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ABSTRACT

The authors argue that the concept of snapshot attractors and of their natural probability distributions are the

only available tools bymeans ofwhichmathematically sound statements can bemade about averages, variances,

etc., for a given time instant in a changing climate. A basic advantage of the snapshot approach, which relies on

the use of an ensemble, is that the natural distribution and thus any statistics based on it are independent of the

particular ensemble used, provided it is initiated in the past earlier than a convergence time. To illustrate these

concepts, a tutorial presentation is given within the framework of a low-order model in which the temperature

contrast parameter over a hemisphere decreases linearly in time. Furthermore, the averages and variances

obtained from the snapshot attractor approach are demonstrated to strongly differ from the traditional 30-yr

temporal averages and variances taken along single realizations. The authors also claim that internal variability

can be quantified by the natural distribution since it characterizes the chaotic motion represented by the

snapshot attractor. This experience suggests that snapshot-attractor-based calculations might be appropriate to

be evaluated in any large-scale climate model, and that the application of 30-yr temporal averages taken along

single realizations should be complemented with this more appealing tool for the characterization of climate

changes, which seems to be practically feasible with moderate ensemble sizes.

1. Introduction

It is common to talk about climate changes in statistical

terms, in a naive sense at least. Computer climate models

are at the heart of climate science, as a tool of producing

analysis, but also as a subject of development. Such

models are used to simulate past climate changes and

future climate change scenarios. These changes come

about due to a shift in some model parameter (e.g., the

concentration of atmospheric CO2). Ensemble simula-

tions are widely used nowadays (see e.g., Stocker et al.

2013; Taylor et al. 2012), including calculations where the

results depend on the choice of initial data (Deser et al.

2012a,b). Unlike what is done in most of the ensemble

simulations and is claimed in Stocker et al. (2013, chapter

12), in our paper we would like to argue that it is worth

separating internal variability from other sources of un-

certainties (Hawkins and Sutton 2009; Stocker et al. 2013),

since this source has a dynamical origin (while the others

have an experimental or a societal origin). As a conse-

quence of this origin, internal variability turns out to

be describable by a well-defined probability distribu-

tion. This probability distribution is obtained from an

ensemble of trajectories (that differ solely in their

initial conditions and not, e.g., in their parameters),
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rather than from the time evolution of a particular single

realization. In a wider sense, this kind of framework has

been suggested as a novel way of treating the climate sys-

tem (Hasselmann 1976; Paillard 2008; R. T. Pierrehumbert

2011, personal communication; Bódai and Tél 2012; Ghil

2012; S. Stainforth 2012, personal communication) by

claiming that the relevant quantities are the statistics

taken over an ensemble of possible realizations. In our

paper we illustrate the relevant probability distribution

to be unique (i.e., independent of the particular set of

initial conditions of the ensemble). To see the unique

distribution one has to consider any specific ensemble

after a finite convergence time has passed from the ini-

tialization. This also means that in our paper uninitialized

climate projections are concerned in the terminology of

Stocker et al. (2013).

The mathematical concept that fits perfectly to our

picture is that of snapshot attractors (we shall use this

term throughout the paper) (Romeiras et al. 1990) or

pullback attractors (Arnold 1998; Ghil et al. 2008),

arising in the study of dissipative nonautonomous

systems (Arnold 1998; Kloeden and Rasmussen 2011;

Carvalho et al. 2014). Loosely speaking, a snapshot

attractor, as introduced by Romeiras et al. (1990), is

an object belonging to a given time instant that is

traced out by an ensemble of trajectories initialized in

the remote past, while all of them are governed by the

same equation of motion. A pullback attractor is

a similar object associated with the entire real-time

axis (2‘, t,‘). A rigorous mathematical definition

only exists for the pullback attractor, and according

to this definition, given by Ghil et al. (2008) and

Chekroun et al. (2011), an initialization of the en-

semble in the infinite past is required. This property

enables one to show the existence of singular measures on

such attractors. The aforementioned mathematical defi-

nition requires also the consideration of the dynamics’

two-time evolution operator (Sell 1967a,b; Gaspard 2005;

Crauel and Flandoli 1994; Crauel et al. 1997; Young 2002;

Ghil et al. 2008). As follows from all this, a snapshot at-

tractor can be viewed as an instantaneous slice (corre-

sponding to a given time instant) of a pullback attractor. In

the dynamical systems community, the concept of snap-

shot attractors has been known for many years (Romeiras

et al. 1990; Yu et al. 1990; Jacobs et al. 1997; Hansen and

Bohr 1998; Neufeld and Tél 1998; Károlyi et al. 2004;
Bódai et al. 2011b) and explains even experimental find-

ings (Sommerer and Ott 1993).

An appealing feature of snapshot attractors is that they

carry unique probability distributions that are independent

of the particular ensemble used for their representation.

They trace out clear structures, whereas a traditional single

trajectory plot would lead in the same problem to an

unstructured pattern.With chaotic dynamics, the snapshot

attractor is a fractal, whose shape changes over time, but its

fractal dimension might stay constant (Ledrappier and

Young 1988; Romeiras et al. 1990). The existence of such

an attractor is rather nontrivial in the sense that one might

expect to have different sets of end points belonging to

ensembles initiated in different time instants in the past

(e.g., similar to the case of conservative systems), while this

turns out to be untrue here.

Regarding the concept of climate, Ghil and co-

workers (Ghil et al. 2008; Chekroun et al. 2011) were

the first to call the attention to the relevance of

snapshot (or pullback) attractors. They have been

used so far (Bódai and Tél 2012; Pierini 2012; Bódai
et al. 2013; Crucifix 2013; Ghil 2015) mainly to visu-

alize stochastic effects as well as periodic external

forcing. Ghil et al. (2008) and Chekroun et al. (2011)

have also claimed them to be useful tools in climate

change science, incorporating stochastic and/or de-

terministic forcing. In our paper we argue that the use

of snapshot attractors is most natural, and, even more,

seems to be unavoidable, when dealing with climate

changes induced by smoothly shifting parameters,

without including any stochasticity. A smooth shift is

a special case of an aperiodic forcing. In this situation

the snapshot framework is the only one in which

a probability distribution, the well-defined in-

stantaneous distribution (in mathematical terms, the

natural measure) on the snapshot attractor, can be as-

sociated with the dynamics. This distribution is time

dependent. We claim that any statistics associated with

specific time instants should be taken with respect to

this distribution. In addition, we claim that climate

changes can also be seen as the change of snapshot at-

tractors and their natural distributions [as also men-

tioned by Bódai and Tél (2012)].
The above approach is proposed to complement the

traditional one, based on 30-yr temporal statistics along

a single realization (i.e., a single time series of recorded

or that of simulated data). The traditional definition

appears in Stocker et al. (2013) [see also Holton (2004,

chapter 10)], in which the considered statistics can be some

low-order moment (e.g., average, variance, skewness) or

a linear or nonlinear trend (Ghil and Vautard 1991; Ji

et al. 2014; Franzke 2014) that a single realization of the

time series constitutes. A conceptual difference between

the new and the traditional approach is that the data

derived from the traditional one depend on the particular

realization and thus cannot reflect the behavior of all

possible realizations. We show in this paper that in gen-

eral dissipative nonautonomous problems the single re-

alization and the snapshot pictures lead to very different

results indeed.

3276 JOURNAL OF CL IMATE VOLUME 28



An implicit—although, in view of the previous para-

graph, unrealistic—aim of the traditional approach

might be the extraction of information from the time

evolution of one single realization on the probabili-

ties associated with the ensemble of all possible re-

alizations. This is, however, impossible in general. In

fact, there exists only one exceptional situation when

this can be done: this is the case of constant or tempo-

rally periodic forcing. Even then only infinitely long time

averages turn out to be equivalent with ensemble aver-

ages [the system is then ergodic in the sense of statistical

physics; Reichl (1998)].

Within the snapshot attractor picture novel features of

our work are the consideration of a deterministic and

linearly changing forcing, the illustration of the finite-

ness of the convergence time toward the snapshot

attractor, and the comparison of snapshot averages with

30-yr temporal averages taken along individual time

series.

For these purposes, we turn to a very simple concep-

tual climate model. It is Lorenz’s model of atmospheric

circulation (Lorenz 1984, 1990) described by three or-

dinary differential equations. Such simple models play

an important role in climate research (Provenzale and

Balmforth 1999), as they expedite efficient testing of

theoretical ideas and facilitate simple visualization of

the results. They can give thus a proof of concept for

novel approaches. As a modification to Lorenz’s model,

in harmony with the discussion above, we incorporate

into the driving a monotonic (linear) shift, called the

ramp, in the temperature contrast parameter. Without

this shift, but including the seasonal cycle (Lorenz 1990),

we say that the climate is stationary (i.e., not changing);

with the inclusion of the ramp in addition, however,

a changing climate is modeled.

The paper is organized as follows. In section 2 we

shortly introduce the model outlined above. In section

3 we point out that the case of the stationary climate is

characterized by a usual chaotic attractor, on which

infinitely long time averages are equivalent to en-

semble averages. This is, however, not the case with

the ramp, when only the snapshot picture enables one

to define a probability distribution characterizing

a given time instant, as detailed in section 4. We claim

that this distribution represents the internal variabil-

ity, and that the temporal change of its average pro-

vides an example for the forced response. Next, in

section 5, single-realization statistics taken over some

time interval are considered, and are shown to give

quantitatively different results from those of the

snapshot picture. We thus conclude that they cannot

be used for obtaining useful hints on the relevant in-

stantaneous probabilities. The last section contains

our final remarks, with a discussion, among others, of

an extension of the snapshot picture to ensemble av-

erages of 30-yr temporal averages. The evaluation of

different snapshot-type statistics might thus be ap-

propriate in any large-scale climate model, in which

direction the first steps were made by Deser et al.

(2012a,b) when estimating the internal variability from

ensemble runs, although without assuring the conver-

gence of their ensemble of initial conditions to a dy-

namical attractor. To not break the tutorial form of

the presentation, issues of technical character are

relegated to the appendix and to the supplemental

material.

2. The model

The physical content of Lorenz’s atmospheric circu-

lation model for the midlatitudes on one hemisphere is

the following. Solar forcing creates a temperature dif-

ference between the equator and the pole, which is

proportional to the model variable F, and it influences

most directly the wind speed of the westerlies repre-

sented by x. As an effect of baroclinic instability, cy-

clonic activity facilitates poleward heat transport, two

modes of which are represented by y and z. This ap-

pealing low-order model was studied in different con-

texts (Masoller and Schifino 1992; Pielke and Zeng

1994; Masoller et al. 1995; Nicolis et al. 1995; Roebber

1995; Shil’nikov et al. 1995; Provenzale and Balmforth

1999; Leonardo 1995; Tél and Gruiz 2006; Freire et al.

2008; Bódai et al. 2011a, 2013). The model reads as

follows:

_x52y22 z22 ax1 aF(t) , (1a)

_y5 xy2 bxz2 y1G , (1b)

_z5 xz1 bxy2 z . (1c)

For the parameter setting we take the common choice:

a5 1/4, b5 4, andG5 1 (Lorenz 1984). The equations

appear in a dimensionless form with the time unit

corresponding to 5 days, according to Lorenz (1984).

The constant value of F(t)5F0 5 6 (8) was regarded

by Lorenz to be an appropriate value for permanent

summer (winter), and the system with this value ex-

hibits only periodic (chaotic) attractors. We note that

the model was tailored to mimic the thermal wind

relation x;F for F, 1 at vanishing asymmetry pa-

rameter G. For positive G and larger values of F not

even the fixed point solutions of (1) reflect the thermal

wind relation. The overall approximate validity of

geostrophic balance, characterizing hydrodynamic
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models, cannot thus be expected to be present in this

low-order model described by three ordinary differ-

ential equations.

To model seasonality, Lorenz uses a forcing (Lorenz

1990):

F(t)5F0(t)1A sin(vt) , (2)

with A5 2 and a constant F0(t). The periodic form in

(2) taken by him is centered on the fixed mean value

F0(t)5 7 (Lorenz 1990) to describe the variation of the

forcing over a year. We define 1 yr to be T 5 73 time

units, and thus v5 2p/73 is set. Our calendar starts

with year 0, and this year begins at the time instant t5
0. Note that this time instant corresponds to an au-

tumnal equinox, according to the expression in (2).

Similarly, any time t modT 5 0 coincides with au-

tumnal equinoxes. Midwinters and midsummers then

correspond to tmodT5T/45 18.255 0.25 yr and 3T/4

5 54.75 5 0.75 yr, respectively. As for the physical

origin of the forcing we note that F(t) may, among

others, also contain the contribution of the varying

CO2 content in association with the greenhouse effect.

From this point on, F(t) will be called the temperature

contrast parameter. The model with (2) and F0(t) be-

ing constant is considered to represent a stationary

climate.

To mimic a monotonous climate change, we set the

mean value F0 of the temperature contrast parameter to

be time dependent. After the first tst 5 100 yr 5 7300

time units of stationarity, when it takes the constant

value of 9.5, F0 is chosen to be linearly decreasing:

F0(t)5

8><
>:

9:5, if t# tst ,

9:52
2

tst
(t2 tst), if t. tst .

(3)

This ramp form expresses that a climate change sets in at

t5 tst 5 100 yr, and the temperature difference between

the equator and the pole decreases; in a period of 150 yr

the mean value F0 goes down to 6.5.

These equations were numerically solved by the

classical fourth-order Runge–Kutta method with a fixed

time step dt5 0:005’ 6:853 1025 yr.

3. Characterization of a stationary climate

The periodically driven model [governed by the dy-

namics (1)–(2) with F0(t)5 const] corresponds to a sta-

tionary climate. In such a three-variable system driven

periodically in time with period T5 1 yr, there exists, at

any fixed phase of the period, a unique (stroboscopic)

attractor in the (x, y, z) variable space that can be gen-

erated by a single long trajectory, after cutting out the

initial transients. Figure 1a shows the 3D chaotic at-

tractor at midwinter (i.e., t modT 5 T/4). The choice of

taking a single ‘‘day’’ (more precisely, a particular phase)

of the year is only a technical detail and is only aimed to

give an impression not influenced by seasonality.

To obtain a planar view, a surface of section can also

be taken on the plane z 5 0 with _z. 0 (Lorenz 1984),

and we restrict ourselves to this traditional choice.

Points of the trajectory of Fig. 1a trace out in this section

the pattern seen in Fig. 1b. Note that because of the

periodicity of the forcing, the chaotic attractor is the

FIG. 1. Stroboscopic view at midwinter (tmodT5 T/4) of the chaotic attractor of a stationary climate (a) in the full variable space (the

z component is color codedmonotonically in the spectrum, reddish colors marking z. 2) and (b) on the (x, y) plane. [The z5 0 plane used

to define the section of (b) is marked in (a)]. To generate both (a) and (b), a single trajectory of length of 106 yr is monitored and a transient

segment of 5 yr is cut out before plotting. For better visibility, we only included the first 105 yr in (a). The mean temperature contrast

parameter is F0(t) 5 9.5, independent of time.
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same when viewed after integer multiples of T5 1 yr,

and the stroboscopic picture both in 3D and on the

planar section does not change [see Ott (1993); for an

illustration within our particular system, see also Bódai
and Tél (2012)]. Had we taken a different day of the year

for generating this set, the same would be true, just with

a different pattern.

In Fig. 1b, we see clearly the characteristic filamen-

tary, fractal pattern of chaotic attractors. The extension

in both directions is larger than two units, which is an

indication of the considerable internal variability of the

dynamics. One particular feature is an ‘‘island’’ separated

from the main body. It is located at about x5 0, y5 1:4,

and can be considered as a sign of extremal behavior

associated with very weak westerlies and below-average

cyclonic activity. Most recently Ghil (2015) has given

a definition of climate sensitivity by comparing probability-

based internal variabilities of stationary climates.

Note that exactly the same attractor as in Fig. 1 can

also be generated by an ensemble of trajectories started

in the past and stopped at any time instant twith tmodT5
T/4, after an initial transient time interval.

4. Characterization of a changing climate

As discussed in the introduction, in the case of a per-

petual shift of some of the parameters the snapshot picture

is expected to provide a proper view. We illustrate differ-

ent facets of this approach by applying the ramp in (3) in

the temperature contrast parameter of the Lorenz model.

a. The climatic snapshot attractor of the model

A snapshot attractor is obtained numerically by

tracking an ensemble of trajectories evolving under the

set of (1)–(3). A uniform distribution of N5 106 points

is taken in a large box [21:5, 3:5]3 [22:5, 2:5]3
[22:5, 2:5] of the variable space at time t0 5 0:75 yr

(for technical convenience). The trajectories started with

these initial conditions are followed up to a time t that

we choose to be longer than tst [after which the ramp-

like decrease (in what follows: climate change) sets in].

The endpoints of all the 106 trajectories in the time in-

stant t trace out the snapshot attractor belonging to

that time instant. Its form depends, of course, on the

particular choice of t. The use of the term attractor is

appropriate since the shapes are found to be independent

of the set of initial conditions, as illustrated in the

appendix. There is, of course, some time tc needed to

come sufficiently close to the attractor. This convergence

is expected, as in any dissipative system, to be expo-

nentially fast. As we shall see in the next section, we

estimate this time in the model to be tc 5 5 yr, which is

much shorter than our choice for tst; therefore, for any

t. tst . tc the points are expected to provide a faithful

representation of the snapshot attractor in the climate

change period.

As one of our typical examples, the snapshot attractor

obtained this way for the last year of the investigated

period (year 250, or year 150 after the onset of the cli-

mate change) is shown in the variable space in Fig. 2.

The midwinter and midsummer instants belong to the

left and the right panels, respectively. Both patterns are

coil-like and are of the size of a few units in all three

directions. The winter snapshot attractor appears,

however, to be more extended. Besides illustrating how

strong changes a snapshot attractor can undergo within

a seasonal cycle, the figure shows that winter is much

more active than summer, as also observed in the

FIG. 2. The 3D snapshot attractor in the variable space. Numerically, it is traced out by an ensemble of 106 realizations (see text) at the

time instants (a) t 5 250.25 and (b) t 5 250.75 yr, corresponding to midwinter and midsummer, respectively. The z component is color

coded monotonically in the spectrum, reddish colors marking z . 2. (The z 5 0 plane used to define a slice of the snapshot attractor in

Fig. 3 is marked in both panels.)
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periodically driven Lorenz model (Lorenz 1990; Bódai
and Tél 2012) (i.e., under a stationary climate).

It is to be emphasized that the scattered dots

appearing in both panels (but more typical for the

summer case) are not signs of slowly converging points,

having not yet reached the attractor. As the appendix

shows, taken at a different time instant (in year 150, i.e.,

in year 50 of the climate change period) for a better

overview, scattered dots appear exactly in the same re-

gion even if different sets of initial conditions are chosen

for the ensemble, and the convergence time remains to

be about 5 yr. The scattered dots are thus signs of weakly

occupied regions on both the midwinter and the mid-

summer snapshot attractors (and are consequences of

the numerical use of a finite ensemble for the repre-

sentation of the attractors). Section I of the supple-

mental material illustrates the drastic difference in the

amount of information one can extract from the snap-

shot and from the traditional single-realization picture.

b. Sliced snapshot attractor

To gain a clearer view into the structure of the snap-

shot attractors, it is worth taking intersections of the 3D

snapshot attractors with a surface. Planar slices taken

with the conditions z5 0, _z. 0 are well defined and can

numerically carry a sufficiently large number of points to

be useful. We call the object obtained in this way the

(z5 0) slice of the 3D snapshot attractor.

The tableau of Fig. 3 shows midwinter slices of the

snapshot attractors in the first quadrant of the (x, y) plane.

Similarly as before, a particular day of the year is chosen in

order to give an impression of the long-term temporal

evolution of the snapshot attractor, not influenced by

seasonality. This choice (i.e., that the system is viewed

stroboscopically with respect to the periodic component

of the forcing) is merely technical. This sequence of plots

reflects fractal structures as clear as on the chaotic at-

tractor of Fig. 1b, illustrating that such plots are the proper

generalizations of this latter object. It also shows that on

the same day of the years there are considerable changes

in the variability over decades. A comparison of Figs. 1b

and 3a leads to the conclusion that the island of special

winter weather is still there after the onset of the climate

change but its size becomes somewhat smaller, and the

shrinking goes on such that a gap opens up eventually in

the possiblewind speeds. In Fig. 3b x takes on values in the

intervals (0, 0.4) and (0.6, 2.6) only. Parallel to this, the

details of the filamentary structure of the bulk also

change. The island is hardly visible in the next panel, and

fully disappears by the 100th year after the onset of the

climate change.No x values are then realized below 0.4. In

the remaining 50yr (Figs. 3e,f) the leftmost branch of the

attractor is moving toward the y axis, making the

forbidden region in the wind speed smaller. Besides

a continuous structural deformation, the maximal exten-

sion of the attractor changes in x and y from 2.8 to 2.5 and

from 2.5 to less than 2, respectively, during the whole

climate change period. The evolution of the shape of the

snapshot attractor in Fig. 3 is an indication of the change

of the internal variability in a changing climate.

c. The natural distribution

The scattered dots in Fig. 2 clearly indicate that cer-

tain regions of the 3D snapshot attractor are visited

much less probably than others. More systematically,

defining a fine grid over the snapshot attractor, one can

determine the number of points of the ensemble falling

into the different boxes. This occupation probability can

be considered, in the limit of a very fine grid and large

ensemble, to be the natural distribution of the snapshot

attractor. This distribution itself over the whole coil of

the 3D snapshot attractor changes with time.

Since it is hardly possible to visualize a probability

distribution defined on a three-dimensional support, it is

worth evaluating analogous occupation probabilities

over a two-dimensional grid covering the planar slices of

the snapshot attractors. We call these the natural dis-

tributions on the slices of the snapshot attractors.

Figure 4 exhibits a few examples of such distributions.

Note that they are all rather irregular, orders of mag-

nitude differences can be present in neighboring boxes,

which is a strong indication for their being of fractal

measures (Ott 1993). Because of the parameter shift, the

natural distribution turns out to change year by year

even when sampled on the same day of the years. The

first two panels belong to the slices of Figs. 3a and 3b.

The other two panels exhibit distributions correspond-

ing to time instants being in between those of Figs. 3c

and 3d. These instants are intentionally chosen to be

separated by a single year in order to illustrate how

dramatic differences can show up in the natural distri-

bution of the snapshot attractor in such a short time. It is

remarkable that the support (the geometry of the

snapshot attractor) hardly changes within the same time.

In addition, the strong temporal dependence of the 3D

snapshot attractor and its distribution is also reflected by

the fact that the number of points falling into a neigh-

borhood of the z5 0 surface conditioned with _z. 0 (i.e.,

the slice) changes considerably over the period in-

vestigated, as the data in the caption of Fig. 4 indicate.

The existence of the natural distribution of snapshot

attractors is a central observation of our paper. As the

example of Fig. 4 illustrates, this distribution is changing

with time (i.e., it gives a response to the forcing). Nev-

ertheless, it is unique at any time instant. Numerically,

the only condition for this is that the ensemble used for
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FIG. 3. (a)–(f) Midwinter slices of snapshot attractors in the plane of z5 0 (conditioned by _z. 0), generated with the ensemble of the

realizations of Fig. 2. The first item of the tableau belongs to the time instant t 5 125.25 yr (midwinter of year 125 or of year 25 of the

climate change period), the others, analogously, to the midwinter instants of years 50, 75, 100, 125, and 150 of the climate change period.

Panel (f) happens to be the slice of the 3D snapshot attractor shown in Fig. 2a.
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the generation of the probability distribution is initiated

in the past farther back than a characteristic convergence

time tc, but otherwise both the time instant t0 of initiation

and the choice of the ensemble (the shape of the volume

in the variable space in which the points are distributed,

and the density of the points within this volume) is arbi-

trary, as illustrated in the appendix. There we also see

that the convergence time tc is on the order of 5 yr, even if

the ensemble is initiated after the onset of the climate

change. The time tc can be interpreted as the time needed

for a distribution to reach and become spread on the

snapshot attractor.1 It is only this snapshot concept that

makes possible a sound evaluation of statistical quanti-

ties, like averages and variances, and this can be done at

any instant of time in a changing climate.We are not aware

of any other tool that could be used for this purpose (i.e.,

for characterizing internal variability). fEnsemble runs of

short duration, i.e., ones lacking the convergence to the

natural distribution of the snapshot attractor, can carry

information that is very specific to the particular initial

conditions, and also, of course, to the interval [t0, t] (where

t2 t0 , tc).g

5. Ensemble and single-realization temporal
statistics

We now turn to the investigation of snapshot-

attractor-based statistics: averages and variances for

the x and y variables will be evaluated with respect to the

FIG. 4. Natural distribution on z5 0, _z. 0 slices of the snapshot attractor (generated with the ensemble of the realizations of Fig. 2) in

themidwinter point of years (a) 25, (b) 50, (c) 88, and (d) 89 of the climate change period. For better visibility, the occupation numbers are

truncated at 1500 in the bins, whose linear size is chosen to be 0.01. The number of points fromwhich the distributions are generated in the

slices in (a)–(d) is found to be 22 167, 25 611, 30 142, and 53 741, respectively. The distributions projected onto the x and y axes appear in

gray in the back planes.

1 The whole convergence is expected to be exponentially fast and

tc is related in mathematical terms to the second discrete eigenvalue

of the time evolution operator (Sell 1967a,b; Gaspard 2005).
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natural distribution of the snapshot attractor in the full

3D variable space. In addition, we compare the snapshot

picture with averages and variances calculated along

single realizations. More precisely, we numerically de-

termine the statistics in a given time instant t with respect

to the natural distribution of the snapshot attractor, re-

ferred to as the ensemble statistics (E statistics), and the

statistics taken along a single realization over the 30-yr

time interval in the past, called the single-realization

temporal statistics (SRT statistics). (For such a set of

points in a 151-yr interval, see Fig. SM1 of the supple-

mental material.) To suppress the effect of seasonality,

we select, as earlier, one time instant tmodT5 const from

each year.

In Fig. 5 we present numerically obtained averages.

The black line corresponds to the E average of the vari-

able x at midwinter. As a contrasting reference, Fig. 5a

also contains a single member of the ensemble, plotted in

magenta color.

Observe that the black graph has two regions of dif-

ferent character. There is a plateau spanning the period

of stationary climate illustrating the time independence

of the E average. (The little fluctuations, though hardly

if seen, originate in the finite size of the ensemble and

represent the numerical uncertainty of the result.) At

the onset of the climate change (t5 tst 5 100 yr), a pro-

nounced time dependence sets in, which is a forced re-

sponse of the system. In the single realization (magenta

line) of Fig. 5a, however, the fluctuations are so strong that

hardly any change can be observed when entering the

climate change period. This is the manifestation of the

large internal variability on the snapshot attractor that

hides the changes of the E average occurring in the

climate change period from observers investigating the

instantaneous values of only one realization. In other

words, one cannot decide from a single realization alone

when the temperature contrast parameter F0(t) begins

to change, and how this change affects any statistical

behavior.

The black E average evolves irregularly in the climate

change period, exhibiting a slight overall tendency of

increase. This increasing tendency is a sign of the lack of

an overall thermal wind relation, a property of the model

(1) mentioned in section 2. We emphasize that the ir-

regularity is a consequence of the strong rearrangement

of the probability on the snapshot attractor in time

(cf. Figs. 4c,d). It should be noted that what we see is the

average values taken with respect to the well-converged

natural distribution on the snapshot attractor, examples of

which (represented by their z5 0, _z. 0 slices, at least),

belonging to the marked time instants along the t axis, are

exhibited in Fig. 4. In other words, what we see is a mean-

ingful signal, even though it evolves irregularly in time.

SRT averages, with which we will now compare the E

average, are similarly irregular, but are not meaningful

from the point of view of probabilities. In Fig. 5b, the

green line represents the 30-yr SRT average of the ma-

genta single-realization line of Fig. 5a (plotted yearly at

the endpoints of the 30-yr intervals).2 The red and the

blue lines are also 30-yr SRT averages, taken along re-

alizations obtained from two other initial conditions,

different from each other as well. These three re-

alizations are, along with their 99 997 companions,

FIG. 5. The E (ensemble) average of the midwinter x (black line) as a function of time and further characteristics. (a) A single-realization

time series is marked bymagenta, and (b) three different 30-yr single-realization temporal (SRT) averages (see text) aremarked by blue, red,

and green lines. The function F0(t) is also indicated in (a) in orange color, with the scale along the right edge. The convergence time tc, after

which averages do not change in the stationary period, can be seen at the beginning of the black line and is estimated to be 5 yr. The marked

time instants (by3marks) along the t axis correspond to the time instants considered in Fig. 4. (Years 88 and 89 are not clearly resolved.) The

numerical ensemble, initiated at t 5 0.75 yr in the box [21:5, 3:5]3 [22:5, 2:5]3 [22:5, 2:5], consists of 106 individual realizations, one of

which is plotted in every midwinter time instant in (a), and three of which are used for generating the SRT 30-yr averages in (b).

2 One can, of course, associate the average value to any point of

the interval, among which the midpoint would be, perhaps, the most

natural choice. The endpoint is, however, the traditional one.
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individual members of the ensemble. Note that any of

the colored lines, corresponding to the 30-yr SRT av-

erages of these realizations, can be considered as

a ‘‘historically registered’’ climate (Stocker et al. 2013).

The black E average line of Fig. 5a is reproduced in

Fig. 5b on a different scale.We can observe that the SRT

averages do not follow any fine structures in the E av-

erage, and even in the coarse structure substantial al-

terations occur. This is partially due to the large amount

of information contained in 30-yr SRT averages that is

obsolete from the point of view of the characterization

of the present probabilities. What is more, they behave

very differently in comparison with each other as well,

indicating the lack of the representativity of one single

realization for the ensemble behavior.

We note at this point that SRT averages sometimes

produce strong signals suggesting changes that are false

from the point of view of the snapshot picture. This is the

most obvious in the stationary period of the climate,

before year 100. For example, the red SRT average line

in Fig. 5b indicates an increase in the strength of the

westerlies from 0.6 to 0.9 between years 50 and 90. This

might be interpreted as a climate change if one does

not intend to think in terms of averages taken with

respect to the natural probability distribution of the

snapshot attractor. Unlike any SRT averages, the E

average in Fig. 5 indicates properly the stationary na-

ture of the dynamics and of the corresponding proba-

bility distribution.

In Fig. 6 we demonstrate similar features for vari-

ances, a specificmeasure of the internal variability of the

dynamics. It is remarkable that the variances are by far

not constant in the climate change period. In both panels

the instantaneous E variances (black line) and the 30-yr

SRT variances (blue, red, and green lines, corresponding

in color to the realizations of Fig. 5) often go very far away

from each other, and also these distances between differ-

ent lines behave very irregularly (similarly as in Fig. 5).

The Lorenz system has been used here as a proof of

concept to illustrate features of statistics taken with re-

spect to the natural distribution of snapshot attractors,

and the strong deviation of these statistics from 30-yr

SRT statistics. We show that the situation does not

change (see section II of the supplemental material)

even if one takes time intervals of different length for

SRT statistics.

6. Final remarks

In summary, we argued that the only appropriate

probabilities, reflecting the internal variability of the dy-

namics, for an instant of time are described by the natural

distribution of the snapshot attractor corresponding to

this time instant. The temporal change of this distribution

represents the forced response of the dynamics. Any

ensemble-related probability distribution depending on

the way of its generation (e.g., on the initial conditions)

would be very specific to the particular procedure. The

natural distribution of the snapshot attractor is, however,

unique, as shown in the appendix. We have found that

single-realization temporal statistics taken over 30 years

are not capable of taking on numerical values that are

reasonably close to those of the appropriate ensemble

statistics derived from the natural distribution.

So far we have discussed only instantaneous values of

any statistics. One is often interested, however, in the

weather of a time interval (e.g., a season in the year, or

a few decades). In such situations we first evaluate the

quantity of interest3 on the time interval of interest along

single realizations, and then calculate the statistics of this

quantity over the ensemble of the realizations (repre-

senting the probabilities faithfully).We call such statistics

FIG. 6. The E variances (black lines) and three different 30-yr SRT variances (blue, red, and green lines) as

a function of time. (a) Midwinter x variances and (b) midsummer y variances. The convergence time tc is also

indicated. The marked time instants along the t axis correspond to the time instants considered in Fig. 4. The nu-

merical ensemble is as in Fig. 5.

3 This can be any arbitrary transformation of the trajectory

values, including single-realization temporal (SRT) statistics.
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interval-wise-taken E (ensemble) statistics to avoid the

use of the more technically sounding E statistics of SRT

data that would be rather consistent with our terminol-

ogy. The forced response of the dynamics is also naturally

reflected in the time dependence of interval-wise-taken E

statistics. We emphasize that the observation of this time

dependence is conceptually different from observing the

temporal change in some SRT statistics [by which a cli-

mate change is defined in Stocker et al. (2013)]. We show

a few examples for interval-wise-takenE statistics and for

their SRT counterparts in section III of the supplemental

material, indicating that the deviations are practically as

strong as for instantaneous statistics.

A natural question concerning the relevance of

snapshot attractors and of their distributions is the ro-

bustness against noisy perturbations. Experience shows

in any dynamical system that as long as the noise isweak,

only the small-scale structure changes: fractality is

washed out to a space-filling pattern but only below

a short length scale in the variable space. This implies

that averages can change only slightly in the presence of

weak noise. A detailed investigation of noise effects

from the point of view of snapshot attractors is given by

Bódai et al. (2011b).
Another practical issue is the size of the ensemble

needed to see the basic difference between single-

realization and snapshot-type results. We checked that

the results for E averages obtained with N 5 100 mem-

bers follow the ‘‘exact’’ E averages (i.e., those that are

obtained with 106 members, e.g., the black line of Fig. 5),

rather closely, deviating from it by about 10% of the E

standard deviation. We thus conclude that the utilization

of the snapshot approach is feasible even with moderate

ensemble sizes. (Note that the use of large ensemble sizes

appears to be hopeless in realistic climate simulations.)

We are currently running an intermediate-complexity

climate model in the spirit of the present paper, and our

preliminary results are promising: evenwith a 10-member

ensemble the numerical fluctuations around the ensem-

ble average are found to be reasonably small. This en-

semble average strongly differs from the values provided

by the different realizations, and the time evolution of the

30-yr temporal averages along individual realizations is

again rather different both from that of the ensemble

average and from those of each other.

An application of similar concepts appeared in a re-

cent work (Ragone et al. 2014, manuscript submitted to

Climate Dyn.) where predictions with an intermediate-

complexity climate model were investigated. For the

application of the linear response theory, the authors

needed the existence of a well-defined distribution in

different time instants. They practically used the con-

cept of the natural distribution of snapshot attractors,

although only for the evaluation of expectation values,

and interpreting standard deviations only as errors

around them.

To incorporate more and more processes of the earth

system, there is a natural need for the investigation of

models with higher and higher complexities. A relevant

question is the extent of the practical applicability of

the snapshot framework to such models. In principle,

all nonautonomous dynamical systems have snapshot

attractors with a natural distribution on them. A case of

particular interest is that when correlation times along

trajectories are much longer in certain variables than in

others (i.e., the case of time-scale separation). One

might then wish to calculate the natural distribution

restricted to the variables with short correlation times,

keeping those with long correlation times approxi-

mately constant. This way one avoids the trajectories to

visit those parts of the attractor that cannot be reached

in some restricted time from a particular initial condi-

tion on the attractor (e.g., people are never interested

in ice ages when thinking about the twenty-first cen-

tury). To this end we propose to follow an ensemble of

trajectories such that their initial conditions are dis-

tributed widely in the fast variables and are chosen

according to given values in the slow variables. Al-

though we propose to let also the slow variables evolve,

they can be expected to remain approximately constant

in the time interval of interest, which implies that the

spread between different members of the ensemble

remains small in these variables. Such an ensemble

may be expected to converge to a ‘‘conditional’’

snapshot attractor in the fast variables after a certain

convergence time. This construction might provide

well-defined conditional probability distributions in

situations where the correlation times in different

variables are well separated. As for more general cases,

we might hope that one can find in most of the models

a reasonable cutoff in time for separating the degrees of

freedom that are treated as frozen-in on the time scales

of interest from those that are not.
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APPENDIX

Snapshot Attractors and Their Distributions Are
Independent of Initial Conditions

A basic property of any dissipative system is that the

long-term dynamics is independent of initial condi-

tions. This is why the underlying object can be called an

attractor: it attracts all trajectories within a large region

of the variable space, the basin of attraction. In spite of

the nonautonomous character, this holds also for

snapshot attractors (Ghil et al. 2008; Chekroun et al.

2011). Here we illustrate the attracting property for our

model. To this end, we take two disjoint large boxes at

different initialization times t0 in which many initial

conditions are distributed uniformly, and monitor both

ensembles up to a given time instant t in the set of (1)–(3).

(Our numerics do not indicate any simultaneous co-

existence of different snapshot attractors.) We show re-

sults for the midsummer of year 150 (year 50 after the

onset of the climate change) in Fig. A1: Figs. A1a,b

present the position of the members of the two en-

sembles in 3D. Indeed, hardly any difference can be

observed.

A perhaps even more relevant (but of course related)

property is that the natural distribution (see section 4c)

should also be independent of the initial conditions. For

a clear visualization, as in sections 4b and 4c, we take the

z5 0, _z. 0 slices of the attractors. The occupation

numbers in grid cells over the (x, y) plane are plotted for

the two ensembles in Figs. A1c,d. Again, the agreement

is striking. It is because of this agreement that we are

allowed to speak about the natural distribution of the

snapshot attractor.

FIG. A1. Initial condition-independence I. The set of trajectory endpoints in the full variable space of two ensembles (of 106 points each)

at the midsummer time instant t of year 150, initiated in the box (a) [21:5, 3:5]3 [22:5, 0]3 [22:5, 2:5] at time t0 5 110:75 yr and

(b) [21:5, 3:5]3 [0, 2:5]3 [22:5, 2:5] at time t0 5 130:75 yr. The z component is color coded monotonically in the spectrum. (c),(d) The

numerically determined distribution in bins of linear size 0.01 on the z 5 0, _z. 0 slices of the ensembles of (a) and (b), respectively. For

better visibility, the occupation numbers are truncated at 1500. The distributions projected onto the x and y axes appear in gray in the back

planes. [The z5 0 plane used to define a slice of the snapshot attractor is marked in (a) and (b).] Note that not even the times of initiation

are identical. However, as both time evolutions are longer than tc, the distributions are found to be identical.
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This observation is further reinforced by Fig. A2 in

which the difference of two ensemble averages (E av-

erages in the terminology of section 5, the ones taken

with respect to the ensembles of Fig. A1) from that of

Fig. 5 are plotted as a function of time. The plot shows

clearly that the average in x of both ensembles of Fig. A1

converges within tc5 5 yr to the average of the ensemble

initiated earlier in time. After the convergence period,

the new ensemble averages stay together with the old

one. These results provide a numerical support for the

schematic diagram of Ghil and coworkers in Ghil et al.

(2008) visualizing the convergence toward the snapshot

attractors.

The findings illustrated by Figs. A1 and A2 illuminate

the distinguishing relevance of the snapshot concept.

The geometry and the natural distribution of snapshot

attractors are free of any subjective choice (e.g., the re-

gion over which and the distribution according to which

the initial conditions are taken). There exists thus (for

t2 t0 . tc) an objective, a priori existing distribution

belonging to any given time instant over which any

statistics of interest can be evaluated.
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