolution of the
reanalyses [Sardeshmukh & Liebmann, 1993]. In the
absence of reliable 3D wind fields, the usual pro-
cedure is to follow isobaric (constant pressure), or
isentropic (constant potential temperature) surfaces
with accommodating 2D wind velocity vectors. The

latter has the advantage that atmospheric variables
tend to be better correlated along isentropic sur-
faces than on constant pressure surfaces, however
the potential temperature (entropy) of a given air
parcel can significantly change when diabatic pro-
cesses have an important role along a trajectory
(e.g. in baroclinic stratification, which is common in
mid-latitude tropospheric flows) [Stohl & Seibert,
1998; Stohl, 1998]. For this reason we have com-
puted and compared the statistical properties of
tracer trajectories along both a constant pressure
and a constant potential temperature level.

Global ERA-Interim wind fields are available
on 37 pressure and 15 potential temperature levels
in the ranges 1000–1 hPa, and 265–850 K [http://
data-portal.ecmwf.int/data/d/interim daily/]. Since
we are interested in free atmospheric flow, two levels
in the mid-troposphere are selected for subsequent
analysis. Firstly, the pressure level at 500 hPa in
the year 2000, and secondly, the isentropic level at
315 K in the year 2009. The former level is located in
the range of 5–6 km altitude depending on latitude,
season and weather. The 315 K potential tempera-
ture level usually intersects the 500 hPa at around
30–45◦ latitude on both hemisphere, it has lower
values around the equator (down to 700 hPa), and
higher values for high latitudes (up to 300–200 hPa
at the poles) (Fig. 2).

Trajectory calculation is based on the solution
of the advection equation for a given infinitesimal
air parcel [Ottino, 1989; Tél & Gruiz, 2006]:

dr(t)
dt

= v(r(t), t), (1)
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Fig. 2. Zonal mean pressure of the 315 K surface in the year
2009. The dashed line represents the isobaric surface used.
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where v(r(t), t) is the instantaneous velocity field
at the position r and time t and r(t) is the tra-
jectory. Equation (1) can be solved analytically
for simple flow fields only, more realistic situa-
tions require a numerical treatment based on some
finite difference Taylor-series representation [Stohl,
1998].

Our primary goal is to give a statistical char-
acterization of atmospheric dispersal instead of cal-
culating accurate trajectories (which is hopeless in
view of the chaotic nature of the advection dynam-
ics), therefore, we use the simplest approximations
wherever possible. The temporal and spatial res-
olutions of ERA-Interim wind fields represent the
most significant limitation, therefore very accurate
atmospheric trajectories cannot be expected even
by the most advanced numerical methods. It is also
meaningless to compare trajectories starting from
the same initial location but advancing on the two
different surfaces, therefore the investigated tempo-
ral periods are also separated.

The limited spatial and temporal resolutions
require the implementation of some interpolation
procedures for the wind field at the numerical solu-
tion of Eq. (1). Several methods are known and
tested in the literature [Rood, 1987; Staniforth &
Côté, 1991; Stohl et al., 1995]. For the time vari-
able t, the simple linear interpolation provides a
sufficiently accurate solution [Stohl et al., 1995].
Computationally more demanding algorithms are

used for the spatial interpolation, such as the
inverse quadratic (1/r2 weighting) or cubic spline
approximations [Press et al., 1992]. As for the
numerical integration, the simple Euler method is
implemented for the isobaric, and the fourth order
Runge–Kutta algorithm for the isentropic trajec-
tory computations [Press et al., 1992]. Consistency
is checked with various time-steps of 6, 15 and
30 min (see below).

Usually it is convenient to apply the regular
latitude-longitude grid to characterize the advec-
tion in the atmosphere. But when cell sizes enter the
statistics, it can be problematic, e.g. a cell of 1◦×1◦
has a much smaller area near the poles than at the
equator. In order to avoid such a high variability
of the cell sizes in, e.g. tracer density statistics, an
alternative tiling of almost equal-area tetragons is
also used (Fig. 3), which is constructed in the fol-
lowing way. Two sides of the cells are constituted by
latitudes of the same angle difference ∆θ, e.g. ε, as
in the case of the regular latitude-longitude grid. At
the equator the other two sides of a cell are assigned
by meridians with the angle difference ∆φ = ε.
Since the area of a cell of a sphere of unit radius
defined by meridians θ1, θ2 and latitudes φ1, φ2 is
(θ2 − θ1)(sin φ2 − sin φ1), we can construct cells the
area of which are equal to that of a cell near the
equator. The angle between the meridians of a cell
becomes larger at higher latitudes (Fig. 3). Since
a band of a latitude has to be filled with integer

Fig. 3. Tiling of the Earth surface by almost equal-area tetragons. Red color marks an extended tracer cloud advected from
45◦N, 0◦ in a cell of size 10◦ × 10◦ at 00 UTC 01/01/2009 on 315 K level, after a day.
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number of cells, the cell sizes at different latitudes
are not exactly the same.

3. Results

The time evolution of a small tracer cloud released
from the middle of the northern hemisphere is
illustrated in Fig. 1. Colors indicate the density
computed as particle number in a given cell of
0.5◦ × 0.5◦. Note that the meridional transport is
strongly hindered across the equator, almost one
year is necessary to obtain a near uniform tracer
distribution on both hemispheres.

The following figures summarize the statistics
of several numerical experiments. Note that the
results are very similar for the isobaric and isen-
tropic trajectories, thus we usually show plots for
one case only, except when the definite goal is to
illustrate close agreement. For the sake of simple
identification, isobaric results are denoted by blue
(turquoise error bars), while green indicates the
results of isentropic calculations.

Figure 4 displays the time evolution of the cen-
ter of mass (CM) in the zonal and the meridional
directions. An ensemble of 96 numerical experi-
ments was evaluated. The center of 12 different
clusters were located at equal longitudinal spac-
ing of 30◦ along the latitudinal circle 45◦N, and
each initial configuration was simulated from eight
different initial time instants for 20 days with
a cloud of 105 particles over an initial area of

1◦ × 1◦. The mean CM drift velocity at 500 hPa
has an almost constant eastward zonal compo-
nent of 11◦/day (∼ 870 km/day at 45◦N) with
a practically zero mean meridional component.
The statistics is very similar over the 315 K isen-
tropic surface, the mean zonal CM drift veloc-
ity is 14◦/day (∼1107 km/day at 45◦N) with zero
meridional value. The larger value can be explained
by the fact that the isentropic surface is situated
at definitely higher altitudes over 45◦N, than the
500 hPa isobar, thus a stronger eastward drift is
expected.

This latter result is obtained from an ensem-
ble averaging over 96 numerical experiments, where
clusters of 130 particles distributed on a regular lat-
tice inside of an initial cell of 10◦ × 10◦ are studied
with identical initial condition sets as above. The
role of regular spacing was to avoid small tracer
distances, we will return to this point in Sec. 4.

The same ensemble was used to determine the
zonal and meridional spreads of the tracer cloud.
The edges of the clusters move with speeds differ-
ent than that of the CM. The spreads θ(t) and φ(t)
of the cloud is defined as the difference between
the maximum and minimum angular coordinates
of the cloud at a given time instant, in analogy
with related laboratory experiments [Jánosi et al.,
2010]. The average behavior is illustrated in Fig. 5:
the zonal spreading quickly converges to a ballis-
tic behavior of linear growth (slopes are 31.6◦/day
for the isobaric, and 33.3◦/day for the isentropic

(a) (b)

Fig. 4. Average time evolution of the center of mass (CM) for a tracer cloud formed by 105 particles advected on the 500 hPa
pressure level. The initial area was 1◦ × 1◦, 12 different initial longitude positions distributed evenly along the latitude 45◦N
and eight initial dates in the year 2000 formed the ensemble of 96 numerical experiments. (a) The mean zonal drift of CM (blue)
and the standard deviation (turquoise). (b) The mean meridional drift of CM (blue) and the standard deviation (turquoise).
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(a) (b)

Fig. 5. Ensemble mean angular spread of the cloud in (a) zonal θ(t) and (b) meridional φ(t) directions. θ0 and φ0 mark the
initial angular differences. Tracer clusters were formed by 130 particles, isentropic trajectories were evaluated. Light green
band indicates one standard deviation obtained from 96 numerical experiments (see text). Black dashed line marks the average
encompassing time of the globe t∗ ≈ 13 days in (a), white dashed line is a linear fit in (a), and a square root fit in (b).

cases), while the meridional spread exhibits diffu-
sive behavior with a ∼√

t growth after an initial
transient of a couple of days.

It is interesting to compare the results of Fig. 5
with an alternative global measure of cloud size,
the mean standard deviation of particle distances
determined from the instantaneous center of mass.
The results are plotted in Fig. 6. As in the case of
the angular spread, the zonal mean standard devi-
ation of particle distances increases linearly in time
(≈ 6◦/day on the 315 K isentropic surface), while
the meridional spread is ∼√

t. This is in agreement

with other studies [Pierrehumbert & Yang, 1993;
Huber et al., 2001].

Note that the measures of cloud extent defined
by the edges or the standard deviation from the
instantaneous center of mass provide a sufficient
characterization for objects of compact shapes.
However, tracer “clouds” in the atmosphere have
a filamentary, fractal structure [Newell et al., 1992;
Pierrehumbert & Yang, 1993; Yang & Pierrehum-
bert, 1994] (see Fig. 1), thus other measures might
easily have different time evolutions. Such a mea-
sure, the covered area fraction A is determined

(a) (b)

Fig. 6. Time evolution of the mean standard deviation of (a) zonal (σθ) and (b) meridional (σφ) distances measured from the
center of mass. 96 isentropic experiments were evaluated in 2009 with 130 particles, and initial cloud size 10◦ × 10◦ (therefore
the initial value is σ0 = 2.8767◦ in both directions). White dashed line denotes (a) linear, and (b) square root fit from day five.
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Fig. 7. Time evolution of the covered area fraction of a
10◦ × 10◦ cloud started from 45◦N, 0◦, 315 K, 01/01/2009,
6.4 × 105 particles. Light green line represents the covered
area fraction calculated from the regular latitude-longitude
grid, while dark green line illustrates that from the equal-
area tiling (3). Dotted lines illustrate asymptotic diffusive
tendencies (∼√

t), the inset illustrates linear growth during
the first month.

by the number of cells containing at least a sin-
gle particle, normalized by the total cell-number
of the global mesh. Similarly to the laboratory
experiments [Jánosi et al., 2010], ballistic (linear)
growth appears on an intermediate time interval
of 10–20 days, see the inset in Fig. 7. The long-
time growth after about two encompassing times
(∼30 days) is close to be diffusive, as expected.

The numerical value of covered area fraction
depends on the definition of the cells, but in the
first two months and after 5–6 months (by the time
the particles of the cloud have covered almost both
hemispheres) the difference between the curves is
small. At intermediate times the difference is due
to the fact that the particles of the cloud reach
the polar region, where the size of the cells is quite
different in the two tilings. Naturally, in the reg-
ular latitude-longitude mesh the particles can fill
more lower number cells near the pole, than in
the equal-area tiling, when only few particles are
advected there.

In Fig. 7 one can see that after about 25–
30 days the extent of the cloud increases slower
than before. Then, after 50–60 days, it grows again
approximately as fast as in the first month. The
cause of this slowdown may be that after about a
month the cloud covers almost the whole Northern
Hemisphere (A ≈ 40–50%), but when the particles
cross the equator and spread also in the Southern
Hemisphere the spreading is rather slow due to the
trade-wind belt. When they ultimately cross the
barrier between the tropics and extratropics [Pierre-
humbert & Yang, 1993] also in the Southern Hemi-
sphere, the covered area fraction increases again
faster due to the stronger mixing effect of the mid-
latitude cyclones.

In Fig. 8, the circumnavigation (or zonal
return) time tc for each individual tracer particle

(a) (b)

Fig. 8. (a) Empirical probability density distribution of the circumnavigation time tc for three numerical experiments at
500 hPa with 103 tracers and temporal resolutions of 6min, 15 min, and 30 min (Euler integration). The initial condition was a
uniform spatial distribution along the longitude 0◦ in the range of [80◦S, 80◦N] latitude. (b) The same as (a) on the isentropic
level of 315 K with two time steps 22.5 min and 45 min (fourth order Runge–Kutta integration). In both cases, the decay obeys
power-law for large tc values (note the double-logarithmic scale).
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(a) (b)

Fig. 9. Asymptotic empirical probability density distribution of the latitude of return on an inverted scale. Seven different
numerical experiments are performed with different spatial interpolation schemes, integration time-steps, and cluster sizes
(see legend). The initial condition was a uniform meridional distribution along the longitude 0◦ in the range of [80◦S, 80◦N]
latitude. (a) 500 hPa, and (b) 315 K.

is evaluated. The initial configuration was a mate-
rial line of uniformly distributed tracers at 0◦ (lon-
gitude) over the latitude range of 80◦S–80◦N. The
circumnavigation time tc has a very broad distribu-
tion, as illustrated in Fig. 8. Note that the encom-
passing time t∗ of a dye cloud is related to the
width of the distribution of the single-particle cir-
cumnavigation time tc, which reflects the difference
between the fastest and slowest tracers in a given
cloud. This quantity has a definite latitude depen-
dence, as expected, because the meridional drift is a
relatively slow diffusive process, and obviously a full
circle takes a longer time near the equator than close
to the poles. Note the consistency of the normalized
histograms obtained at different time steps of the
numerical integration. The tail of the empirical his-
tograms obeys power-law decay with an exponent
≈ −2.9 for the isobaric, and ≈ −2.5 for the isen-
tropic case. Due to the heavy tail, the mean value
circumnavigation time 〈tc〉 is larger than the mode
(the most probable value) t̂c. It is remarkable that
the mean value is almost the same (〈tc〉 ≈ 23.5 days
for isobaric, and 〈tc〉 ≈ 23.2 days for isentropic tra-
jectories), while the modes differ by almost a factor
of two: t̂c ≈ 18.7 days for isobaric, and t̂c ≈ 11.4
days for isentropic runs.

Figure 9 illustrates an interesting focusing
effect in the atmosphere: tracers that started from
a uniform meridional distribution have a tendency
to drift towards the mid-latitudes on both hemi-
spheres during the advection. The results of seven

experiments with different integration time-steps
and spatial interpolation methods (inverse qua-
dratic and cubic spline) are plotted together to
demonstrate again statistical consistency. A cumu-
lative distribution is obtained during one year of
advection, by recording the latitude at each cross-
ing of 0◦ longitude. A similar focusing effect was
reported in [Pierrehumbert & Yang, 1993] by simu-
lating trajectories over isentropic surfaces, however
they studied tracer density distributions at fixed
time differences.

4. Batchelor’s Scaling

The motion of an incompressible turbulent fluid is
described by the Navier–Stokes equation amended
by the condition of zero divergence. According to
Kolmogorov’s (K41) similarity theory [Pope, 2000],
the largest spatial and temporal scales are given
by the energy-injection length scales L and eddy
turnover time TL, respectively, while the smallest
scales are the Kolmogorov length η = (ν3/ε)1/4 and
the Kolmogorov time τ =

√
ν/ε (where ν is the

kinematic viscosity, and ε is the constant energy
dissipation rate per unit mass). The interval (η,L)
is known as the inertial subrange, because viscous
dissipation becomes important only at length scales
l < η.

Theoretical description of the mean square sep-
aration between two fluid elements 〈r(t)2〉 in the
inertial subrange is dated back to 1926, when
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Richardson suggested that it should grow in time
as t3 [Bourgoin et al., 2006; Ouellette et al.,
2006]. Obukhov specified that in homogeneous and
isotropic 3D turbulence, the pair dispersion should
grow as 〈r(t)2〉 = gεt3, where g is a universal
constant. Batchelor refined this work [Batchelor,
1950] by considering the role of initial separation
r0 ≡ r(t = 0), and concluded that the mean square
separation should grow as t2 for times shorter than
a characteristic timescale t0 = (r2

0/ε)
1/3:

[〈r(t)2〉 − r2
0] =

11
3

C2(εr0)2/3t2, (2)

where C2 ≈ 2.13 is the scaling constant for the
second-order Eulerian velocity structure function
[Bourgoin et al., 2006], and t � t0. In the classical
K41 theory of turbulence, t0 may also be identified
as the time for which the divergence of two fluid ele-
ments is determined by their initial relative velocity
∆v0 in a given eddy of size r0. For times t > t0,
the growth of the pair separation is expected to
follow the Richardson–Obukhov scaling, indepen-
dently of r0. When the separation exceeds the size
of largest coherent structures, diffusive dispersion is
expected 〈r(t)2〉∼t (Taylor regime). In statistically
stationary forced homogeneous and isotropic two-
dimensional turbulence, the Richardson–Obukhov
t3 scaling holds, however experiments found var-
ious empirical exponent values between 2 and 3
[Salazar & Collins, 2009; Tabeling, 2002].

An essential condition behind the validity of
the Batchelor scaling Eq. (2) is the lack of corre-
lations between the initial separation r0 and the
relative velocity of the pair ∆v0 [Ouellette et al.,
2006]. When this condition is not fulfilled, the cor-
rect scaling form of relative pair separation is based
on the vectorial difference as

〈|r(t) − r0|2〉 =
11
3

C2(εr0)2/3t2. (3)

Note that these Batchelor forms bear important
consequences related to the evaluation of experi-
mental data. (i) For fixed energy dissipation rate
per unit mass ε, the rate of pair separation depends
on the initial value r0 itself. (ii) The transition time
to the Richardson–Obukhov scaling t0 depends also
on r0. This means that one cannot observe a “clean”
dynamics in a cloud of tracers with a mixture of
various initial separations. (iii) Identification of the
Richardson–Obukhov t3 scaling requires also a sig-
nificant time scale separation between t0 and the

eddy turnover time TL [Ouellette et al., 2006]. Since
the latter quantity is estimated about 3–5 days in
the troposphere (considering scales of a typical mid-
latitude cyclone) [Gerber & Vallis, 2007], and values
for ε are around 10−5 m2/s3 [Lilly, 1983], an initial
pair separation of r0 ≈ 300–500 km easily produces
t0 more than a day.

Here we show representative results for 96–96
isobaric and isentropic dispersal simulations, where
the average pair separation is determined by both
the scalar and the vectorial definitions Eqs. (2)
and (3). Individual clusters (12 locations and 8
starting time instants, as before) are formed by
130 regularly spaced tracers over a geographic area
of 10◦ × 10◦. The time dependence of pair sepa-
ration was determined in initial distance bins of
50 km, where the central value of the bins are indi-
cated in the legend of Figs. 10(a), 10(c) and 10(e)
(thus bin “75 km” denotes 50 km < r0 < 100 km,
etc., except the largest value where “975 km” means
r0 > 950 km).

A special feature emerges for the vectorial dif-
ference in Eq. (3), because pair dispersion occurs
over a spherical surface. The definition for [r(t)−r0]
is unambiguous in 3D Euclidean sense, however pair
distances must be determined along geodesics in the
atmosphere at large enough separations. To avoid
computational discrepancies, we adopted the fol-
lowing convention. One of the points of each pair
is selected, and the angles are calculated in the co-
moving Euclidean frame of reference (zonal x and
meridional y axes) with the origin at this point. The
lengths of vectors are calculated along geodesics. We
checked that the statistics conforms with Eq. (2)
where scalar separations were computed by pure
spherical geometry.

The results in Figs. 10(a), 10(c) and 10(e)
are consistent with the Batchelor hypothesis over
almost two decades of the time axis: the mean
squared separation increases with t2, and the slopes
depend on the initial value r0. We emphasize that
the behavior is almost the same for both the scalar
and vectorial distances [Eqs. (2) and (3)], apart
from numerical values for the slopes shown in
Fig. 10(f). The empirical scaling with r0 is some-
what surprising, because the found exponent ∼5/3
is very far from the 2/3 of the theory [see Eqs. (2)
and (3)], and this cannot be a simple consequence
of numerical inaccuracies or statistical errors. We
are fully aware of the fact that large scale dispersal
in the atmosphere (and in the laboratory tank) can
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be different from what one expects in 3D homoge-
neous and isotropic turbulence, still the theoreti-
cal predictions concerning the time dependence are
very similar in both cases.

5. Summary

Here we summarize our findings for the Batchelor
scaling in a compact form.

• Important results of the numerical advection
tests are that the mean pair separation strongly
depends on the initial value r0 and follows a
ballistic growth [Figs. 10(a), 10(c) and 10(e)],
similarly to the Batchelor hypothesis. A relevant
consequence is that an extended tracer cloud con-
taining different values of r0 exhibits always a
mixed behavior, therefore a direct relationship
between pair separation and overall statistics
cannot be easily formulated.

• The slopes of the mean pair separation squares
versus t2 lines do not follow the Batchelor scaling,
the apparent exponent value is ≈ 5/3 [Fig. 10(f)].
In contrast to Eqs. (2) and (3), simple dimen-
sional considerations with this exponent suggest
a combination like U−3(εr0)5/3, where U has a
dimension of velocity. However, the appearance
of such a factor seems a challenge. Further work
is needed to explain these observations.

• The quasigeostrophic turbulent wind field is far
from being homogeneous and isotropic, large
scale (irregular) eddies determine the dynamics.
In addition, reanalysis fields do not resolve struc-
tures below the grid spacing. Consequently, the
collective dynamics of an extended tracer cloud is
spoiled by pairs of initial separation below grid-
size. An obvious sign of this effect is the appear-
ance of unrealistically long initial transients at
too small cloud sizes, where the “true” dynam-
ics unfolds only when the mean pair separation
definitely exceeds the cell size as also reported
in [Jánosi et al., 2010]. This observation might
help to clarify earlier results on scaling behav-
ior of tracers simulated in wind fields of limited
resolutions [Huber et al., 2001; Pierrehumbert &
Yang, 1993].

• In Sec. 3 of the 1950 key paper by Batchelor
(The applicability of the similarity hypotheses to
the turbulence in the atmosphere and ocean), a
very conservative estimate for the atmospheric
inertial subrange spans between 0.002–100 m.
Indeed, this is far from the scales we used in

our simulations, where the lower limit is deter-
mined by the spatial resolution of the global wind
field, and the upper limit is given by the esti-
mate of typical eddy turnover time by Gerber
and Vallis [2007]. Note however, that homogene-
ity and isotropy are statistical terms, and any
given instantaneous snapshot of a turbulent field
exhibits coherent structures on an extremely wide
range. For the very reason, scaling laws can be
formulated only for mean quantities (individual
pair separation trajectories have fluctuation in a
wide range clearly seen in Figs. 4–6). Our obser-
vation of the Batchelor type scaling is purely
empirical, we did not use any additional assump-
tion or filtering, apart from taking care of the ini-
tial pair separation. It is highly possible that the
anomalous exponent value is an inherent prop-
erty of quasigeostrophic turbulence, however we
cannot give an easy explanation.
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