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ABSTRACT

The dynamics of modulated point vortex pairs is investigated on a rotating sphere, where modulation is

chosen to reflect the conservation of angular momentum (potential vorticity). In this setting the authors point

out a qualitative difference between the full spherical dynamics and the one obtained in a b-plane approxi-

mation. In particular, dipole trajectories starting at the same location evolve to completely different directions

under these two treatments, despite the fact that the deviations from the initial latitude remain small. This is

a strong indication for the mathematical inconsistency of the traditional b-plane approximation. At the same

time, a consistently linearized set of equations of motion leads to trajectories agreeing with those obtained

under the full spherical treatment. The b-plane advection patterns due to chaotic advection in the velocity

field of finite-sized vortex pairs are also found to considerably deviate from those of the full spherical

treatment, and quantities characterizing transport properties (e.g., the escape rate from a given region)

strongly differ.

1. Introduction

In geophysical fluid dynamics the b-plane approxima-

tion plays a central role as the basis of large-scale quasi-

geostrophic dynamics. The idea goes back to a heuristic

reasoning of Rossby (1939), who found that for a shallow

fluid on a rotating sphere only the local normal compo-

nent of the angular velocity vector is relevant. Further-

more, if the scale of the motion is sufficiently small in the

north–south direction, then the only effect of the sphe-

ricity is the variation of the normal component of the

angular velocity with latitude, which made a proper and

convenient description of planetary (Rossby) waves

possible. By now, it became a widely spread approach

to use a locally flat Cartesian coordinate system in the

quasigeostrophic context (e.g., Pedlosky 1979; Cushman-

Roisin 1994; Vallis 2006; Kundu et al. 2012).

The theory is based on the vorticity equation, and

a precise scale analysis of the problem, including cur-

vature effects, carried out by Pedlosky (1979, section

6.3), shows that the assumption of a flat geometry with

a linearly latitude-dependent angular velocity compo-

nent is indeed a consistent approximation for quasi-

geostrophic motion. Pedlosky also shows, however, that

the same scale analysis of the fluid dynamical momen-

tum equation (Euler equation), restricted to small me-

ridional displacements, leads to the appearance of

a term arising from the curvature of the sphere. This new

term is negligible only around the equator. This in-

dicates that the b-plane idealization, in which only the

variation of the angular momentum is taken into ac-

count but the spherical geometry is not, is not entirely

consistent. Nevertheless, this mathematical inconsis-

tency turns out to be of marginal importance in some

applications (Pedlosky 1979). At the same time, criti-

cism appeared about the universal applicability of the

b-plane approach in the aforementioned widely used

sense (e.g., Gill 1982; Verkley 1990; Ripa 1997;

Harlander 2005; Paldor and Sigalov 2006; Paldor 2007).

Our results, focusing on the effects of the mathematical

inconsistency, might provide a further contribution to

these considerations. Such curvature-related effects are

particularly relevant in problems related to material

transport, since in this context the use of the momentum

equation is unavoidable.

Our aim in this paper is to get insight into the nature of

the b-plane approximation via a simple point vortex
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model. An advantage of this is that the problem arises in

a dynamics that can be described by an ordinary differ-

ential equation, which makes an easy treatment possible.

Nevertheless, many features—rotation, spherical geome-

try, and vorticity—are common with the hydrodynamical

settings studied in the literature mentioned so far, which

concentrated on Eulerian properties. To our knowledge,

the effect of the b-plane approximation on Lagrangian

properties, related to material transport, has not yet been

investigated. Our model enables us to study also the

problem of advection in a relatively simply way and leads

to the conclusion that the results of the b-plane approxi-

mation for transport properties might considerably differ

from the correct ones even if the corresponding velocity

fields do not differ too much.

There is a current interest in the dynamics of point

vortices on a rotating sphere (Newton 2001; Newton and

Ross 2006; Jamaloodeen and Newton 2006; Newton

and Shokraneh 2006; Newton and Sakajo 2007; Newton

and Shokraneh 2008; DiBattista and Polvani 1998) be-

cause of an increasing focus on environmental and cli-

matic aspects of hydrodynamical flows. An exact

equation of motion is known in the form of a system of

integro-differential equations only (Bogomolov 1977). In

the form of differential equations, approximate forms are

available. To take into account the conservation of the

fluid’s angular momentum, the potential vorticity, a phe-

nomenological approach in the shallow-water setup is the

modulation of the vortex circulations.

Motivated by vortices moving over sloping bottoms,

there is extended literature (Makino et al. 1981; Zabusky

and McWilliams 1982; Hobson 1991; Velasco Fuentes

and van Heijst 1994; Benczik et al. 2007) on vortex dy-

namics in which the circulation Gj of any vortex is made

linearly location dependent in the spirit of the b-plane

approximation (Velasco Fuentes and van Heijst 1994).

Although such point vortices are not exact solutions of

the hydrodynamical equations (in particular, of the shal-

low water equations), they have been shown to be useful

in understanding several features, for example, the exis-

tence of modonlike excitations (Makino et al. 1981;

Hobson 1991). In a number of experiments, laboratory

generated vortices on a topographic b plane (sloping

bottom) could be approximated quite well by the mod-

ulated point vortex model over a considerable time span

(Kloosterziel et al. 1993; Velasco Fuentes and van Heijst

1994, 1995; Velasco Fuentes et al. 1995; Velasco Fuentes

and Velázquez M~unoz 2003).

Recently, we generalized the principle of modulation

for vortex motions on the entire rotating sphere by

making the vortex circulation nonlinearly dependent on

the latitudinal angle uj of vortex j (Drótos et al. 2013).
Under the assumption that a point vortex represents

a small patch of vorticity of an area a2p, the circulation

of vortex j with coordinate uj is written as

Gj(uj)5Gjr 2 2Va2p(sinuj 2 sinur) , (1)

where Gjr is the circulation at a reference latitude ur. We

call Gjr the vortex strength (at the reference latitude) and

a the vortex radius, the latter being assumed to be the

same for all point vortices (similarly for ur). Equation (1)

sets the modulation of circulation on a sphere rotating

with angular velocity V.

In this paper we compare different aspects of vortex

pair dynamics in the full spherical picture to those in the

b-plane approximation, and we point out considerable

alterations. Our approach is similar in spirit to that of

Ripa (1997), who carried out analogous comparisons

with different forms of the equation of motion for the

free motion of a particle (geodesic motion) on a rotating

sphere. He also concludes that the usual b-plane ap-

proximation is an inconsistent one and also provides

a consistent form. In our point vortex model, near the

reference latitude of the b-plane approximation, we also

carry out Taylor expansions, but, in contrast to Ripa, we

expand the equations of motion themselves. We thus

arrive at a minimal model in which one sees those errors

alone that are purely due to mathematically inconsistent

approximations. It is worthmentioning that the geodesic

trajectories found by Ripa are exactly the same as those

described by Paldor and Killworth (1988) a few years

earlier. Two basically different types of trajectories are

found: a small-amplitude meandering motion extending

to both sides of the equator and traveling to the east,

called wobbling, and a self-intersecting large-amplitude

motion traveling to the west, called tumbling. In our

earlier paper (Drótos et al. 2013) we pointed out that the
vortex pair trajectories are also of wobbling or tumbling

type—just the role of the equator is taken over by the

reference latitude ur, defined in (1). This can take on any

value, allowing us to focus our attention to the vicinity of

an arbitrarily chosen latitude. In this sense our study on

the validity of the b-plane approximation is a generaliza-

tion of the part of Ripa’s work that deals with the geodesic

motion. Ripa briefly extends his results to the shallow-

water equation, too, but does not study any solution of this

equation. In our model, we go a step further and also in-

vestigate the advection of passive tracers in the velocity

field of the vortices to see if there is a difference between

the results obtained in the usual b-plane approximation

and in the full spherical treatment.

The advection of passive tracers (i.e., fluid elements)

in geophysically relevant velocity fields is a topic subject

to intensive investigations (e.g., Coulliette et al. 2007;

Sandulescu et al. 2008; Pattantyús-Ábrahám et al. 2008;
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Tew Kai et al. 2009; Peacock and Haller 2013), which is

due to its basic character in the investigation of spreading

phenomena. There are numerous applications (e.g., the

atmospheric spreading of gases) in which the dynamics of

the particles to be followed is well approximated by that of

passive tracers. This motivated us to investigate the ad-

vection of a large number of passive tracers in the field of

the vortex pairs, following both the full spherical treat-

ment and the b-plane approximation. Considerable dif-

ferences can be found in this context, too.

We note that our model for the vortex dynamics, in-

cluding the time evolution of the velocity field of the vortex

pair, does not aim to mimic real atmospheric or oceanic

dynamics. First, owing to neglecting dissipation and the

generation of potential vorticity in the background flow,

ourmodelmay only be reasonable for short time intervals.

Second, both the background flow and the vortex config-

urations, and also the interactions between these elements,

aremuchmore complex even in rather simple approaches,

leading to a much wider range of phenomena as pointed

out by Egger (1992), who attempted to combine a baro-

tropic and quasigeostrophic model with point vortices

corresponding to subgrid eddy motion. Therefore, we do

not claim that the results presented in this paper describe

faithfully any real geophysical phenomena. Instead, a hy-

drodynamically motivated dynamics is declared on a ro-

tating sphere, the b-plane approximation of which can be

analyzed rather straightforwardly and provides insight into

the nature of this kind of approximation.

The paper is organized as follows. In the next section we

introduce the vortex pair model under the full spherical

treatment. The b-plane approximation is derived from this

in section 3. In section 4wepresent a consistently linearized

approximation of the full spherical dynamics and analyze in

detail how the b-plane approximation deviates from it. We

point out the dynamical importance of the special latitudes

u6, corresponding to a uniform eastward or westward

propagation, in section 5. These special latitudes under the

full spherical and the consistently linearized treatments are

shown to qualitatively differ from the corresponding lati-

tude of the b-plane dynamics where both special latitudes

simply coincide with ur. In section 6, numerical examples

are shown for the alterations of the b-plane trajectories

from those obtained in the full spherical and the consis-

tently linearized dynamics. Section 7 is devoted to the

comparison of the advection dynamics of passive tracers

obtained under the b plane and the full spherical treat-

ments. We summarize our findings in section 8.

2. The vortex pair model

As a starting point, we briefly summarize the results of

Drótos et al. (2013). We consider two point vortices whose

location is specified by angles l, u in geographical co-

ordinates on the surface of a sphere (l being the longitude,

u being the latitude). The length and time scales,L and T,

are naturally chosen as the radius R of the sphere and

as 1/(2V), where V is the rotational frequency, respec-

tively [i.e., L 5 R and T 5 1/(2V)]. The vortex circula-

tions, according to (1), are then given by G0
j(uj)5

G0
jr 2 a02p(sinuj 2 sinur), where j 5 1, 2 and both the

reference circulation G0
jr and the vortex radius a0 are di-

mensionless. The vortex pair is defined by having opposite

vorticities G0
1r 52G0

2r [G0 at the reference latitude ur.

The chord distanceD0 of the elements of the pair turns

out to be constant during the motion (Drótos et al.
2013). The dimensionless equations for the two elements

of the pair are found to be

dli
dt

5
1

cosui

1

2pD02 [G
0
jr 2 a02p(sinuj 2 sinur)]

3 [cosui sinuj2 sinui cosuj cos(li2 lj)] and

(2a)

dui

dt
5

[G0
jr 2 a02p(sinuj 2 sinur)] cosuj sin(li 2lj)

2pD02 .

(2b)

Here i, j 5 1, 2, i 6¼ j, and G0
1r 52G0

2r 5G0. The initial

conditions are given by the initial values li0, ui0, i 5 1, 2.

Alternatively, we can use the initial center-of-mass co-

ordinates l0, u0, the chord distance, and the initial orien-

tation of the line connecting the elements of the pair. This

line, owing to the functional form of the velocity field of

any point vortex, is always perpendicular to the velocities

of the elements of the pair and, hence, to the center-of-

mass velocity u of the pair. As pointed out in Drótos et al.
(2013), we can restrict our investigationswithout the loss of
generality to cases with an initially strictly zonal center-of-

mass velocity.We thus always choose the initialmeridional

component y0 of the center-of-mass velocity to be 0.

A systematic exploration of the possible trajectory

shapes, depending on the initial conditions, is found in

Drótos et al. (2013). Here we only repeat the most impor-

tant observation—namely, the regularity of any trajectory.

The motion of a vortex pair is almost always characterized

by a periodical dynamics in the u coordinate of the vortex

pair’s center of mass. During each period, the l coordinate

changes by a particular value. Depending on the sign of this

value, the netmotion of the vortex pair is either an eastward

or a westward drift restricted to a band in u.
Dipoles, very close and very weak vortex pairs whose

velocity is finite, are obtained in the limit G0, a0,D0 / 0.

We write the vortex coordinates as u1,2 5 u 6 du and

l1,2 5 l 6 dl, where u and l are the center-of-mass
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coordinates in the dipole limit. From the equations of

motion [(2)] of a vortex pair, we obtain the equations of

motion foru, du, l, and dl. From these, a closed dynamics

follows for the center-of-mass coordinates u and l:

d

dt
(cosu _l)5 _u sinu[gd(u)1 _l] and (3a)

d

dt
_u52 _l cosu sinu[gd(u)1 _l] , (3b)

where

g5
a02

D02 (4)

is a parameter of the geometry in the dipole limit and

d(u)5 12
sinur

sinu
. (5)

Using the zonal and meridional components of u,

u[ _l cosu, y[ _u , (6)

the dynamics of the center of mass is written as

_u5gd(u)y sinu1uy tanu, _y52gd(u)u sinu2u2 tanu .

(7)

These are the equations of motion for a dipole for

a particular reference latitude ur and ratio g.

By definition, the velocity modulus of the dipole is

determined by

juj25 u21 y25 _l
2
cos2u1 _u2 . (8)

From this and from the equations of motion for u and l

[see (B2a) and (B2c) inDrótos et al. (2013)], the velocity
modulus can be derived to be

juj5 G0

2pD0 . (9)

It is interesting to note that the dipole dynamics with g 5 1,

ur5 0 was found in Drótos et al. (2013) to be equivalent to

that of the freemotionofpoint particles on the same rotating

sphere (Paldor and Killworth 1988; Paldor and Boss 1992;

Ripa 1997).

3. Theb-plane approximation in the vortex pairmodel

In any traditional b-plane approximation (in brief,

‘‘b-plane approximation’’), one has to choose a latitude

where the origin of a local Cartesian reference frame is

put. This choice should bemade so that the fluid element

trajectories under investigation stay close to this latitude

when compared to the radius of the sphere. The latter

being unity,60.15 is traditionally taken as the limit for the

deviation from the chosen latitude in the variable u, or,
equivalently, for the absolute value of the coordinate y

(locally coaligned with latitude u) in the Cartesian refer-

ence frame (Pedlosky 1979). In our particular case, we

naturally choose ur to be the origin of the b-plane y axis

since we are interested in the dynamics taking place in the

vicinity of the reference latitudeur. As for the origin of the

x axis, any longitude l is equivalent, so we choose l 5 0.

First, we consider finite-sized vortex pairs (a0, D0, and
G0 being finite). In the spirit of geophysical fluid dy-

namics (Pedlosky 1979), the b-plane equations of mo-

tion for a vortex pair are obtained by assuming planar

geometry with the coordinates x and y defined as

x5 l cosur, y5u2ur . (10)

In the x–y plane simply the planar equations of motion

for a vortex pair are considered. The only modification is

the modulation of the vortex circulation as a function of

the coordinate y, as formulated in Velasco Fuentes and

van Heijst (1994), Benczik et al. (2007), Kloosterziel

et al. (1993), Velasco Fuentes and van Heijst (1995),

Velasco Fuentes et al. (1995), and Velasco Fuentes and

Velázquez M~unoz (2003). When referring to the form

(1) of the modulation, only the leading-order term is

kept in the Taylor expansion of sinui 2 sinur around ur:

sinui2 sinur ’ cosuryi . (11)

The dimensionless Coriolis parameter (the local vertical

component of the angular velocity of the sphere) is, in

our case, sinui, thus the dimensionless b parameter (b0),
the derivative of the Coriolis parameter at ur, is b0 5
cosur. The b-plane equations of motion for a vortex pair

are thus (e.g., Velasco Fuentes and van Heijst 1994)

dxi
dt

52
1

2pD02 (G
0
jr 2b0a02pyj)(yi 2 yj) and (12a)

dyi
dt

5
1

2pD02 (G
0
jr 2b0a02pyj)(xi2 xj) (12b)

for i, j 5 1, 2, i 6¼ j, and G0
1r 52G0

2r 5G0.1

1A natural question is how (12) can be obtained from (2). The

metric factors (next to the circulations) in (2) turn out to be con-

vertible to the differences of the Cartesian coordinates appearing in

(12), but only by assuming the longitude difference li 2 lj to be of

the same order as ui 2 ur. Furthermore, taking the product of the

linearly approximated metric factors with the linearly approximated

circulations proves to handle quadratic terms inconsistently. With-

out any quadratic terms, however, the variation of the Coriolis pa-

rameter with latitude cannot be incorporated into the model at all.
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For a dipole, we write x1,2 5 x 6 dx, y1,2 5 y 6 dy,

where (x, y) is the position of the center of mass in the

b plane, and dx, dy, a0, D0, and G0 are considered to be

infinitesimally small and to be of the same order. A

consistent Taylor expansion of the equations of motion

[(12)] leads to

€x5
a02

D02b
0y _y5 g cosury _y and (13a)

€y52
a02

D02b
0y _x52g cosury _x . (13b)

These are the b-plane equations of motion for a dipole

moving near ur.

The velocity of the dipole is the derivative of the po-

sition vector (x, y) as defined by the planar geometry:

u5 ( _x, _y) . (14)

To see this, one can also refer to definition (6) and

substitute cosu by cosur in the spirit of the ‘‘planariza-

tion’’ of the dynamics:

u5 ( _l cosur, _u)5 ( _x, _y) . (15)

It is clear then that this is the only reasonable velocity

vector associated to a b-plane dipole.

4. The inconsistency of the b-plane dipole
equations

As a more precise approach than the b-plane approxi-

mation, we now derive the consistently linearized dipole

equations aroundur. Any expressions depending explicitly

on the variable u, including the metric factors, are thus

taken into account up to the same order. Although it turns

out to be useful to define new variables, denoted again by

x and y, for a more convenient representation of the dy-

namics, these new variables are not derived from any

planar geometry, in contrast to theb-plane approximation.

The Taylor expansion in Du [ u 2 ur of the full

spherical dipole equations [see (3)] results in leading

order in

cosur
€l5 2 sinur

_Du _l1 (2/cosur)
_Du _lDu

1 g cosur
_DuDu and (16a)

€Du52sinur cosur
_l
2
2 cos(2ur)

_l2Du

2g cos2ur
_lDu. (16b)

Defining

x5 cosurl, y5Du , (17)

we obtain

€x5g cosur
_yy1 2 tanur

_y _x1 (2/cos2ur) _y _xy and (18a)

€y52g cosur
_xy2 tanur

_x21 (tan2ur 2 1) _x2y . (18b)

These are the correct equations for dipoles moving close

to ur. We emphasize that x and y are not Cartesian co-

ordinates but are arbitrarily defined variables. The

conversion, however, between the (l, u) and the (x, y)

variable pairs is exactly the same as in the b-plane ap-

proximation. As only the (l, u) coordinates are of

physical relevance, the coincidence of the conversion

ensures a direct comparability of the current equations

with those of the b-plane approximation.

Observe that the second and the third terms on the

right-hand side of both (18a) and (18b) aremissing in the

b-plane equations of motion [(13)]. The origin of this is

in the metric factors of the equations of motion of

a vortex pair [(2)], which are inconsistently omitted in

the b-plane approximation.

Let us now express the velocity of the dipole in terms

of x, y, and their derivatives, applying consistent line-

arizations. Definition (6) yields

u5 ( _l cosfur 1Dug, _Du) , (19)

from which, by taking the linear Taylor expansion of the

cosine function around ur and substituting the definition

(17) of x and y, we obtain

u5 (f12 tanuryg _x, _y) . (20)

It is important that the zonal (i.e., the l) component u of

the velocity is not equal to _x.

In the spirit of the b-plane approximation it is worth

taking into account that the components of u should be

small in comparison with the equatorial velocity of the

surface of the sphere. In a geophysical context, the

characteristic dimensional velocitymodulusU of the fluid

should be much smaller than the equatorial velocity RV
of the sphere. The global Rossby numberRog5U/(2VR)

is then small. Thismeans that the dimensionless juj should
also be restricted to small values. As a consequence of

(20), _x (regardless of the particular value of the small

variable y) and _y are considered to be on the order of the

small Rog.

Rog is chosen to be around 0.025 or 0.0025 in our

numerical simulations, and y, as a small quantity, with

an absolute value of 0.15 at the very most, is considered

to be of the same order as Rog (see Pedlosky 1979).

Then the first and the second terms in system (18) are of

order Ro2g, and the third terms are of order Ro3g, the
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latter ones then being not relevant. Thus, as long as

tanur is of order unity, omitting the second terms, as

done in the b-plane approximation, leads to a consid-

erable deviation of the trajectories from the correct

ones. [A close agreement is expected around the

equator (i.e., for tanur � 1) only, in agreement with

Pedlosky’s argumentation for the momentum equation

in Pedlosky (1979).]

The numerical examples shown in section 6 exhibit

striking differences for certain cases. To understand

these plots, however, a further observation is needed

first, leading to the definition of the special latitudes.

5. Special latitudes in the spherical dipole dynamics

Now we consider a fixed ur 6¼ 0 and ask if there exists

any latitude that is a dynamical analog of the origin of

the b-plane approximation, a latitude corresponding to

an eastward or westward uniform propagation. In-

tuitively, one might think that this special latitude is ur.

Here we show that the special latitudes u6, describing

eastward and westward uniform propagation of a gen-

eral dipole, respectively, differ from ur and also from

each other.

We are looking for solutions of the dipole equations of

motion [(3)] of the form

u(t)5u6, _u(t)5 0. (21)

Substituting this into (3a), we obtain

€l5 0, l(t)5 l01vt ; (22)

that is, this propagation is indeed uniform. The constant

v is the angular velocity and is thus geometrically re-

lated to the zonal velocity u as

v5
u

cosu6

. (23)

Since both v and u6 are constants, u is constant in time

and is equal to its initial value u0. Equation (3b) then

yields

052v cosu6(g sinu6 2g sinur 1v sinu6)

52u0g sinu6 1 u0g sinur 2 u20 tanu6 , (24)

from which, for u6 6¼ 6p/2,

sinu6 5
sinur

11 u0/(g cosu6)
(25)

holds for the special latitudes u6. According to (9), ju0j
is obtained from the infinitesimally small vortex strength

G0 and vortex distance D0 (remember that y5 _u5 0):

u05 6
G0

2pD0 , (26)

where the upper (lower) sign corresponds to the east-

ward (westward) propagation. The above equations

implicitly determine u6 as a function of g, ur, and

G0/D0.2

From (25), one sees that the latitude of the uniform

propagation does not coincide with ur and is different

for the eastward and the westward direction of the

propagation. Relative to ur, this latitude is shifted to-

ward and away from the equator in these two cases,

respectively.

Numerical results in Fig. 1 highlight the role of the

special latitudes in the full spherical dipole dynamics.

In Fig. 1a, we can see that a dipole initiated close to u1

FIG. 1. (a) Eastward- and (b) westward-initiated (wobbling and tumbling) dipole trajectories in a l–u represen-

tation, compared to the relevant special latitude [red dotted–dashed line: (a) u1 5 0.627 and (b) u2 5 0.675]. Initial

latitudes for the dipole trajectories: dotted: u0 5 ur 5 0.65 in (a) and (b), intermittently dashed: (a) u0 5 0.617, u1

and (b) u05 0.683. u2. Further initial conditions: l05 0, y05 0, and u0 is indicated in the panels. The length tmax of

the trajectories is also indicated in dimensionless time units. Parameters: g 5 1, and ur 5 0.65 is marked by a gray

double-dotted–dashed line. Note the different scales in (a) and (b).

2 For small (geostrophic) velocities and latitudes not too close to

the pole, an appropriate estimation for the location of the special

latitudes is sinu6 ’ sinur/[1 1 u0/(g cosur)]. The difference

jsinu22 sinu1j ’ 2 tanurju0j/g is then always small, on the order

of Rog, for a given velocity modulus ju0j.
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with an eastward velocity moves to the east on aver-

age, meandering in the vicinity of u1. This trajectory

type is called an eastward wobbling (Newton and

Shokraneh 2006). As illustrated in the plot, small-

amplitude eastward-wobbling trajectories have inflexion

points close to u1. Thus u1 serves as a ‘‘center’’ for such

trajectories and, latitudinally, it ‘‘attracts’’ them.

Eastward-wobbling trajectories initiated on the

northern (southern) side of u1 bend initially to the

south (north). As Fig. 1b illustrates, u2 plays an op-

posite role for dipoles initiated with a westward ve-

locity: they are ‘‘repelled’’ from u2, resulting in

circlelike trajectories slowly drifting to the west. These

are called westward-tumbling trajectories (Newton

and Shokraneh 2006). It is clear that the dipole moves

along in a negative (positive) rotational direction on

the northern (southern) side of u2. We can thus say

that u2 is a separatrix for northern and southern type

westward tumblings.

Based on the previous paragraph, the difference

between u1 and u2 has the following implication: for

any initial latitude u0 2 (u1, u2) there exist both

southern-type westward-tumbling trajectories (for

westerly initial velocities) and eastward-wobbling

trajectories (for easterly initial velocities) that initially

exhibit a northern-type behavior (i.e., they initially bend to

the south). For example, u0 5 ur 5 0.65 2 (u1, u2) be-

haves qualitatively differently for u0 . 0 and u0 , 0, as

Figs. 1a and 1b illustrate, respectively.

The difference of the respective special latitudes from

ur and from each other is also present in the correctly

linearized form of the dipole equations. From (16),

substituting _l5 u/cosu ’ u/cosur(11 tanury) for the

angular velocity, one obtains

y652
sinur

(1/u0)g cos
2ur 1 1/cosur

(27)

for the positions of the uniform eastward and the uni-

form westward propagation with constant latitudinal

velocity u0.

The existence of the special latitudes u6 6¼ ur under

the full spherical treatment (and that of y6 6¼ 0 under

the correctly linearized treatment) implies in itself

a qualitative breakdown of the b-plane approximation

via the clear spatial separation of the eastward and the

westward uniform propagation, which both belong to

u0 5 ur under the b-plane treatment. Although this

separation is small, it leads to the strongest conse-

quences exactly for trajectories moving near ur (e.g.,

initiated in between u1 and u2), where we would na-

ively expect the b-plane approximation to work the

best.

6. Differences in the trajectories

In this section we compare dipole trajectories (i.e.,

trajectories corresponding to the G0, a0, D0 / 0 limit)

obtained numerically from the exact spherical, the

correctly linearized, and the b-plane equations [(3),

(18), and (13), respectively]. Note that these equations

represent three different dynamics, one of which [(3)]

is considered to be ‘‘true’’ with the other two approx-

imating it. The question is how the latter ones perform

in different situations. To obtain the answer, we fix the

initial meridional velocity component to be y0 5 0,

choose an approximately geostrophic velocity modu-

lus ju0j � 1 (see the discussion at the end of section 4),

and vary systematically the initial latitude u0. We

discuss eastward- and westward-initialized velocities

separately. We choose g 5 1 throughout our in-

vestigations without loss of generality; see Drótos et al.
(2013).
In Fig. 2 we explore the behavior of trajectories ini-

tiated with an eastward velocity (i.e., with u0 . 0). In

Fig. 2a with an initial latitudeu02 (u1,ur) the exact and

the correctly approximated trajectories bend initially to

the south, toward u1, in accordance with the previous

section. Meanwhile, the b-plane trajectory bends ini-

tially to the north, toward ur. This indicates that the

b-plane approximation does not reflect the relevance of

u1, this special latitude being more relevant for the

correct dynamical description than ur. Although the

trajectory is very close to ur during the entire motion

under the exact and either of the approximated treat-

ments, the b-plane approximation leads to a qualita-

tively incorrect behavior in this situation. The message

of Fig. 2b, with u0 . ur but ju0 2 urj � 1, is similar.

Although any trajectory bends initially to the south

here, the amplitude of the eastward wobbling is an order

of magnitude smaller in the b-plane approximation than

under the exact and the correctly approximated treat-

ments. Figure 2c corresponds to an initial latitude being

relatively far away from ur but inside the validity range

of any linear approximation in the variable u. In this

case all three trajectories are qualitatively similar. This

leads to the counterintuitive conclusion that the in-

vestigated motion should have a portion that lies

considerably far away from ur for a qualitative appli-

cability of the b-plane approximation. In Fig. 2d we

demonstrate that the breakdown of the b-plane ap-

proximation is present also for a different value of ur

and for trajectories initiated on the southern side of u1

but not far away from it.

Figure 3 is similar to the previous one but shows tra-

jectories initiated to the west. Figure 3a provides an

example for an initial latitude u0 2 (ur, u2), leading to
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a completely different direction of evolution in the

b-plane approximation compared to the other two tra-

jectories. This is due only to the fact that the uniform

westward propagation (taking place along ur and u2 in

the b-plane approximation and in the full spherical de-

scription, respectively) is a separatrix between southern-

type and northern-type westward tumblings; see Fig. 1b

and the related discussion. We note, however, that tra-

jectories initiated close to ur, as in the current setting,

should be described correctly at least in the beginning

when treated under any consistent first-order approxi-

mation around ur, and this is not the case for the b-plane

approximation. Figure 3b exhibits an initial conditionwith

u0 , ur but ju0 2 urj � 1. Based on the initial condition

alone, we could expect a large error for the b-plane ap-

proximation, in view of our experience for trajectories

moving near ur (see Fig. 2). Now, however, the trajecto-

ries spend a long time far away from ur (but still in the

traditional validity range of linearized approximations), as

in Fig. 2c. As a result, the b-plane treatment does not

perform much worse than the correctly linearized one,

although there are severe quantitative differences.

To gain a global view, we also show phase-space por-

traits in Fig. 4 for the full spherical and for the b-plane

treatment in one particular setting. We focus on the u
dynamics and introduce a new variable a, defined in the

figure caption, for characterizing the orientation of the

dipole. The special latitude u1 (u2) corresponds to a sta-

ble (unstable) fixed point of this dynamics [denoted by

a filled (an open) circle]. Westward-tumbling trajectories

are seen as lines stretching through all values of a (rep-

resenting ‘‘rotation’’), and wobbling trajectories are

seen as closed lines around the stable fixed point (rep-

resenting ‘‘oscillation’’). When monitored in time, all

trajectories are traced out in a counterclockwise di-

rection. Initiation is eastward (i.e., with a5 0), and solid

FIG. 2. Eastward-initiated (wobbling) dipole trajectories in a l–u representation, under full spherical (black solid

line), correctly linearized (green dashed line), and b-plane (magenta short dashed line) treatments. The special

latitudeu1 is marked by a red dotted–dashed line. Initial conditions: l05 0, y05 0, and u0 andu0 are indicated above

each panel. The length tmax of the trajectories in dimensionless time units and the value of ur (marked by a gray

double-dotted–dashed line) are also indicated; g 5 1.

FIG. 3. Westward-initiated (tumbling) dipole trajectories in a l–u representation, under full spherical (black solid

line), correctly linearized (green dashed line), and b-plane (magenta short dashed line) treatments. The special

latitudeu2 is marked by a red dotted–dashed line. Initial conditions: l05 0, y05 0, and u0 andu0 are indicated above

each panel. The length tmax of the trajectories in dimensionless time units and the value of ur (marked by a gray

double-dotted–dashed line) are also indicated; g 5 1.
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red (dashed blue) trajectories correspond to an initial

value of u below (above) u1 (u2). We observe that the

phase space of the b-plane treatment (in Fig. 4b) is

symmetric to the lines a5 0 and u5 ur, which formally

coincides in this case with u1 5 u2. As a consequence of

the latter symmetry, fixed points are found on the latitude

u5 ur, and trajectories initiated symmetrically inu on the

two sides of this latitude coincide. The symmetry to the

lineu5 ur breaks down under the full spherical treatment

(in Fig. 4a): even the fixed points happen to be on different

sides of the latitude u 5 ur, and the coincidence of tra-

jectories initiated symmetrically to the this latitude does

not hold any more. This figure illustrates in a pictorial way

how different the two dynamics are.

So far we have only included examples for dipoles,

having had mathematical discussions only for this

limiting case of vortex pairs. Nevertheless, the basic

findings hold for finite-sized vortex pairs, as illustrated

in Figs. 5a and 5b, exhibiting b-plane and full spherical

trajectories with initial conditions corresponding to

those in Figs. 2a and 3a, respectively.3 In both plots for

finite-sized vortex pairs (of distance D0 5 0.1) one can

observe exactly the same qualitative behavior for the

center-of-mass trajectories as that in the corresponding

plots for dipoles.

Based on the results of this section, we can say that

there is a strong difference, on the order of the whole

latitudinal extension of the trajectories, between

b-plane and full spherical treatments for any vortex

pair staying in a range ju2urj, 0.05 during themotion

(this is not the case under a consistently linearized

treatment). The difference is much weaker farther

away where the b-plane approximation appears to be

reasonable, in a qualitative sense at least, regardless of

the fact that linearizations have larger errors farther

from the reference latitude. As the b-plane approxi-

mation can be considered to be valid within a range ofu
about 0.15 at most, we can say that the b-plane ap-

proximation gives qualitatively incorrect results in the

middle one-third of its validity range around the in-

vestigated ur.

7. Advection in the field of vortex pairs

So far, we have investigated the dynamics of the

vortex centers, which is a kind of dynamics obtained in

an Eulerian spirit by observing the conservation of

potential vorticity. Here we turn to the study of a La-

grangian feature—the advection dynamics in the ve-

locity field determined by the moving vortices. To this

end, it is necessary to deal with finite-sized pairs in-

stead of dipoles. We now only compare the full

spherical and the b-plane dynamics for the sake of

simplicity. The finite-sized vortex pair dynamics is

described by the equations of motion under the full

spherical and under the b-plane treatments, (2) and

(12), respectively. The equations of motion for the

position (l, u) or (x, y) of a passive tracer is obtained

by the simple summation of the velocity field of the two

point vortices, which, under full spherical treatment,

leads to (Drótos et al. 2013)

FIG. 4. Phase-space portraits of the dipole dynamics under (a) full spherical and (b) b-plane treatments. a 5
arctan(y/u) if u. 0, a5 arctan(y/u)1 p if u, 0 and y. 0, and a5 arctan(y/u)2 p if u, 0 and y# 0. Trajectories

are shown in the a–u plane corresponding to several initial latitudes: u02 f0.25, 0.3, . . . , 0.6g in red (solid lines) and
u0 2 f0.7, 0.75, . . . , 1.05g in blue (dashed lines). Initial conditions in the other variables are u0 5 0.025, y0 5 0, and

l0 5 0. ur 5 0.65 is indicated by a gray double-dotted–dashed line. Uniform eastward (westward) propagation is

marked by a filled (an open) black circle at the position (0, u1) [(2p, u2)] in (a) and (0, ur) [(2p, ur)] in (b). Note

the symmetry breaking of (a) compared to (b); g 5 1.

3 The derivation of any consistently approximated equations

of motion around ur for a finite-sized vortex pair with linear

modulation is ill defined and is therefore beyond the scope of

the present paper. The reason is the unnecessary but traditional

restriction to small longitudinal coordinate differences; see

footnote 1.
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dl

dt
5

1

cosu
1

4p
�
2

j51

[G0 2 a02p(sinuj 2 sinur)][cosu sinuj2 sinu cosuj cos(l2 lj)]

12 cosgj
and (28a)

du
dt

5
1

4p
�
2

j51

[G02 a02p(sinuj 2 sinur)]cosuj sin(l2 lj)

12 cosgj

(28b)

in dimensionless form, where

cosgj 5 sinu sinuj 1 cosu cosuj, cos(l2 lj) (29)

and the chord distance between the tracer and vortex j is

2(1 2 cosgj).

Under the b-plane treatment of the modulation of the

vortex circulations (Benczik et al. 2007) the equations of

motions read as

dx

dt
52

1

2p
�
2

j51

(G02b0a0 2pyj)(y2 yj)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 xj)

21 (y2 yj)
2

q and (30a)

dy

dt
5

1

2p
�
2

j51

(G02b0a02pyj)(x2 xj)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 xj)

21 (y2 yj)
2

q . (30b)

Note that both dynamics (28) and (30) of a tracer

can be considered as a dynamical system of two vari-

ables driven by the vortex pair dynamics. Therefore,

this dynamics is typically chaotic (Aref 1984; Sommerer

et al. 1996). In our setting, two different types of ad-

vective chaos can arise: one is the open type (Jung

et al. 1993; Péntek et al. 1995; Sommerer et al. 1996;

Neufeld and Tél 1998; Daitche and Tél 2009), and the

other is the closed type (Aref 1984, 2002; Ottino

1989; Provenzale 1999). In open chaotic advection,

particles eventually leave the observation region

forever, while they are confined to this region in the

closed case.

In the vortex pair model the observation region is

a neighborhood of the center of mass of the vortex pair,

taken with a reasonable radius r, called the escape ra-

dius. We initiate particles in this region and concentrate

on those particles that exhibit a chaotic behavior.We are

interested in the associated (space filling or fractal)

patterns and also ask if the particles leave the observa-

tion region. In the close vicinity of the position of any

point vortex, where the velocity field of the particular

vortex dominates any other velocity contribution, the

particles exhibit a regular circulatory motion around that

vortex (Kuznetsov and Zaslavsky 1998, 2000; Leoncini

et al. 2001). These subregions are called the vortex cores

and are not interesting from our current point of view.

Farther away from the vortices, but still inside the escape

radius, there is a subregion that is weakly affected by the

vortices’ velocity field. Particles in this subregion escape

the observation region soon and, without exhibiting any

fractal pattern, they are thus also not relevant. Regular

and confined motion occurring outside the vortex cores

could be relevant, but this phenomenon is rather rare in

our experience. What remains of interest are only the

particles subject to chaoticity.

For finding such passive tracers, the best choice is to

put them initially in between the vortices. A tracer is

then either confined to an easily recognizable vortex

core or behaves in a chaotic way, contributing to the

interesting patterns. If the latter tracers are observed to

be left in the wake of the vortex pair, we consider the

chaotic advection open; otherwise, we consider it closed.

The patterns and the openness can easily be investigated

by simply plotting the positions of the tracers in various

time instants. Using this algorithm, a ‘‘phase transition’’

was found earlier in the advection pattern between open

and closed ‘‘phases’’ as a function of the initial latitude

FIG. 5. Center-of-mass trajectories of finite-sized vortex pairs in a l–u representation, under full spherical (black

solid line) andb-plane (magenta short-dashed line) treatments. Initial conditions and parameters: l05 0, y05 0;D0 5
a0 5 0.1; u0, the sign of u0, and G0 are indicated above the panels. The length tmax of the trajectories in dimensionless

time units and the value of ur (marked by a gray double-dotted–dashed line) are also indicated. ju0j’ (a) 0.025 and

(b) 0.0025.
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u0 of the center of mass of the vortex pair, both under

b-plane (Benczik et al. 2007) and full spherical (Drótos
et al. 2013) treatments.

A more delicate subject is the characterization of the

escape in the open advection. For this purpose, it is worth

filling a larger subregion of the observation region by

tracers. For each tracer, the escape time t, the time

needed to leave the circle of radius r (the escape radius), is

calculated. Plotting the escape time at the initial position

of each particular tracer draws out the stable manifold of

a chaotic saddle (Jung et al. 1993; Péntek et al. 1995; Lai
and Tél 2011) as ridges with higher values, organized into

fractal filaments, in a sea of low values of the escape time.

The higher are the values found near the ridges, the longer

is the escape process of the tracers. The dominant part of

the escape time probability density function is always

exponential with an exponent k called the escape rate

(Jung et al. 1993; Péntek et al. 1995; Lai andTél 2011). The
escape rate characterizes the long-term rate of the de-

pletion of the observation region by tracers.

Our aim in this paper is to point out important alter-

ations of theb-plane approximation from the full spherical

dynamics in the above aspects of the advection. It is not

a surprise to obtain qualitatively different advective

properties when the vortex trajectories are also qualita-

tively different under the two treatments. It adds, however,

a new insight into the poorness of the b-plane approxi-

mation if we find strong differences in the advective

properties when the vortex trajectories are rather similar.

Such a case is shown in Fig. 6, where the vortex initial

conditions correspond to those in Fig. 3b. Here the ad-

vection pattern is open and consists of lobes, formed

after every time period of the u dynamics, andmigrating

to the north in the farther wake. In Fig. 6a the positions

of the tracers are shown shortly after the initialization,

whereas in Fig. 6b they are shown later, when they even

approach the North Pole in the full spherical dynamics.

Although the b-plane tracer dynamics is not expected to

work far away from ur, the way in which the tracers

leave the vicinity of the vortices and the beginning of

their migration is restricted to a region ju2 urj � 1 and,

thus, allows for a fair comparison of the two treatments.

Our first observation is that the particular positions and

geometry of the lobes are rather different. Apart from

this, the main difference is a slower migration of the

b-plane wake to the north. This is related to the more

southern position (which is ur) of the vortex motion

separatrix in the b-plane approximation compared to

that in the full spherical dynamics. Under the b-plane

treatment, the vortex center-of-mass trajectory thus

stays closer to its separatrix than under the full spherical

treatment, which results in a faster movement to the

west. This implies that the tracers, left in the wake, get

farther away from the vortex pair in a particular time

interval, where they are influenced less by the velocity

field of the pair. This mechanism, providing a back-

ground for our experience, is considered to be general

when comparing advection under the b-plane and the

full spherical treatment. We emphasize, however, that

the similarity of the b-plane and the full spherical vortex

trajectories is by far stronger than the similarity of the

advection patterns.

In fact, one can find initial conditions for the vortex pair

when the similarity in the vortex trajectories is of the same

degree as before, but the advection patterns are also sim-

ilar under the two treatments. This situation is illustrated in

Fig. 7, exhibiting closed advection patterns. It is thus hard

or maybe even impossible to predict the agreement of the

advection pattern between the two treatments via only the

visual inspection of the vortex trajectories.

The background mechanism described above leads

also to enhanced escape under the b-plane treatment.

FIG. 6. The positions ofN’ 17 500 tracers (dots) and the two vortices (symbols) at the time instants t indicated. The

tracers are initiated at t5 0 in between the elements of the vortex pair. Blue (red) tracers correspond to full spherical

(b plane) treatment. The center-of-mass trajectory of the vortex pair is also shown up to the time instant t as a black

(magenta) solid line, corresponding to full spherical (b plane) treatment. Vortex pair initial conditions: l0 5 0, u0 5
1.07, y0 5 0, and u0 , 0. ur 5 1.1 is marked by a gray double-dotted–dashed line. Vortex pair parameters:D0 5 a0 5
0.1, and G0 5 p/2 3 1023.
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The vortex pair’s faster movement to the west under

the b-plane treatment involves a smaller importance of

self-intersections of its trajectory. Under the full

spherical treatment, the close revisitings of the same

spatial positions by the vortex pair make the escape of

tracers more difficult. (This is also the mechanism re-

sponsible for the closure of the advection when initi-

ating the vortex pair trajectory farther away from the

separatrices.4)

A direct numerical comparison of the escape times of

the tracers confirms that the b-plane treatment is char-

acterized by lower escape times than the full spherical

one, as seen in Fig. 8 (corresponding to the same vortex

pair setting as that of Fig. 6). The difference in the es-

cape times is reflected in the darker colors of Fig. 8b than

those of Fig. 8a. The escape rates are found to be k 5
0.0011 and k 5 0.0036 for the b-plane approximation

and for the full spherical treatment, respectively. We

emphasize that the escape properties originate mainly

in the dynamics taking place in the vicinity of the vor-

tices (where linearization is expected to be applicable)

and are, therefore, not affected by the behavior of the

tracers far away from ur (where linearization would be

incorrect in itself). The reason for this is that the mi-

gration of the particles from the vicinity of the vortices

out to the farther wake is a regular, fast, and mostly

uniform process, whereas they enter this process only

after their chaotic wandering in the vicinity of the

vortex pair, in a rate dictated by the chaotic saddle

located in this region. A factor more than 3 appearing

in an exponent (the escape rate) characterizing mate-

rial transport and the rather different patterns of the

escape time distributions of Fig. 8 are perhaps the most

striking effects to which the use of a b-plane approxi-

mation instead of the full spherical treatment can lead.

This is even more surprising when taking into account

that the time period of the u dynamics is Tp 5 165.6

and Tp 5 141.2 under the b-plane approximation and

the full spherical treatment, respectively. These close

values also support the observation that the Eulerian

properties of the b plane and the full spherical flows are

rather similar.

The example in Fig. 9 shows that one can even find

cases in which the full spherical treatment already ex-

hibits closed advection when the b-plane advection is

FIG. 7. The positions of N ’ 17 500 tracers (dots) and the two

vortices (symbols) at the time instant t 5 1200. The tracers are

initiated at t 5 0 in between the elements of the vortex pair. Blue

(red) tracers correspond to full spherical (b plane) treatment. The

center-of-mass trajectory of the vortex pair is also shown up to the

time instant t as a black (magenta) solid line, corresponding to full

spherical (b plane) treatment. Vortex pair initial conditions: l05 0,

u0 5 0.99, y0 5 0, and u0 , 0. ur 5 1.1 is marked by a gray double-

dotted–dashed line. Vortex pair parameters: D0 5 a0 5 0.1, and

G0 5 p/2 3 1023.

FIG. 8. The escape times under (a) the full spherical and (b) the

b-plane treatments of N ’ 195 000 tracers indicated by the col-

oring, plotted at the tracers’ initial positions. Gray positions

outline the vortex cores and correspond to tracers that do not

leave the escape circle (with r 5 0.4) within 3600 time units.

Vortex pair initial conditions: l05 0,u05 1.07, y05 0, and u0, 0.

Parameters: ur 5 1.1, D0 5 a0 5 0.1, and G0 5 p/2 3 1023.

4 Thebackground mechanism of the enhanced escape is valid

only for the southern side of the separatrices in its presented form.

A similar mechanism works on the northern side but with opposite

result.
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still open. This observation is particularly surprising

given that the trajectories are now far away from the

separatrices during the entire motion. Although we are

a little bit too far from ur in this particular example for

the applicability of any linear approximation in u, our
experience shows the possibility of the existence of such

a behavior. Our finding is interpreted as a consequence of

the following fact: the value of the critical point (in the

initial latitude of the vortex pair) describing the pre-

viously mentioned phase transition in the advection pat-

tern (between open and closed phases) is estimated to be

approximately u0 5 0.38 under the b-plane treatment

and u0 5 0.41 under the full spherical treatment. This

shift may be regarded as a further indicator for the

inappropriateness of the b-plane approximation.

8. Summary

Our aim was the investigation of the validity of

the well-known and widely used approximation in

geophysical fluid dynamics describing cases with

a small-scale latitudinal motion of fluid elements—the

so-called b-plane approximation. In the traditional

b-plane approximation one replaces the sinusoidal de-

pendence of the Coriolis parameter (the locally vertical

component of the angularmomentumof the planet) by its

linearly approximated form, while the geometry is as-

sumed to be fully planar. We have pointed out that the

latter choice neglects even linear metric terms originating

from the spherical geometry. The discrepancy in the

order of the approximation for the Coriolis parameter

and for the geometry is a mathematical inconsistency of

any traditional b-plane approximation.

We considered a point vortex pair model, describing

a fluid dynamics on a rotating spherical surface, in

which different approximations can easily be carried

out. In this model the conservation of potential vor-

ticity (angular momentum) on the rotating sphere is

taken into account via the modulation of the circula-

tion associated to any point vortex. As the modulation

is proportional to the Coriolis parameter, it is an ap-

propriate model for the study of the b-plane approxi-

mation. The model has a natural latitude, the reference

latitude ur, that can be chosen as the origin of the

b-plane approximation.

We have shown that the traditionally derived b-plane

equations of motion for a vortex dipole do not contain

certain terms that inevitably appear in a consistent first-

order approximation of the full spherical equations

aroundur. Interestingly, the effect of these terms proved

to be the most important near ur.

In the full spherical description, the special latitudes

u6, which correspond to eastward and westward uniform

propagation, have been found to differ fromur forur 6¼ 0,

in contrast to the case of the b-plane treatment where

u6 5 ur. This fact in itself indicates some degree of in-

consistency of traditional b-plane approximations. We

note that the correctly approximated linear equations are

able to reproduce the described difference of u6 fromur.

Chaotic advection in the velocity field of modulated

vortex pairs of finite size has also been studied. We have

found that the different position of u2 from ur has

a latitudinal shifting effect on the advection when

compared to the b-plane treatment (in which uniform

westward propagation occurs on ur). The importance of

the shift cannot be estimated from the pure observation

of the vortex trajectories. In particular, this shift can be

reflected in an enhanced escape of fluid elements from

the neighborhood of the vortex pair, including cases

when the open character of the advection, obtained

under the b-plane treatment, contradicts the closed

character of the full spherical treatment.

It is not excluded that one can find an appropriately

chosen planar projection of the spherical coordinates

and a corresponding nonlinear rescaling of the velocity

component [as Gill and others did (Gill 1982; Verkley

1990; Harlander 2005) in the basic hydrodynamical

context], in which the b-plane approximation of our

vortex problem would appear without any further

curvature terms. As we have illustrated, however, in

the widely used flat geometry approach, the b-plane

approximation is inconsistent and leads to results

qualitatively different from those of a consistent local

FIG. 9. The positions of N ’ 17 500 tracers (dots) and the two

vortices (symbols) at the time instant t 5 787.5. The tracers are

initiated at t 5 0 in between the elements of the vortex pair. Blue

(red) tracers correspond to full spherical (b plane) treatment. The

center-of-mass trajectory of the vortex pair is also shown up to the

time instant t as a black solid (magenta short dashed) line, corre-

sponding to full spherical (b plane) treatment. Vortex pair initial

conditions: l0 5 0, u0 5 0.407, y0 5 0, and u0 , 0. ur 5 0.65 is

marked by a gray double-dotted–dashed line. Vortex pair param-

eters: D0 5 a0 5 0.1, and G0 5 p/2 3 1022.
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linear approximation in which curvature terms appear

unavoidably.

Although the b-plane approximation is, of course, not

used today in the analysis and the simulation of real flows,

it is a widespread tool in studying basic phenomena in

environmental flows, both in theoretical and experi-

mental works. Our results imply that in theoretical works

(Paldor et al. 2007; Oruba et al. 2013) the use of the tra-

ditionalb-plane approximation should be avoided and be

replaced by mathematically consistent approximations.

Similarly, the results of experiments with a topographic b

plane in a planar geometry (Velasco Fuentes and van

Heijst 1994) would have to be analyzed with a certain

care when drawing conclusions for situations with

a spherical geometry. In experiments applying vessels

with a cylindrical geometry [obtaining a b effect either by

a sloping topography (Fultz and Murty 1968; Sommeria

et al. 1988; Meyers et al. 1989) or by an appropriate

combination of the shape and the angular velocity of the

vessel (Nezlin and Snezhkin 1993)], the results can be

interpreted in a precise way only if a theoretical back-

ground is available that treats the cylindrical geometry

consistently. Though the observations from such experi-

ments are expected to be closer to the spherical phenom-

ena, the different geometry of the spheremight still lead to

significant deviations from these observations. We con-

jecture that a rotating sphere dynamics can be consistently

approximated even in linear order by an experimental

setting with a cylindrical geometry only if the parameters

are adjusted appropriately; the discussion of this idea is,

however, beyond the scope of the present paper.
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