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We investigate particle motion and mixing in time-dependent open flows with uniform inflow
and outflow velocities. The dynamics is typically chaotic, of the transient type that can be
observed on finite time scales only. There exists an underlying chaotic set consisting of an
infinity of unstable tracer orbits, restricted to a finite domain of the flow. Transient dynamics
is accompanied by persistent fractality. The latter is reflected by tracer patterns and by the
singularity distribution of the particles’ time delay function. As an illustrative example, we
consider a planar incompressible flow modeling the leapfrogging motion of two vortex rings.

The advection of particles by hydrodynamical flows
is an ubiquitous phenomenon. By particle we mean,
e.g. a granule of dye when mixing different colors,
a piece of foam on the surface of a flow, a tiny cell
advected by the blood, or a balloon in the atmo-
sphere, i.e. light granules of small extension. If
the particle takes on the velocity of the flow
very rapidly, i.e. inertial effects are negligible, we
call the advection passive, and the particle a pas-
sive tracer. It became clear in the last decade that
passive advection even in simple time-dependent
flows is typically chaotic [Aref, 1986; Chaiken
et al., 1986; Ottino, 1989; Muzzio et al., 1992;

Wiggins, 1992; Solomon & Gollub, 1988, Solomon
et al., 1994; Sommerer & Ott, 1993, Sommerer,
1994; Jones et al., 1989; Young & Jones, 1991].
In all chaotic phenomena, there is a well defined
abstract geometrical structure underlying the dy-
namics. It is a unique feature of chaotic ad-
vection in planar flows that these structures then
become observable by the naked eye in the form
of spatial patterns. The investigations so far were
mainly concentrated on chaotic advection in con-
fined geometries which are of great importance for
understanding mixing in closed containers [Ottino,
1989].
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2619



2620 A. Péntek et al.

— ——
= —_—
S
e
R —— —ree ——=
e
—_— S
simple inflow mixing region simple outflow
Fig. 1. Schematic diagram of open flows investigated and

a corresponding tracer trajectory. Time dependence of the
flow is restricted to a finite region where mixing of passive
tracers can take place due to chaotic motion. The inflow
and outflow regions are asymptotically simple. The shape
of a typical tracer trajectory (dotted line) exhibiting chaotic
motion in the mixing region is shown.

Here we address the question of how advec-
tion manifests itself in open flows. We consider
cases similar to that of a flow around an obstacle
when the inflow and outflow far away from this ob-
ject (background flow) is simple and time indepen-
dent [Rom-Kedar et al., 1990; Shariff et al., 1991;
Jung & Ziemniak, 1992; Jung et al., 1993; Ziemniak
et al., 1994; Péntek et al, 1995a, 1995b, 1995c].
More generally, the interesting, time-dependent be-
havior of the flow is assumed to be restricted to a
finite region (see. Fig. 1) that corresponds to the
wake of the obstacle in the previous example. This
will be called the mizing region where the advection
can be highly nontrivial.

It is worth emphasizing that a complicated flow
pattern is not at all required for the latter. Even
simple forms of time dependence are sufficient. In
this paper we suppose that the velocity field is pe-
riodic in time.

Tracer trajectories are typically complicated
but this complex behavior is restricted to the mix-
ing region only. Outside of this, the trajectories are
simple curves (Fig. 1). Dealing with tracers injected
into the flow far away upstream, one can regard
the advection problem as a scattering process, with
the advected particles being “scattered” on the fi-
nite region of nontrivial mixing. Therefore, chaos
is necessarily restricted to a finite region both in
space and time. We claim that this transient chaos
[Tél, 1990] is the only form of chaos which can ap-
pear in the situation studied. The interpretation of
certain advection phenomena, observable also in ex-
periments, is thus possible in this framework only.
Concepts taken over from the theory of transient
chaos and chaotic scattering [Ott & Tél, 1993] shed
new light on these phenomena, see [Jung & Ziem-

niak, 1992; Jung et al., 1993; Ziemniak et al., 1994;
Péntek et al., 1995a, 1995b, 1995c¢].

The complicated form of trajectories implies
a long time spent in the mixing region. In other
words, tracers can be temporarily trapped there.
Due to the incompressibility of the fluid, which can
be assumed in real-world flows, there cannot be at-
tractors in this region. All particles escape the mix-
ing region sooner or later. Trapped particles have
some time delay T relative to the background flow:
the more complicated is the trajectory the longer is
7. Observation of several trajectories defines the
time delay distribution: P(7) [Ott & Tél, 1993].
The initial points of these trajectories can be taken
from a closed domain of the flow or along a straight
line in the inflow region. The quantity P(7)dr is
the probability to find a particle with time delay in
the interval (7, 7+ d7). P(7) must tend to zero for
large times. It typically decays exponentially,

P(r) ~ exp (-7/7), (1)

where 7 is the average time delay. The quantity 7
can then also be considered as the average lifetime
of chaos and generally is on the order of a few times
the flow period. The fact that chaos can be observed
on times scale 7 only is a novel feature compared
with chaotic advection in closed containers where 7
is formally infinite.

A more detailed characterization of the trap-
ping process is based on the observation of indi-
vidual trajectories. Let us inject tracer particles
into the flow along a straight line perpendicular to
the inflow velocity and determine the time 7 they
spend in the mixing region. This defines a function
7(y) where y denotes the initial position along the
line of injection. A clear-cut sign of chaotic tracer
scattering is the rather irregular form of the time
delay function. An example is shown in Fig. 2. The
different time delays of neighboring points reflect
high sensitivity to initial conditions that is usually
considered as a criterion of chaotic behavior. An
irregular scattering function is thus characteristic
of chaotic advection in open flows, which can be
regarded to be as typical as stationary chaos is in
closed containers. The time delay distribution P(7)
is a global characteristic of the scattering process
and can easily be derived from the time delay 7(y)
of the initial trajectories: P(7)dr is proportional to
the number of tracers whose time delay falls into
the interval (7, 7 + d7).

Because of the strong fluctuation of the delay
times and the divergence of nearby trajectories, the
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Fig. 2. Time delay function 7(y) versus initial coordinate y
along a straight line perpendicular to the flow in the incoming
asymptotic region. The large time delay values mark initial
conditions with a long trapping in the mixing region. Note
the sensitive dependence of 7 on y, a criterion for chaotic
behavior. The system used is the one described in the text
and also in the caption to Fig. 3.

evolution of tracer ensembles provides us with a
more natural and experimentally realizable char-
acterization of the advection dynamics than that
of individual trajectories. Such an ensemble can
be a small droplet or a long band of colored dye.
These ensembles always trace out well defined frac-
tal structures in and behind the mixing region.

We found it especially useful to study the ad-
vection dynamics in a fluid whose color is artificially
changed in the inflow region after certain periods
of time. This corresponds to a color coding of the
tracers’ initial conditions and provides us with more
information than just the fractal pattern since col-
oring encodes time delay properties, too. It also
implies the definition of a nontrivial distribution ac-
cumulating on the fractal pattern. The motion of
domains of different colors then clearly illustrates
the transport and mixing process (Fig. 3). The
bulk of the colored domains, which do not enter
the mixing region, will be smoothly deformed and
transported away. A finite part of the domains will,
however, be captured and seemingly isolated from
the bulk of the same color. In fact, there is always
a narrow filament, i.e. a range of strong stretching,
connecting this part with the bulk. The captured
domain will then be split further in other strongly
folded subdomains connected by narrow filaments.
The larger domains escape the mixing region after
a few repetitions of the velocity field’s period but
the filaments remain longer. The color coding indi-
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cates that tracers injected several periods before are
still present in the mixing region. We thus conclude
that particles with long time delays come close to
regions of intense stretching and folding. Filaments
of different colors and of ever-decreasing width ac-
cumulate in such regions. Filaments of finite width
are transported away by the flow.

At this point, it is worth presenting an illustra-
tive example in some detail. We emphasize that the
features mentioned above are valid for any incom-
pressible planar flow irrespectively of its viscosity.
Our example will be taken from the realm of ideal
inviscid fluids because even the finest fractal fea-
tures can then be investigated in a numerical sim-
ulation. The particular system used to plot Fig. 3
is a model of the so-called ‘leapfrogging’ motion of
smoke rings [Shariff et al., 1988; Shariff & Leonard,
1992; Saffman, 1992]. If the rings have the same
sense of rotation and move along the same axis,
the rear vortex ring attempts to pass through the
front one. The leading ring then widens due to the
mutual interaction and travels more slowly. Simul-
taneously, the other ring shrinks, travels faster and
penetrates the first one. This process is then re-
peated continuously, with some period 7. We stud-
ied [Péntek et al., 1995a, 1995b] the two-dimensional
analogue of this process: advection in the field of
two pairs of coaxial ideal point vortices of the same
strength, which also exhibit a strictly periodic mo-
tion of period T'. Figure 3 shows the pattern in a
fluid whose color has been changed periodically with
the same T'. A frame co-moving with the center of
mass of the vortex pairs has been used.

The key observation in interpreting patterns
like those of Fig. 3 is the existence of a chaotic set
in the mixing region. It is the union of all closed
orbits, including periodic ones, that never escape
the mixing region but are all unstable. In view of
Eq. (1), these must be rather exceptional ones and
not even their union covers a finite portion of the
plane. They are, however, infinite in number and
form a fractal subset of the mixing region. There
are powerful numerical methods to determine the
chaotic set [Nusse & Yorke, 1989]. Figure 4 dis-
plays the results obtained for the same system and
at exactly the same instants as in Fig. 3. Note that
certain parts of the set, like the ones denoted by A,
A',..., D, D' are approximately direct products of
two Cantor sets. The full set is moving on a strobo-
scopic map, as illustrated by Fig. 4, and its motion
is also periodic.



Fig. 3. Leapfrogging motion of two ideal vortex pairs of equal strength in a fluid whose color is changing, displayed in a
frame comoving with the center of mass of the pairs. The rectangle shown can be considered as the mixing region. The vortex
centers sit in the midpoints of the red domains. Dye is injected upstream along a vertical line on the right hand side of the
region shown. The boundary between domains of different colors is thus the image of this line after a certain time. Part (a)
displays the distribution of differently colored tracers at to = 997. The index n used in the legend of color coding indicates
the color of tracers injected in the period (n—1)T <t < nT. The dark red regions (marked by > 99) correspond to the vortex
cores not reachable by tracers coming from outside, and can formally be considered as regions of infinite lifetimes. Light red
tracers were injected more than 12 periods before (marked by > 12) and the color being injected currently is blue. The bulk
of a domain of a given color is transported away, but filaments of it remain trapped around the vortices. The thickness of
these filaments is strongly decreasing with time: yellow and blue is much less dominant around the vortices than magenta.
Despite of their complex forms, each domain of a given color is single connected. Notice that the boundary between different
colors converges in certain regions to a fractal curve that appears in this numerical plot as a multicolored filamental structure.
Figures (b)—(e) show how these material regions evolve in time by taking snapshots at t — to = 0.3567", 0.57", 0.6447, T. The
large light gray domain below the upper vortices in Fig. 3(a) appears to be cut from the rest of the light gray domain in
Fig. 3(b) and transported further to the upper left lobe of Fig. 3(e). Due to the periodicity of the flow, Fig. 3(e) is the same
as Fig. 3(a) but the color code has been shifted by 1. 92622
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The chaotic set at times t = 0, 0.3567", 0.57", 0.6447 (mod 7T'). Mixing takes place in the vicinity of this set.

Trajectories from its neighborhood are trapped for a long time. Notice the direct product structure of some parts (see regions
A, B, C, D and their mirror images A’,..., D') and the dense spirals around the vortex cores. The multicolored filamental
region of the previous figure corresponds to the unstable manifold of this set.

To find the relation to Fig. 3, we first notice
that tracers of long lifetime can only be the ones
coming close to the chaotic set. The chance that
they exactly hit the set is zero since the latter is a
fractal whose area is zero. Just as an unstable hy-
perbolic fixed point has a curve along which parti-
cles leave its neighborhood (see [Ottino, 1989)]), the
chaotic set also has such a curve that is called its
unstable manifold. This manifold is a rather com-

plicatedly winding curve extending downstream to
infinity, whose intersection with any straight line is
a fractal. In view of this, we can say that particles
not escaping the mixing region too rapidly accumu-
late on a close neighborhood of the unstable man-
ifold of the chaotic set. Similarly, the multicolored
filamental structure of Fig. 3 traces out the unstable
manifold, too. Of course, the shape of the manifold
is also changing in time but returns to itself after
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integer multiples of the period 7. Analogously,
there exists a curve, the stable manifold, along
which the chaotic set can be reached. Its intersec-
tions with the line of initial conditions mark points
with formally infinite delay times. Thus the fractal
character of the infinities of the time delay function
7(y) represent faithfully the fractal character of the
stable manifold. Due to the incompressibility of the
flow and the reversibility of the tracer dynamics,
both manifolds have the same fractal dimension.

Chaotic advection in open flows is a phenom-
enon clearly demonstrating how the underlying
dynamics determines the fractal properties of the
chaotic set and its manifolds. The fractal dimen-
sion dp of one component of the Cantor set turns
out to be

ox1-- @)

due to a general relation derived in [Kantz & Grass-
berger, 1985].1 Here ) is the (positive) average Lya-
punov exponent of trajectories spending a long time
around the chaotic set. It describes how the average
distance A(t) between nearby trajectories grows in
time: A(t) ~ exp(Xt), for t < 7. The deviation
of the fractal dimension from unity is thus given
by the ratio of the two characteristic times: 1/\
and 7 measuring the strength of the dynamics’ local
and global instability, respectively. Formula (2) also
says that between two sets with the same Lyapunov
exponent, the one with the larger average chaotic
lifetime has the larger dimension. As the dimension
of a direct product of two fractals is the sum of the
components’s fractal dimensions [Falconer, 1990],
the full set in the regions A, A’',..., D, D' and its
manifolds are of fractal dimension dset = 2dy and
Amanifold = 1 + dg, respectively.

The chaotic sets typically also contain nonhy-
perbolic components. In the case of the leapfrog-
ging vortex pairs, they are situated around the vor-
tex cores where the point density is much higher
than further away. This is an indication of the
fact that in these regions, the chaotic set’s partial
fractal dimension tends to unity in the limit of ex-
tremely fine resolution [Lau et al., 1991]. The es-
cape rate and the average Lyapunov exponent are
expected to be zero on this component [Christiansen
& Grassberger, 1993]. It is, however, interesting to
note that on the practically relevant length scale

lNote, that the Eq. (1) holds exactly for di, but since do is
typically close to di this is a very good approximation.

of 10~* or larger (in dimensionless units) the fat
fractal property of the manifolds can hardly be ob-
served. This is exactly the range of resolution that
can be reached in realistic experiments because dif-
fusion or the finiteness of the tracers’ radii prohibit
going down to smaller scales. Thus, tracer patterns
are expected to appear in open flows as thin fractals
with noninteger dimensions as given above.

In contrast to open flows, in closed ones, the
dye patterns are not real fractals. During any fi-
nite period of observation, they trace out a finite
segment of a periodic orbit’s unstable manifold in
the chaotic sea, but this manifold is asymptotically
space filling as follows from (2) for 7 — oo. Thus
chaos and fractality represent two sides of advection
whose temporal observability is different in closed
and open flows. In the closed case, chaos is station-
ary and fractality is transient, while the opposite is
true in open cases.

Let us finally summarize our findings from the
point of view of mixing. The results imply that ef-
ficient mixing does take place in open flows of the
type of Fig. 1 due to the existence of an infinity of
unstable periodic orbits whose union forms a frac-
tal chaotic set. We repeat again that their existence
is typical and valid for any incompressible flow in-
cluding viscous ones. Mixing is stationary on the
chaotic set only. The mixing process of material el-
ements of finite width, however, occurs over finite
time scales, typically of the order of 7. Chaotic
mixing in open flows is transient in this sense. It
cannot be so efficient as in closed flows [Ottino,
1989], but is definitely much more efficient than in
flows without a chaotic set, since the average chaotic
lifetime 7 can be rather long. Mixing of tracers
and their transport along the chaotic set’s unstable
manifold might have interesting and observable con-
sequences in open flows, e.g. in autocatalytic chem-
ical reactions, in an analogous way to that which
they have in closed containers [Metcalfe & Ottino,
1994; Epstein, 1994].

Our findings have consequences for everyday
life phenomena, too. Examples can be fractal pat-
terns of floaters (e.g. pollutants) in the wake of a
bridge’s pillar or patterns traced out on a satellite
picture in a cloud layer lying in a horizontal air
current of constant speed behind a tall mountain.
Whenever one observes these or similar patterns,
he can conclude that they are consequences of the
transiently chaotic dynamics and mixing of the ad-
vected particles. Conversely, if the monitoring of
a few particles in any open flow indicates chaotic



motion before a simple asymptotic regime is
reached, we can be sure that tracer ensembles
generate in that flow fractal patterns on resolutions
typically accessible in these phenomena.
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