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We investigate the dynamics of tracer particles in time-dependent open flows. In cases when
the time-dependence is restricted to a finite region, we show that the tracer dynamics is typically
chaotic but necessarily of transient type. The complex behaviour is then due to an underlying
nonattracting chaotic set that is also restricted to a finite domain, and the tracer dynamics
corresponds to a kind of chaotic scattering process. Examples are taken from the realm of two-
dimensional incompressible flows. The cases of two leapfrogging vortex pairs and of the blinking
vortex—sink system illustrate the phenomenon in inviscid fluids, while the von Kdarmén vortex
street problem belongs to the class of viscous flows. Based on these examples, generic features
of the scattering tracer dynamics are summarized.

1. Introduction

The advection of particles in hydrodynamical flows is a phenomenon having attracted
great recent interest from the side of dynamical system community because these particles
can exhibit chaotic motion, see Aref & Balachandar (1986) and Péntek et al. (1995b). By
particle we mean a light granule of small extension. If it takes on the velocity of the flow
very rapidly, i.e. inertial effects are negligible, we call the advection passive, and the
particle a passive tracer. Its equation of motion is then

r=vir,t), (1.1)

where v represents the velocity field that is assumed to be known. The tracer dynamics is
thus governed by a set of ordinary differential equations, like e.g. for driven anharmonic
oscillators, whose solution is typically chaotic.

It is a unique feature of chaotic advection in time-dependent planar incompressible
flows that the fractal structures characterizing chaos in phase space become observable
by the naked eye in the form of spatial patterns. In such cases there exists a stream
function v, see Milne-Thomson (1958) and Landau & Lifshitz (1959), whose derivatives
can be identified with the velocity components as

) )
ve(z, Y1) = g—t, vy(z,y,t) = —%Zx—, (1.2)
and whose level lines provide the streamlines. Note that (1.2) is a consequence of in-
compressibility because it implies Vv = 0. Combining this with (1.1) for a planar flow
where r = (z,y) and v = (v, vy), one notices that the equations of motion have canon-
ical character with 9 (z,y,t) playing the role of the Hamiltonian and z and y being the

t This paper is dedicated to Professor K. Nagy on the occasion of his 70th birthday.
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FIGURE 1. Schematic diagram representing the dynamics as chaotic scattering in a system
defined by two channels and a scattering region containing billiard scatterers.

canonical coordinates and momenta (or vice versa), respectively. Thus, the plane of the
flow coincides with the particles’ phase space. This property makes passive advection
in planar incompressible flows especially appealing and a good candidate for an exper-
imental observation of patterns that are hidden otherwise in the abstract phase space.
In stationary flows, where 1 is independent of ¢, problem (1.1), (1.2) is integrable and
the particle trajectories coincide with the streamlines. In time-dependent cases, how-
ever, particle trajectories and streamlines are different, and the former ones can only be
obtained by solving equations (1.1), (1.2).

Here we consider passive advection in open flows in cases when complicated tracer
movements caused by the time-dependent flow is assumed to be restricted to a finite
region. This will be called the mizing region outside of which the time-dependence of v
is negligible. It is worth emphasizing that a complicated flow field (turbulence) inside the
mixing region is not at all required for complex tracer dynamics and the corresponding
fractal patterns. Even simple form of time dependence, e.g. a periodic repetition of the
velocity field is sufficient.

For tracers injected into the flow outside of the mixing region, where the flow is still
practically stationary, the motion is initially simple and becomes later gradually more
complicated as the particle is being advected into the mixing region. The advection
dynamics can thus be regarded as a scattering process, with the advected particles being
‘scattered’ on the finite region of nontrivial mixing. The motion in the outflow region 1s
then simple again. Thus, for such processes chaos is necessarily restricted to a finite region
both in space and time. We claim that this transient chaos, T¢l (1990), is the only form
of chaos which can appear in the situation studied. Tracer dynamics then corresponds
to a kind of chaotic scattering, see Smilansky (1992), which is a subfield of nonlinear
dynamics with a considerable amount of accumulated knowledge. The interpretation of
certain advection phenomena, observable also in experiments, is thus.very natural in this
framework.

Symbolically, we can indentify the tracer dynamics in the inflow and outflow region
with the motion of a point mass in a channel in front of and after a scattering region,
respectively. The scattering region characterized either by strongly varying forces or,
in billiards, by the presence of scatterers corresponds then to the mixing region in the
advection problem (see figure 1). Tracer particles are thus topologically similar to point
mass trajectories in a scattering system. We have to bear in mind, however, that the
analogy is not complete since the point mass problem’s phase space is four-dimensional.

The complicated form of trajectories implies a long time spent in the mixing region.
In other words, tracers can be temporarily trapped there. Due to the incompressibility
of the flow no attractors can exist, and almost all particles escape the mixing region.
This escaping property is a specific characteristic of chaotic scattering and of the tracer
dynamics in open flows of the type we are studying. As a consequence, the underlying
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chaotic set is a chaotic saddle with more pronounced fractal character than chaotic
attractors, since the former has a Cantor set type structure along both the unstable
and the stable direction. Instead of following a deductive approach, in the next section
we study examples where the time dependence is the simplest possible one, periodic.
Without giving mathematical details, we just introduce the problems and pictorially
show the flow fields, some typical tracer trajectories, and the invariant sets obtained in
numerical simulations. The generic features are then summarized and discussed in the
last, concluding section.

2. Case studies
2.1. Leapfrogging vortexr pairs

We consider a model of the so-called ‘leapfrogging’ motion of two smoke rings, see
Beigie et al. (1994), Van Dyke (1982), Shariff et al. (1988), Shariff & Leonard (1992) and
Saffman (1992). If the rings have the same sense of rotation and move along the same
axis, the rear vortex ring attempts to pass through the front one. The leading ring
then widens due to the mutual interaction and slows down. Simultaneously, the other
ring shrinks, accelerates and penetrates the first one. This process is then repeated
continuously with some period. We studied, Péntek et al. (1995a), the two-dimensional
analogue of this process: advection in the field of two pairs of ideal point vortices of
the same strength and moving along the same symmetry axis (the z-axis) which also
exhibit a strictly periodic motion. The equations of motion for the vortices can easily
be written down by using the rules of point vortex interactions, Saffman (1992), and can
numerically be solved with high accuracy, see Péntek et al. (1995a).

Figure 2 exhibits the streamline pattern at two different instants of time, at ¢t = 0
and ¢t = T'/2 in a frame co-moving with the center of mass of the vortex pairs, where T
denotes the period of the velocity field. Since the vortex pairs are identical, this period
1s half of the leapfrogging motion’s period. Note the smoothness of the streamlines. The
tracer motion in any frozen-in streamline pattern would be simple, it is the temporal
variation of ¢ that leads to irregular motion.

The stream function ¥ (x,y,t) is analytically known, and tracer trajectories can be
obtained by solving equations (1.1), (1.2) with this time dependent stream function as
an input, see Péntek et al. (1995a). Figure 3 contains, in the same co-moving frame, the
plot of two complicated, chaotic scattering trajectories of tracers injected into the flow in
front of the vortex pairs. The drastical difference in the shape of the trajectories due to a
slight change in the initial y coordinates is an example for the sensitive dependence on the
initial conditions, which is regarded as a common manifestation of chaos. A comparison
with figure 1 shows that the channels towards and away from the scattering region
correspond to the regions far away in front of and after the vortex pairs, respectively.

Figure 4 presents the invariant sets associated with the scattering tracer dynamics on a
stroboscopic map taken at integer multiples of the period T. The time instant selected is
t = 0(mod T'). The chaotic saddle (see figure 4(a)) is the union of all unstable bounded
trajectories trapped in the mixing region forever. It clearly contains parts that appear
to be the direct products of two Cantor sets, e.g. the one around the midpoint between
the vortices. Such parts form the hyperbolic component of the saddle. There are also
rather densely occupied regions forming the nonhyperbolic component, situated around
curves surrounding the vortices. Note the white regions around the vortices that are
not accessible by tracers coming from outside. Thus, in spite of the infinitesimally small
extension of the vortices in the Eulerian velocity field, finite vortex ‘cores’ are formed
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FIGURE 2. Streamlines of the leapfrogging vortex pair problem at (a)t = 0 and (b) t = T'/2.
The vortices in the upper (lower) half plane have the same strength, 1 (—1) in dimensionless
units. The initial condition (¢ = 0) is a configuration where the width of both vortex pairs as
well as their distance along the z-axis is unity. The vortex centers are denoted by black dots.
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FIGURE 3. Two complicated tracer trajectories with initial y coordinates differing by 1072 in
the leapfrogging problem presented in a frame co-moving with the vortex pairs’ center of mass.

in the tracer dynamics. The boundaries of the vortex cores are, in the language of
dynamical system theory, KAM tori, see Wiggins (1992). The nonhyperbolic component
of the saddle surrounds these tori.

Other invariant sets are the stable and unstable manifolds of the chaotic saddle. The
stable manifold is the set of initial conditions for tracers that reach the chaotic saddle
asymptotically. Since the latter is not an attractor, the stable manifold must be a set
of measure zero, i.e. a set whose area is vanishing. It is thus a fractal whose form is
given in figure 4(b) at the same instant of time as the saddle of figure 4(a). The unstable
manifold (see figure 4(c)) is traced out by trajectories that have approached the saddle
with rather high accuracy and left it after staying in its vicinity for a long time. In this
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FIGURE 4. Stroboscopic section of the invariant sets of the leapfrogging vortex pairs at { =0
(mod T'): (a) Chaotic saddle, (b) stable manifold, (¢) unstable manifold.

particular example and at this time instant, this manifold turns out to be the mirror
image of the stable manifold with respect to the y axis.

2.2. The blinking vortez—sink system

Consider an ideal fluid filling in the infinite plane with a point vortex that is simultane-
ously sinking. This can be a model of a large bath tub with a sink since a rotational flow
is formed around the sink in the course of the outflow. The blinking vortex—sink system
introduced originally by Aref et al. (1989) is obtained by having two such sinking vortex
points some distant apart from each other and being active alternatingly for a duration
of T/2. This models the outflow from a large bath tub with two sinks that are opened in
an alternating manner. In the blinking vortex-sink system the velocity field is periodic
with T but in a special way: it is stationary for a half period of T/2 and stationary again
but of another type for the next half period of T'/2.

By using the complex function formalism, Milne-Thomson (1958), for describing these
stationary flows, one can write down the stream functions explicitly. The streamlines
valid for 0 < t < T/2 and T/2 < t < T are shown in figures 5(a) and 5(b), respectively.
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FIGURE 5. Streamlines of the blinking vortex—sink system for (a) 0 < ( < 7/2 and (b)
T/2 <t <T. The two vortex-sink centers are situated at 2 = +1 in dimensionless units.

Note that sufficiently far away from the origin the differences between the streamlines and
the stream functions of the two cases are negligible. Since the time-dependence appears
in the form of a jump of ¢ at ¢ = 0 (mod 7'/2), the tracer dynamics is analogue to that of a
kicked mechanical system. The replacement of a tracer particle can easily be determined
within any of the stationary regimes. The comparison of the particles’ position right
after the first flow field sets in, i.e. at ¢ = 0% (mod T'), leads to a stroboscopic map whose
form can be given analytically, see Aref et al. (1989). The tracer dynamics is governed
in this system by a discrete dynamics rather than by a differential equation and is thus
simpler to study. Both sinks are surrounded by a circle of a given radius containing all
the points that escape the system within a duration of 7'/2. These two disks correspond
to the channel directing particles away from the scattering region of figure 1, while the
motion far away from the sinks corresponds to that inside the channel leading towards
the scatterers.

The advection problem has two essential dimensionless parameters: the sink strength
and the ratio of the vortex and sink strengths. We have carried out a detailed investi-
gation of the tracer dynamics at different values of the parameters, see Karolyi (1995).
Two tracer trajectories are shown in figure 6 with long life time before reaching one of the
sinks. The breakpoints are due to the sudden jumps between the two different streamline
patterns at ¢ = 0 (mod 7'/2).

The invariant sets characterizing this problem are shown in figure 7 on a stroboscopic
map taken at time ¢ = 07 (mod T'). The chaotic saddle (see figure 7(a)) seems to be
hyperbolic everywhere, i.e. to have a direct product structure. At other ratios of the
sink and vortex strengths KAM tori might also appear and in their vicinity the chaotic
saddle is nonhyperbolic. The invariant manifolds are given in figures 7(b) and 7(¢). The
stable manifold (see figure 7(b)) is a fractal curve reaching arbitrarily far away from
the vortex—sink centers. Its form is more and more regular when going out to infinity
due to the simplicity of the flow in this region. In contrast, the unstable manifold (see
figure 7(c)) is a fractal curve bounded to a finite region and connects the chaotic saddle
with the right sink closed at ¢t = 0~ (mod T'), just before taking the stroboscopic map.
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FIGURE 6. Two complicated tracer trajectories of the blinking vortex-sink system. A change
of 1077 in the initial coordinates leads to completely different trajectories leaving the system
through different sinks. The vortex—sink centers are denoted by black dots.

2.3. The von Kdrmdn vortex street

We consider the flow of a viscous fluid around a cylinder with a background velocity
pointing along the z-axis. At intermediate background velocities (whose dimensionless
measure, the Reynolds number, is on the order of 10%) no stationary velocity field is
stable, instead, a strictly periodic behaviour sets in with period T. Two vortices are
created behind the cylinder within each period, one above and the other one below the
z-axis. These two vortices are delayed by a time T/2. Note that they are now extended
vortices with finite velocities even in the vortex centers. The vortices first grow in size,
then become detached from the cylinder and start to drift along the channel. This
alternating separation of vortices from the upper and lower cylinder surface is called
the von Karmaén vortex street and is characterized by a strictly periodic velocity field of
period T', see Van Dyke (1982) and Beigie et al. (1994). After a short length of travel,
the vortices are destabilised and destructed due to the viscosity of the fluid. Far away
from the cylinder upstream and downstream the flow is, however, practically stationary.

To obtain the velocity distribution one has to solve the two-dimensional inviscid Navier-
Stokes equations with no-slip boundary condition along a circle, see Shariff et al. (1991)
and Jung & Ziemniak (1992). For simplicity we use here an analytic model for the stream
function introduced in Jung et al. (1993). It was motivated by a direct numerical sim-
ulation of the Navier-Stokes flow carried out by Jung & Ziemniak (1992) at Reynolds
number 250.

Figures 8(a) and 8(b) show the streamlines of this model at time ¢ = 0 (mod 7') and
t =T/4 (mod T). The streamlines far away from the cylinder are straight at any instant
of time. Thus, the channels towards and away from the scattering region of figure 1 corre-
spond in this case to the upstream and downstream regions, respectively. Tracer trajecto-
ries were generated, see Jung et al. (1993), Ziemniak et al. (1994), Péntek et al. (1995b),
by solving equations (1.1), (1.2) with the model stream function of Jung et al. (1993).
Figure 9 exhibits two complicated scattering trajectories that are trapped for a while in
the wake of the cylinder.

The invariant sets are shown again on a stroboscopic map taken at integer multiples of
the period T' in an area surrounding the cylinder. The chaotic saddle (see figure 10(a))
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FIGURE 7. Stroboscopic section of the invariant sets of the blinking vortex—sink system at ¢ =
0% (mod T): (a) Chaotic saddle, (b) stable manifold, (¢) unstable manifold. The circle around
the left vortex—sink center at (—1,0) indicates the area from which the tracers leave the system
via the left sink during the first half period.

contains now both a hyperbolic and a nonhyperbolic component. The former one is
situated away from the cylinder, while the nonhyperbolic component seems to accumulate
on the cylinder’s surface. This is a nice manifestation of the no-slip boundary condition.
Very close the the surface, i.e. in the boundary layer, the velocity must be small and there
can exist therefore increasingly many trapped trajectories. In fact, the surface contains
an infinity of parabolic orbits, see Jung et al. (1993), and it plays a similar role as a
KAM surface. This surface is, however, smooth and does not have surrounding cantori.
Nevertheless, the effect of both types of tori is similar in collecting the nonhyperbolic
component of the chaotic saddle.

The invariant manifolds are exhibited in figures 10(b) and 10(¢). The stable manifold
(see figure 10(b)) surrounds the cylinder surface and extends to the infinitely far inflow
region in a narrow band close to the negative z-axis. In contrast, the unstable manifold
(see figure 10(¢)) touches the cylinder surface along a finite arch only, and extends to
the outflow region at infinity in a strongly oscillating way. It is interesting to note, that
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FIGURE 8. Streamlines of the von Kérmén vortex street flow at (a) t = 0 and (b) t = T/4,
obtained by using the form and parameters of the model of Jung et al. (1993). The radius of
the cylinder is 1 in dimensionless units and its center is in the origin. Due to a symmetry of the
flow, the streamline pattern at time ¢t = 7/2(mod T) and t = 37'/4(mod T') can be obtained
as the mirror images of (a) and (b), respectively.

in this system a small chaotic saddle is formed around z = 3 downflow, too, with its
own invariant manifolds, see Péntek et al. (1995b). This saddle is fully hyperbolic and
rather unstable, therefore, its dynamical consequences are not so apparent as the ones
discussed above and shown in figure 10(a).

3. Conclusions

Based on the examples, we summarize the most important general features character-
izing chaotic passive advection in open flows of the type investigated.

o The exzistence of a chaotic saddle is the key observation in understanding the scat-
tering tracer dynamics. This set, just like a chaotic attractor, is the union of all bounded
orbits, including periodic ones, never escaping the mixing region. These orbits are all un-
stable. In contrast to a chaotic attractor, however, the chaotic saddle has practically no
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FiGURE 9. Two complicated tracer trajectories in the von Kdarmédn vortex street with initial y
coordinates differing by 107%. The horizontal scale is multiplied by 3 for better visualization.

region of attraction. In other words, the chaotic saddle contains only those orbits which
are trapped in the mixing region forever. They are rather exceptional ones and not even
their closure covers a finite area of the plane, although they are infinite in number. Such
orbits form a fractal subset of the mixing region.

o Hyperbolic and nonhyperbolic components are subsets of the chaotic saddle. The first
one contains the strongly unstable trapped orbits with local Lyapunov exponents on the
order of unity whose neighbourhood will be left by tracer particles rather rapidly. The
nonhyperbolic component is the union of weakly unstable trapped orbits with positive
local Lyapunov exponents below a threshold, among which orbits with arbitrarily small
positive Lyapunov exponents can also be found. This component lies around KAM tori
or other sticky surfaces appearing due to no-slip boundary conditions. The separation of
these components is somewhat arbitrary (because the value of the threshold Lyapunov
exponent can be freely chosen from the range, say, between 0.1 and 0.01 in dimensionless
units) and also geometrically somewhat interwoven. Nevertheless, they are responsible
for qualitatively different types of motions (see below) and this is why their distinction
1s rather useful.

o The stable manifold is a complicatedly winding curve along which the chaotic saddle
can be reached. Tracers with long lifetime can only be the ones approaching the chaotic
saddle close along its stable manifold. Thus the stable manifold can also be considered
as the ‘basin of attraction’ of the saddle. It must have a vanishing area because in a
Hamiltonian system no attractor can exist. By means of video techniques this manifold
can also be determined in an experiment as suggested by Ziemniak et al. (1994) and
Péntek et al. (1995b). Sprinkle tracers in a domain of the flow, record their trajectories,
and keep only those whose lifetime in the mixing region is sufficiently long. By plotting
the initial points of these trajectories one obtains a good approximant to the stable
manifold. .

o The unstable manifold of the saddle is the set of points along which particles, after
entering a close neighbourhood of the set, leave this neighbourhood. This manifold
appears on a stroboscopic map as a rather complicatedly winding curve and extends
to the region where particles exit the flow. As a consequence, a droplet of particles
injected into the flow in front of the mixing region will, after a long time, trace out the
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FIGURE 10. Stroboscopic section of the invariant sets in the von Kdrmén vortex street at ¢t = 0
(mod T'): (a) Chaotic saddle, (b) stable manifold, (¢) unstable manifold. The horizontal scale
is multiplied by 3 for better visualization.

unstable manifold, provided the droplet overlaps initially with the stable manifold. This
fact makes the unstable manifold a direct physical observable of the passive advection
problem, see Ottino (1989) and Beigie et al. (1994), and provides the easiest method to
plot this manifold experimentally or numerically. (In simulations, the stable manifolds
can best be obtained as the unstable ones in the time reversed tracer dynamics. The
chaotic saddle is the common part of both invariant manifolds, but there also exist direct
powerful methods for its determination, see Nusse & Yorke (1989).)

o The time delay distribution is a characteristic of tracer ensembles. Trapped particles
have some time delay 7 relative to the background flow: the longer 7 is the more com-
plicated the trajectory becomes. Observe several trajectories (an ensemble) with initial
points taken from a closed domain of the flow, or along a straight line. The quantity
P(r)dr is the probability to find a particle with time delay in the interval (7,7 +dr).
P(7) must be a function tending to zero for large times. For intermediate times shorter
than some crossover value 7, it typically decays exponentially,

P(1) ~ exp (—1/7). (3.3)
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FIGURE 11. A typical time delay distribution NoP(7) characterizing chaotic tracer dynamics
with Ny as the number of tracer trajectories. For r < 7. ~ 30T and 7 > 7, equation (3.3) and
equation (3.4) holds, respectively. Data are taken from the blinking vortex-sink system with
parameter values where KAM tori exist, see Karolyi (1995).

It is only the prefactor, not written out here, that depends on the choice of the initial
distribution. For much longer times than the crossover value one observes an algebraic
decay

P(r) ~ 7170 (3.4)

(see figure 11). In periodic flows it is natural to measure 7 in units of the velocity
field’s period, T. We claim that the first behaviour is due to the hyperbolic component
containing trapped orbits with large local Lyapunov exponents. 7 is the average time
delay that can then also be considered as the average lifetime of chaos on the hyperbolic
component and is generally on the order of a few times the flow period. The algebraic
decay is a consequence of the presence of neutral trapped orbits, and the exponent o
characterizes the stickiness of the tori. Thus the following qualitative picture emerges
concerning the scattering tracer dynamics. Particles starting not exactly on the stable
manifold have finite lifetimes in the mixing region. Their motion can be considered as
a random walk among the periodic orbits of the chaotic saddle. Those with a not very
long lifetime just wander among strictly hyperbolic orbits and have an average lifetime
7. The very persistent trajectories must have visited the nonhyperbolic part and their
long-time statistics is therefore nonexponential.

o The time delay function. A more detailed characterization of the trapping process is
based on the observation of individual trajectories. Let us inject tracer particles into the
flow along a line and determine the time 7 they spend in the mixing region. This defines a
function 7(y) where y denotes the inital position along the line of injection. A unique sign
of chaotic tracer scattering is the rather irreqular appearance of the time delay function
as illustrated by figure 12. The intersection of the stable manifold with the line of initial
conditions marks points with formally infinite delay times, The different time delays of
neighbouring points indicate again the high sensitivity to initial conditions. An irregular
scattering function is thus a characteristic of chaotjc advection in open flows. The time
delay distribution P(r) reflects global properties of the scattering process and can easily
be derived from the time delay 7(y) of the trajectories: P(7)dr is proportional to the
number of tracers whose time delay falls into the interval (1,7 4+ dr) when integrating
over all initial conditions y.

o Fractal properties of the invariant sets. First note that the fractal dimension of
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FIGURE 12. A typical irregular time delay function 7(y) with discrete time delays measured
in integer multiples of the flow’s period 7' (data are taken again from the blinking vortex—sink
system, see Karolyi (1995)). The large time delay values mark inital conditions with a long
trapping in the mixing region. Note the sensitive dependence of 7 on vy, a criterion for chaotic
behaviour.

the Cantor sets whose direct product is the chaotic saddle’s hyperbolic component is
always a positive number dy less than unity. Next, use the fact that the dimension of
a direct product of two fractals is the sum of the components’ fractal dimensions, see
Falconer (1985). Thus, the chaotic saddle’s hyperbolic component is of fractal dimension
dsey = 2dy. The manifolds emanating from this component are the direct products of a
line and a Cantor set, therefore, dmanifold = 1+dy. Note that because of the time reversal
symmetry of the canonical equations of motion (1.1), (1.2), the stable and unstable
manifolds have common scaling properties and have therefore identical dimensions.

The fractal properties of the nonhyperbolic component are different. In these regions
the partial fractal dimension of the chaotic set tends to unity in the limit of extremely fine
resolution, see Lau et al. (1991). The escape rate and the average Lyapunov exponent
are expected to be zero on this component, see Christiansen & Grassberger (1993), in
accordance with (3.4). Therefore a fat fractal behaviour becomes evident when Increasing
the spatial resolution: dser — 2 and dpanifola — 2. In numerical simulations it might be
hard to reach the resolution where the fat fractal property of the manifolds is evident
away from the immediate vicinity of the nonhyperbolic component. Thus, we can state
that on the practically relevant length scale of 10™* or larger (in dimensionless units) the
tracer patterns appear as real fractals with noninteger dimensions.

e Singularities of the time delay function sit in points where the line of initial con-
ditions intersect the stable manifold. Thus, with a resolution larger than some critical
value €., the dimension of singularities is-the same value as that of the component Cantor
sets: dsing = do. On finer scales, one observes a crossover to a fat fractal behaviour and
dsing — 1. The critical resolution €., just like the crossover time Te, might depend on the
position of the line of initial conditions.

o Fractal tracer boundaries are easy to generate in open time-periodic flows. One way
Is to inject dye particles continuously into the flow along a line so that the colours are
different in two neighbouring segments, see Péntek et al. (1995b), and investigate how the
boundary evolves in time. Alternatively, one can also divide the fluid in strips of different
colours and study the deformation of the boundaries, see Péntek et al. (1995a). After a
long time of observation, the boundaries become rather complex containing a fractal part
that is nothing but the unstable manifold of the chaotic saddle, see Péntek et al. (1995b).
A different type of boundary is obtained by clouring the inital points according to how
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the tracers exit the mixing region. In a problem like the blinking vortex-sink system,
the most natural choice is to use different colours for exiting via different sinks, see Aref
et al. (1989). More generally, one can colour the initial points depending on whether the
trajectories cross a preselected line outside of the mixing region in a given segment or not.
The fractal part of such boundaries will contain the stable manifold of the chaotic saddle,
see Péntek et al. (1995b). The second type of boundary is an extension of the fractal
basin boundary concept, see Grebogi et al. (1983), for Hamiltonian systems without any
attractors. For both types of boundaries their fractal dimension is the same as that of
the manifolds: dhsundaey = Fmanitela = 1 4+ dg-

o Relation between dynamical and fractal properties. Chaotic advection in open flows
is a phenomenon where one clearly sees how the underlying dynamics determines the
fractal properties of the chaotic set and its manifolds. Due to a general relation valid for
any kind of transient chaos, see Kantz & Grassberger (1985) and Tél (1990), the fractal
dimension dy of a component Cantor set appears as

AT

where ) is the (positive) average Lyapunov exponent of trajectories spending a long time
around the chaotic saddle. This formula says that the deviation of the fractal dimension
from unity is proportional to the ratio of two average times characterizing local and global
instability. The quantity 1/ is the average time of the separation of nearby trajectories
by a factor of e, while 7 is the characteristic time, defined by (3.3), of emptying a given
area. Between two sets with the same Lyapunov exponent, the one with larger average
chaotic lifetime has the larger dimension.

o More general flows. Finally we note that the features summarized here seem to be
robust. A weak deviation from the flow’s planar character makes the canonical form
unvalid for the tracer dynamics, nevertheless, a chaotic saddle will govern the process in
the three-dimensional phase space of (1.1). Similarly, if the particles have inertia, the
dimension of the phase space doubles due to the appearance of physical momenta, even
in the crudest approximation. In the simplest case of a planar flow, the phase space is
four dimensional in which a chaotic saddle exists. What we observe as tracer patterns
is then related to the projection of the invariant manifolds to the plane of the flow.
Furthermore, if the flow is slightly compressible, a large number of periodic attractors
are expected to appear in the tracer dynamics. They can thus only have rather tiny
basins of attractions. Consequently, the dynamics is dominated by the extended chaotic
saddle(s) existing among the attractors producing long average chaotic lifetimes.
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