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The dynamics of modulated point-vortex couples on a β-plane is investigated for
arbitrary ratios of the vortex strength. The motion is analysed in terms of an angle-
and a location-dependent potential and the structural changes in their shape. The
location-dependent potential is best suited for understanding different types of vortex
orbits. It is shown to be two-valued in a range of parameters, a feature which leads
to the appearance of orbits with spikes, in spite of the integrability of the problem.
The advection dynamics in this modulated two-vortex problem is chaotic. We find
a transition from closed to open chaotic advection, implying that the transport
properties of the flow might be drastically altered by changing some parameters or
the initial conditions. The open case, characterized by permanent entrainment and
detrainment of particles around the vortices, is interpreted in terms of an invariant
chaotic saddle of the Lagrangian dynamics, while the dynamics of the closed case,
with a permanently trapped area of the fluid, is governed by a chaotic region and
interwoven KAM tori. The transition from open to closed chaotic advection is
quantified by monitoring the escape rate of advected particles as a function of the
vortex energy.

1. Introduction
The presence of gradients in the background vorticity makes the dynamics – even

of point vortices (see e.g. Newton 2001) – surprisingly non-trivial, and the advection
chaotic. Much interest comes from the geophysical fluid dynamics community since
such a gradient appears due to the variation of the Coriolis parameter with the
latitudinal coordinate, which is referred to as the ‘beta-effect’ (Pedlosky 1979).

In the simplest case of a homogeneous, incompressible, two-dimensional, and ideal
fluid, the potential vorticity (Pedlosky 1979), q ≡ ζ +β ′y, is conserved by each particle
along its trajectory, where ζ is the relative vorticity, y the latitudinal coordinate, and
β ′ the beta parameter.

As pointed out by Makino, Kamimura & Taniuti (1981), Zabusky & McWilliams
(1982), Hobson (1991) and Velasco Fuentes & van Heijst (1994), the principle of the
conservation of potential vorticity can be introduced into the point-vortex picture
by applying a modulation of the vortex strength with the latitudinal coordinate. The
strength κi(y) of any vortex i therefore fulfils κi(y) + βy = const, from which

κi(y) = κi0 − βy, (1.1)

† Present address: Physics Department, Virginia Tech, Blacksburg, VA 24061, USA.



2 I. J. Benczik, T. Tél and Z. Köllő

where κi0 is the vortex strength at y = 0. Parameter β is the analogue of β ′.† Since κ

is a circulation, the dimension of β is area times that of β ′. The vortex strength thus
decreases when moving towards the north (y grows). By applying (1.1), we neglect
the vorticity production due to the transport of fluid elements outside the vortices,
as discussed by Velasco Fuentes & van Heijst (1994). The modulated point-vortex
model is therefore valid as long as this vorticity gain is negligible.

Although such point vortices are not exact solutions of the hydrodynamical
equations, they have been shown to be useful in understanding several properties
of the quasigeostrophic equation, such as the existence of modon-like excitations
(Makino et al. 1981). Later, Velasco Fuentes, van Heijst and collaborators pointed
out that laboratory-generated vortices on a topographic β-plane (sloping bottom)
could be approximated quite well by the modulated point-vortex model over a
considerable time span. These investigations were carried out for a pair of nearly
dipolar vortices (Kloosterziel et al. 1993; Velasco Fuentes & van Heijst 1994; Velasco
Fuentes et al. 1995) and nearly identical vortices (Velasco Fuentes & Velázques Mũnoz
2003). The modulated point-vortex approach provides vortex couple orbits which are
qualitatively similar to those obtained from a recent exact treatment of point vortices
on a rotating sphere (Newton & Shokraneh 2006; Jamalooden & Newton 2006).

One of the aims of this paper is to provide a systematic exploration of the dynamics
for a wide range of strength ratios in the two-vortex problem. To this end, we
introduce a new potential depending on the latitudinal coordinate, but we also use an
angle-dependent potential already suggested for a special case in Velasco Fuentes &
Velázques Mũnoz (2003), and show that qualitative changes in the vortex dynamics
follow as bifurcation-like events in the shapes of these potentials. In certain ranges
of parameters, the potential depending on the latitudinal coordinate has the unusual
feature of being bi-valued. The change from one branch to the other leads to a point
of non-differentiability in the orbit. The region of parameter space in which none of
the vortices can change sign during their entire motion is determined.

The second aim of the paper is to analyse the material transport in the field of
the two modulated point vortices. The first step towards understanding the passive
advection dynamics (Aref 1984; Ottino 1989; Aref 2002) has been made by Velasco
Fuentes & van Heijst (1994) for dipolar vortices, but recent advancement in the
theory of chaotic advection suggest that a detailed reinvestigation is warranted. In
particular, for nearly dipolar cases the flow in the frame co-moving with the vortex
centres can be considered to be open (Jung, Tél & Ziemniak 1993; Péntek, Tél &
Toroczkai 1995; Sommerer, Ku & Gilreath 1996), which implies that particles are
trapped by the vortices for a finite time only, and eventually all advected particles
leave the wake. There is an infinite set of unstable, never escaping orbits – the so-
called chaotic saddle (Jung et al. 1993; Péntek et al. 1995) – which is, however, a
set of zero area, a fractal. This set is responsible for the permanent entrainment and
detrainment process of tracer particles described by Velasco Fuentes et al. (1995). By
changing either the vortex strength or the initial position of the couple, we show that
this process stops and one can always find a transition to a closed flow regime, where
chaotically advected particles remain around the vortices for arbitrarily long times.

† Another equivalent parameterization of the modulation is κi(y) = κ∗
i0 − β(y − yi0), where

κ∗
i0 is the vortex strength at the initial position yi0 (see e.g. Kloosterziel, Carnevale & Philippe

1993 and Velasco Fuentes, van Heijst & Cremers 1995). For mathematical convenience we use
parameterization (1.1) since the analogy with classical mechanics, worked out in § 3, is cleanest with
this form.
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Thus, a mere change in the initial conditions can result in a drastic change in the
transport properties of the couple.

In § 2 we write the equations for a point vortex couple on the β-plane. An
angle-dependent and a location-dependent potential is shown in § 3 to govern
the dynamics, which undergo several bifurcations as the parameters are changed.
Conditions for sign-changing of the vortices are derived in § 4. Sections 5 and 6
are devoted to the description of the dynamics of significantly different and of
similar vortex couples, respectively, in which the vortex strengths never change
sign. Other cases are briefly discussed in § 7. In the Appendix a perturbative
analytical condition is derived for the figure-of-eight-shaped orbit. Section 8 is
devoted to the advection dynamics. The chaotic sets and droplet patterns are
investigated both in the closed and open advection regime. The strength of
openness is characterized by the escape rate determined as a function of the
vortex energy. In the concluding § 9, we summarize our findings and point out
an interesting analogy with the dynamics of a point mass on a rotating sphere
(Paldor & Killworth 1988; Paldor & Boss 1992; Dvorkin & Paldor 1999; Paldor
2007).

2. The model
We consider two-dimensional point vortices in a Cartesian coordinate system where

x represents the longitude and y the latitude. The strength of vortex i at an arbitrary
y is assumed to be given by (1.1).

The equations of motion for N interacting vortices centred at (xi, yi) are (see e.g.
Newton 2001)

dxi

dt
= −

N∑
j=1,j �=i

κj (yj )(yi − yj )

r2
ij

,
dyi

dt
=

N∑
j=1,j �=i

κj (yj )(xi − xj )

r2
ij

, (2.1)

where i, j = 1, . . . , N , and

rij =
√

(xi − xj )2 + (yi − yj )2 (2.2)

denotes the distance between vortices i and j .
By writing the explicit y-dependence of the vortex strengths, for two vortices

(N = 2) (2.1) becomes

dxi

dt
= − (κi+1,0 − βyi+1)(yi − yi+1)

r2
12

,
dyi

dt
=

(κi+1,0 − βyi+1)(xi − xi+1)

r2
12

, (2.3)

with i = 1, 2 mod (2). The vortex distance r12 turns out to be a constant of the
motion, which is denoted by D.

We shall see that the dynamics is qualitatively different for the parameter
combination

σ =
|κ10 − κ20|

βD
(2.4)

lying above or below unity. We call these cases significantly different or similar
vortices, respectively.

The equations of motion can be cast into a dimensionless form by measuring
distance in units of D and vortex strength in units of κ10, which we assume to be
positive. As a consequence, the time unit is D2/κ10. In these units, the dimensionless
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equations of motion are

dx1

dt
= −(κ − βy2)(y1 − y2),

dy1

dt
= (κ − βy2)(x1 − x2), (2.5)

dx2

dt
= −(1 − βy1)(y2 − y1),

dy2

dt
= (1 − βy1)(x2 − x1), (2.6)

where κ ≡ κ20/κ10, and β represents the dimensionless beta-parameter expressed as
βD/κ10 in the original variables. We always choose vortex 1 to be the stronger, and
therefore |κ | < 1. The dimensionless form of parameter σ is consequently

σ =
1 − κ

β
. (2.7)

Now we introduce relative and ‘centre of mass’ coordinates as

xr = x2 − x1, yr = y2 − y1, (2.8)

x =
x1 + x2

2
, ȳ =

y1 + y2

2
. (2.9)

The conservation of vortex distance implies: x2
r + y2

r = 1. The differential equations
for the relative coordinates follow from (2.5) and (2.6) as

1

β

dxr

dt
= 2yyr,

1

β

dyr

dt
= −2yxr . (2.10)

Here

y ≡ ȳ − σ ′/2 (2.11)

is a shifted centre-of-mass coordinate, and

σ ′ =
1 + κ

β
. (2.12)

The equations of the centre-of-mass coordinates are obtained in a similar fashion as

1

β

dx

dt
= − (σ + yr )yr

2
,

1

β

dy

dt
=

(σ + yr )xr

2
. (2.13)

These equations indicate that by considering σ to be the basic parameter of the
model, the dimensionless parameter β is merely a scale factor of time.† When varying
parameter σ , we have to keep in mind that in order be able to neglect the vorticity
generated by the ambient fluid, β should be kept small (Velasco Fuentes & van Heijst
1994). This constraint, however, does, not influence the accessible range of σ as (0, ∞).

3. Potentials
Besides the vortex distance, the energy of rotation turns out to be another constant

of the motion. Let α be the angle between the y-axis and the line joining the vortices
(see figure 1):

sin α = xr, cos α = −yr . (3.1)

† With parameterization κi(y) = κ∗
i0 − β(y − yi0), one also recovers (2.10)–(2.13) but the dimen-

sionless parameters σ and σ ′ are then replaced by σ ∗ = (1 − κ)/β − yr0 and σ ∗′
= (1 + κ)/β + y0,

respectively. It is the appearance of the initial coordinates in σ ∗ and σ ∗′
which makes this

parameterization inconvenient for the potential picture.
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xr

–yr

α

Vortex 1

Vortex 2

D = 1

Figure 1. The rotational angle α in terms of the relative vortex coordinates. In this diagram,
α > 0, in general −π � α � π.

From (2.10) we obtain

1

β

dα

dt
= −2y (3.2)

which implies that the centre-of-mass coordinate ȳ, or rather its shifted value y,
uniquely determines the instantaneous angular velocity of the line connecting the
vortices.

By taking the time derivative of (3.2) and substituting (2.13) and (3.1), one finds

1

β2

d2α

dt2
= −σ sinα + 1

2
sin 2α ≡ −dW (α)

dα
(3.3)

with an angle-dependent potential:

W (α) = −σ cosα + 1
4
cos 2α + σ − 1

4
. (3.4)

The additive constant has been introduced to make the energy of the state α = 0 zero.
For equal vortices, σ =0, this potential has been identified in Velasco Fuentes &
Velázques Mũnoz (2003).

The rotational energy

E =
1

2β2

(
dα

dt

)2

− σ cosα + 1
4
cos 2α + σ − 1

4
(3.5)

is thus a constant of motion. In view of (3.2),

E =2y2 − σ cosα + 1
4
cos 2α + σ − 1

4
. (3.6)

This is a relation between the centre-of-mass coordinate y and angle α at fixed
energies E (see figure 2). From this, the angle can be expressed by means of y as

cosα = σ ± F (y) (3.7)

with

F (y) =
√

(σ − 1)2 + 2E − 4y2. (3.8)

Potential W does not contain direct information about the centre-of-mass dynamics.
In addition, as shown by (3.7), the relation between angle and y is not one-to-one.
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Figure 2. Relation between the centre-of-mass coordinate y and angle α at different
rotational energies E (σ = 9). The energy values are indicated along the contours.

It is therefore important to derive a potential governing the behaviour along the
y-direction. From (2.13), (3.1) and (3.7) we obtain

1

2β2

(
dy

dt

)2

=
F (y)2(1 − (σ ± F (y))2)

8
. (3.9)

This equation is of the form (ẏ)2/(2β2) + V±(y) = 0 with the potential

V±(y) = 1
8
F (y)2((σ ± F (y))2 − 1). (3.10)

The y-dynamics is thus a potential motion in V±(y) with zero total energy. Motion
must therefore be restricted to intervals where V±(y) � 0.

Potentials W (α) and V±(y) reflect two different facets of the vortex dynamics:
rotation (corresponding to a kind of internal degree of freedom) and centre-of-mass
motion in the north–south direction, respectively.

In expression (3.10) for the potential V±, F appears with two signs. We therefore
discuss the sign to be taken in different cases. For σ > 1, σ − cosα is positive, and
only the lower sign can be valid in (3.7); therefore, only one potential, V− ≡ V exists.
For σ < 1, the sign of F can be both positive and negative. A change of sign can
only occur if F (y) vanishes, i.e. at the extremal values ±ye of the potential, where

ye = 1
2

√
(σ − 1)2 + 2E. (3.11)

For |y| >ye expression (3.10) is complex.
These considerations show that a bifurcation of the vortex dynamics takes place

at σ =1. For σ > 1, the location-dependent potential has a single branch, and the
angle-dependent potential is always single-welled, while for σ < 1 the location-
dependent potential has two branches and the angle-dependent one is double-welled
(as illustrated by the figures of § 5 and § 6). The dynamics in the two regimes is
basically different; therefore we shall discuss the dynamics of significantly different
vortices (σ > 1) and of similar vortices (σ < 1) separately.

The vortex motion is uniquely specified by its initial centre-of-mass location (x0, y0),
and initial angle α0. Owing to the translational invariance in x, the character of the
dynamics does not depend on x0. In order to exploit the properties of the potential
motion, we shall investigate the behaviour of the angle and the centre-of-mass
coordinate y at different energies E. In view of (3.6), changing the energy at a fixed y
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Figure 3. Range of y (grey) over which the centre-of-mass motion extends (i.e. V ≡ V− < 0)
as a function of the rotation energy, E, for significantly different vortices (σ = 9). In order to
avoid sign changing of the vortex strength, the energy must be either E < Es+ or E >Es−.
The characteristic points ye , ys , and y± are also indicated as functions of energy.

(or fixed α) implies choosing another initial angle α0 (or initial y0), as demonstrated
by figure 2.

4. Conditions for sign changes of vortex strengths
In the context of vortices on the rotating Earth or of experiments, a sign change

of any of the vortices in the course of their motion is unrealistic. To see under
which conditions this happens in the model, we determine here the energies at which
the vortices change their signs. Using (2.8), (2.9) and (3.7), the dimensionless vortex
strengths κ1(y1)/κ10 and κ2(y2)/κ10 can be expressed by the centre of mass coordinate
as (β/2)(±F (y) − 2y) and (β/2)(∓F (y) − 2y), respectively. From these equations the
‘sign-changing y-coordinates’ are ±ys , where

ys =

√
(σ − 1)2 + 2E

8
=

ye√
2

(4.1)

is the positive solution of F (y) = 2y. Since a more positive vortex reaches the sign-
changing configuration at a larger distance (remember κ10 is positive), ys and −ys

correspond to the sign-changing coordinates of vortex 1 and vortex 2, respectively (cf.
figures 3 and 4). If potential V± allows motion across these points, the sign of one of
the vortices changes.

The motion occurs on y-intervals which fall between the zeros of V (y) (see (3.10)):
±ye and ±y±, where

y± = 1
2

√
±2σ − 2σ + 2E. (4.2)

The characteristic point y+ and y− vanishes for E = 0 and E = 2σ , respectively (cf.
figures 3 and 4).

For σ > 1, motion occurs for E > 0 (see figure 3). This follows from the fact that
the minimum of potential (3.4) is zero. Motion is restricted to the interval (−y+, y+)
for 0 < E < 2σ (since y− is then imaginary), and to the intervals ±(y−, y+) for E > 2σ

(see the shaded region of figure 3). In order to avoid sign changing of any of the two
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Figure 4. As figure 3 but for similar vortices (σ = 0.1). The location-dependent potential is
bi-valued: both V+ and V− exist, cf. (3.10). Motion in V+ (V+ < 0) is limited to the light grey
region between ye and y+, while motion in V− is possible (V− < 0) in the entire shaded region.

vortices, ys must be outside the y interval in which motion takes place. The energy
of the system must then be

either E < Es+ or E > Es−, (4.3)

where

Es± = 1
2
(σ + 1)2 ∓ 2σ (4.4)

denotes the energies for which y± = ys . It is easy to check that both vortices are of
the same sign for E > Es− (positive for y < 0). They are of opposite sign for E < Es+.
A detailed investigation of the dynamics in the range of (4.3) will be given in § 5.

For σ < 1, both branches of potential (3.10) exist, and V− has the same expression
as in the case of significantly different vortices. Functions V+(y) and V−(y) change
sign for y+ and y−, respectively. Thus the motion is restricted to (−ye, ye) for energies
Emin < E < 2σ , and to ±(y−, ye) for energies E > 2σ (see figure 4). The minimum
energy Emin = −(σ −1)2/2 for which motion can occur is determined by the condition
ye = 0. Sign changing of the vortex strength can only be avoided for

E >Es− (4.5)

(see figure 4), where both vortices have the same sign. The dynamics in this range
will be discussed in § 6.

For mathematical completeness, a brief discussion of the dynamics of sign-changing
vortices will be given in § 7. We note, however, that even in the case of unchanged
signs, the total dimensionless vortex strength (κ1(y1) + κ2(y2))/κ10 = −2βy changes its
sign at the symmetry centre of potential V±.



Modulated point-vortex couples on a beta-plane 9

–2

0

2

0 3 6 9  12  15

(a) (b)

(c) (d )

(e) ( f )

–4

–2

0

2

4

–2 0 2 4 6 8

–4

–2

0

2

4

–2 –1 0 1 2
–4

–2

0

2

4

–8 –6 –4 –2 0 2

0

2

4

–9 –6 –3
x x

0 3
–1

0

1

2

3

4

–10 –8 –6 –4 –2 0 2

y

y

y

Figure 5. Vortex dynamics on the (x, y)-plane at various energies. The dashed and continuous
lines represent the orbits of vortices and the centre of mass, respectively. Initial conditions:
α0 = 0 y0 =

√
E/2 (as follows from the energy conservation (3.6)). Parameters: σ = 9, σ ′ = 1

(κ = −0.8, β = 0.2), and the energies are (a) E = 4, (b) E = 12, (c) E = E8 = 14.274612,
(d) E = 16, (e) E = 18, and (f ) E = 20. The duration of simulation is, from (a) to (f ),
tsim =15, 25, 40, 40 and 25 dimensionless time units, respectively.

5. Dynamics of significantly different vortices: σ > 1

For E = 0, only a single angle α = 0 can occur, and from (3.6), y = 0. The two
vortices are of opposite strength and the couple moves as a vortex pair (a ‘modon’)
along a straight line to the right.

At small positive energy values, the vortices (forming a ‘tilted modon’ (Velasco
Fuentes & van Heijst 1994)) carry out a weakly meandering motion (figure 5a). The
orbits are periodic in x, and their average velocity is positive in the x-direction.

At E = σ − 1/2 the orbit starts ‘turning back’: the vortices travel parallel to the
y-direction for a moment. It is at this energy (see the continuous line in figure 6) that
the angles α = ±π/2 become first accessible.

For E > σ −1/2 the orbits are ‘strongly’ meandering (figure 5b): the vortices turn in
the negative x-direction for a while, but the net x-velocity is still positive. By further
increasing the energy, the average velocity vanishes at a certain energy E8, (figure 5c),
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Figure 6. The angle-dependent potential W (α) (σ = 9). The energies used in figure 5 are
indicated as dashed horizontal lines. The continuous horizontal line is E = σ − 1

2
, where

‘turning back’ first appears.

and the orbit becomes a figure-of-eight-shaped closed loop. For E >E8 the vortices
begin to drift in the negative x-direction (figure 5d). The orbits cross themselves, and
are of cycloid type, but the motion is periodic again with an increasing wavelength.

At a certain energy Ec the wavelength becomes infinite, the centre of mass cannot
cross the y = 0 level, and the y-coordinate approaches that level asymptotically. The
vortex angle converges towards α = −π. As we can see from figure 5(e), the motion
is aperiodic and is no longer symmetric around y = 0.

At higher energies the orbits are asymmetric, but periodic again (figure 5f ). The
motion is a looping around a point that moves to the left. One can see that the centre
of mass is always above the y = 0 level in figure 5(f).

We note that potential W (α) provides information on the rotational dynamics only.
It is clear that the critical energy

Ec =2σ (5.1)

is the maximum energy of W (α) at the unstable point α = ±π (see figure 6). In view of
(3.2), y = −(1/2β)dα/dt , the pattern of the (α, y)-plane shown in figure 2 corresponds
therefore to that of the phase plane (α, dα/dt). The trajectory at the critical energy
is a separatrix between the symmetric and asymmetric motion. Below Ec, the angle
changes periodically in a finite interval (libration), while above the critical value, the
vortices rotate in one direction permanently (overturning).

The location-dependent potential V (y) given by (3.10) provides direct insight into
the shape of orbits. For small energies the orbits are sine-like oscillations around
the minimum at y = 0 (see figure 7a). As the rotational energy increases, a local
maximum in V develops around y =0, where the y-velocity decreases. As long as
the potential hill is small, the vortices turn back in the negative x-direction for a
while (figure 7b), but above E8 the hill is so high that an overall drift develops in the
negative x-direction (figure 7d). Note that at E8 (figure 7c) no specific change occurs
in V (y): the appearance of the figure-of-eight orbit is due to an interplay between
the y- and the x-dynamics (see the Appendix).

At the critical Ec the central hill touches the y-axis from below (figure 7e), then
extends beyond the y-axis and prevents the centre of mass from approaching the y = 0
line (figure 7f ). This critical energy value therefore marks the onset of spontaneous
symmetry breaking for the orbits.
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Figure 7. The location-dependent potential V (y) corresponding to the dynamics shown in
figure 5. The characteristic points ±ys determined by (4.1) are denoted by filled squares. They
fall outside of the accessible region so that the vortices do not change sign.

6. Dynamics of similar vortices: σ < 1

A qualitatively different behaviour appears for similar vortices. For σ < 1, the
location-dependent potential becomes bi-variate (see figure 8), while the angle-
dependent potential develops a double-welled shape (see figure 10 below). The
requirement that the vortices cannot change sign restricts the physically relevant
motion to the energy range E >Es−.

For E >Es− both V+ and V− are defined in the range (−ye, ye), but the dynamics is
restricted to the regions ±(ye, y±) (see figures 4 and 8). As we can see from figure 9,
the motion occurs consecutively in the two different potentials: the orbit follows the
V− potential from ye to y− and back, then it changes to V+ and follows V+ from
ye to y+ and back, changes again to V−, and so on (cf. figure 8). The mirror-image
motion is also possible. Since the central hill of both branches is in the positive
region, the centre of mass of the two vortices never crosses the y = 0 axis, and the
motion is asymmetric. The net x-drift is negative. The centre of mass describes a
semicircle-like half-loop, then it changes to another semicircle of different size, and
repeats the two half-loop paths periodically. Whenever the orbit reaches y = ±ye, it
becomes non-differentiable. In contrast to this “broken” centre-of-mass motion, the
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Figure 8. The location-dependent potential for similar vortices (σ =0.1) for E = 1.35. The
continuous and dashed lines represent V− and V+, respectively. Filled squares denote the values
±ys .
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Figure 9. The “broken” path of the centre of mass of the two vortices (continuous line) and
the path of the individual vortices (dashed lines). The parameters are the same as in figure 8,
σ = 0.1, σ ′ = 9.9. Initial conditions: α0 = 0, y0 = −

√
E/2 = −0.82. tsim = 50 dimensionless time

units.

individual vortices smoothly loop around some point moving to the left (figure 9).
The breaking of the orbit thus appears to be the consequence of constructing the
mean value along the two smooth looping orbits of the vortices.

Since the energy is above the critical value Ec (see figure 10), a continuous
overturning takes place in the angle dynamics.

7. Dynamics of sign-changing vortices
7.1. Similar vortices σ < 1

A change of the vortex sign occurs for energies Emin < E < Es−. For rotational
energy E = Emin = −(σ − 1)2/2 of potential W (α) (see figure 10), only two angles –
α = ± arccos(σ ) – are accessible. The relative coordinate is then yr = −σ . Since
ȳ = σ ′/2, then y1 = 1/β , y2 = κ/β: the strength of both vortices disappears
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Figure 10. The angle-dependent potential W (α) (σ = 0.1, σ ′ = 9.9). The energies used in
figures 9 and 11 are indicated as horizontal lines (continuous and dashed lines respectively).

(cf. (1.1)) and the centres stay at rest. For negative energies above Emin, two different
finite intervals of angle become accessible. In this regime, both V+ and V− are
negative, and therefore the motion extends to the full range (−ye, ye). The orbit
follows consecutively the two different branches of the location-dependent potential
(figure 11a) and changes from one to the other at positions ±ye (figure 12a).

At the value E = 0, a partial symmetry breaking takes place. The location-dependent
potential V+ touches the zero level. For any initial angle α0 �= 0, orbits approach the
straight line y = 0 asymptotically (figures 11b, 12b).

At larger energies, the motion in V+ becomes restricted to one of the wells, whereas
it remains extended in V−: the centre of mass oscillates once between ye, y+ and ye,
there it changes to potential V− and moves towards −ye, where it changes to the other
well of V+, carries out an oscillation between the points −ye and −y+, and switches
back again to potential V− (figure 11c). This cycle is repeated during the motion,
giving birth to double-‘broken’ orbits (figure 12c).

At the energy value Ec = 2σ , another symmetry breaking takes place. This energy
corresponds to the maximum of the angle-dependent potential W at α = π (see
figure 10), meaning that an overturning of the vortices becomes possible. In the
location-dependent potential, the middle hill of V− touches the zero line (figure 11d).
An orbit, starting at initial angle α0 = 0 (figure 12d) undergoes half an oscillation in
the well of V+, and then asymptotically approaches the y = 0 line.

For higher energies, the centre-of-mass motion is restricted to one side of the y-axis:
it takes place in the intervals (y−, ye) or (−ye, −y−) (see figures 11e,f , 12e,f ). It is
an interesting characteristic of the motion that singular spikes are now present in the
individual vortex orbits also. These disappear as soon as the points ±ys become the
endpoints of the accessible y interval (cf. figure 12f ).

7.2. Significantly different vortices σ > 1

A change of the vortex sign occurs for energies Es+ < E < Es−. A typical trajectory
can be seen in figure 13. The centre of mass and the stronger vortex exhibit a smooth
looping around some points moving to the left, while the weaker vortex has a broken
trajectory with periodically repeated spikes, like the ones found in the case of similar
vortices.
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Figure 11. The location-dependent potential V±(y) corresponding to different energies for
which sign change of the vortices is possible at the coordinates ±ys (4.1), marked by filled
squares. The continuous and dashed lines represent V− and V+, respectively. Here σ = 0.1, and
Emin = −0.405, Es− = 0.805. The energies are (a) E = −0.2, (b) E = 0, (c) E = 0.1, (d) E = 0.2,
(e) E = 0.3, and (f ) E = 0.805.

8. Advection in the field of the modulated vortices
In a frame co-moving with the modulated vortex couple, the flow field is time-

periodic and, therefore, the advection dynamics is typically chaotic (Aref 1984; Ottino
1989; Velasco Fuentes et al. 1995). (An exception is the case of the critical energy
Ec.) A feature of interest is the type of advective chaos.

Two basically different types of advective chaos have been identified: that taking
place in closed containers (Aref 1984; Ottino 1989), and that generated by open
flows (Jung et al. 1993; Péntek et al. 1995; Sommerer et al. 1996). In open flows there
is a current flowing through the observation region to they have which particles,
once escaped downstream, cannot return. The basic difference between the transport
generated by closed and open flows is that particles remain trapped forever around
the vortices in the first case, while they become transported in the far wake in the
second case.

The advection dynamics is governed by the equation of motion

ẋ = −∂ψ(x, y, t)

∂y
, ẏ =

∂ψ(x, y, t)

∂x
. (8.1)



Modulated point-vortex couples on a beta-plane 15

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–2 –1 0

(a)

–0.8

–0.4

0

0.4

0.8

–6 –4 –2 0

(b)

–1.0

–0.5

0

0.5

1.0

–6 –4 –2 0

(c)

–0.8

–0.4

0

0.4

0.8

–6 –4 –2 0

(d)

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

–5 –4 –3 –2 –1 0

(e)

–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

–2 –1 0

( f )

Figure 12. Vortex dynamics at the energies of figure 11. The continuous and dashed
lines represent the orbit of the centre of mass and of the vortices, respectively.
Parameters: σ = 0.1, σ ′ = 9.9 (κ = 0.98, β = 0.2). Initial conditions: (a, b) α0 = arccos (σ ),
y0 =

√
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Figure 13. A plot similar to figure 9 but for σ = 9 at energy E = 45. σ ′ = 1. Initial
conditions: α0 = 0, y0 =

√
E/2 = 4.74. tsim = 20 dimensionless time units.
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Here (x, y) denotes the location of the advected particle, and ψ the stream function.
For the modulated point vortices

ψ(x, y, t) = −
2∑

i=1

κi(yi(t)) ln ri(x, y, t), (8.2)

where ri(x, y, t) =
√

(x − xi(t))2 + (y − yi(t))2 is the distance of the particle from the
moving vortex centre i at time t .

The closed–open character of the flow can best be identified in a reference frame
co-moving with the vortex centres. The origin is chosen to be the midpoint between
vortices 1 and 2. If in this reference frame the points of a small droplet placed
between the vortices at t = 0 remain distributed in a finite range around the vortices
after arbitrarily long times, the flow is closed; otherwise it is open. Snapshots of the
droplet are taken at integer multiples of the period of the vortex-dynamics. Since
in our particular case the vortices start at initial angle α0 = 0, we define the period
T (E) of the flow as the time the vortices take to return to a position characterized
by α =α0 = 0. This period is different for each vortex orbit and it depends on the
rotational energy, E, of the vortices.

We show that merely a change of the initial angle (the energy E) of the vortex
centres can generate a switch between open and closed flow transport. A detailed
quantitative study is presented for the case of significantly different vortices with
σ = 9, but our arguments and the qualitative picture is valid for other vortex strength
ratios as well.

The advection dynamics is clearly closed for high energies, E >Es−, when both
vortices are of the same sign over the entire motion. The points of a droplet initiated
between the vortices never escape a circle of radius 2 (figure 14a). Some of these points
become distributed between and around the vortices, while others move somewhat
further away, surrounding four holes formed by KAM tori. Note that sufficiently close
to each vortex there is a core, a region where the flow is very fast and impenetrable for
particles coming from outside (a region also bounded by a KAM torus) (Péntek et al.
1995; Kuznetsov & Zaslavsky 1998, 2000; Leoncini, Kuznetsov & Zaslavsky 2001).

The region of small energies, E < Ec, clearly belongs to open advection since the
total vortex strength vanishes whenever the centre-of-mass coordinate y vanishes.
This implies the appearance of streamlines going out to infinity. Accordingly, points
of a droplet lying outside the vortex core do escape any fixed region surrounding
the vortices, and the droplet is distorted into a sequence of fractal lobes in the wake
(see figure 14b). This open case is similar to the problem of Rom-Kedar, Leonard &
Wiggins (1990), which also corresponds to a kind of modulated vortex pair, although
modulation is there due to an external time-dependence.

The energy region Ec < E < Es− contains both types of advection dynamics with a
cross-over between them. This cross-over energy is denoted by E0 (E0 ≈ 26 for σ = 9),
above which particles outside the vortex cores do not escape from the surroundings
of the vortices over an observation time on the order of 50 periods. The passive
advection is thus open in the entire range E < E0 (figure 15a).

The topology of the lobe structures changes when the energy of the system crosses
the critical energy Ec. In figure 14(b) (below Ec) the vortices extend over both wells
of potential V . Since the vortex orbit crosses the ȳ = σ ′/2 level, which represents an
axis of symmetry for the vortex motion (figure 5d), in the advection dynamics lobes
are formed both in the positive and negative y-direction, consecutively. In figure 15(a)
(above Ec) the vortex motion is restricted to one well of the potential V and the
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Figure 14. Particle advection. (a) Closed dynamics E = 100 >Es−, σ =9. Shape of a droplet
of size 200 × 200 points initiated at [−0.1, 0.1] × [0.13, 0.23] after 50 periods T of the vortex
dynamics, where T (E =100) =1.165 time units. (b) Open dynamics, E = 16 < Ec , σ = 9. Shape
of a droplet of size 300 × 300 points initiated in [−0.1, 0.1] × [0.07, 0.17] after 5 periods of
the vortices, where T (E = 16) =8.365 time units. The horizontal line represents ȳ = σ ′/2, the
symmetry axis of the location-dependent potential (see (2.11)). The vortex centres are denoted
by black dots. Inset: magnification of the small square in panel (b).

symmetry of the trajectories disappears (figure 5f ). Accordingly, advected particles in
such cases form lobes only in one direction.

From a dynamical systems point of view, the basic difference between closed and
open cases lies in the structure of the chaotic set. For closed chaotic advection,
which is an example of closed Hamiltonian chaos, the chaotic set extends over a two-
dimensional area of the fluid surface. The region filled in asymptotically by the droplet
points (see figure 14a) is part of the chaotic set, and other such areas might also exist,
reachable from other initial droplet positions. In contrast, the chaotic invariant set
of the open advection dynamics contains fractal parts of zero area (figure 15b). This
chaotic saddle (Jung et al. 1993; Péntek et al. 1995; Tél & Gruiz 2006) is formed by
an infinity of unstable particle orbits which are trapped by the vortices forever, both
forward and backward in time. In such cases points of a droplet come close to the
chaotic saddle, but leave it sooner or later. Their asymptotic form is determined by
the unstable manifold (Jung et al. 1993; Péntek et al. 1995), itself a fractal, of the
chaotic saddle.

In the open range E < E0, a special case is the figure-of-eight-shaped orbit, as
first pointed out in Velasco Fuentes & van Heijst (1994). Since the orbit is closed,
the vortices repeatedly re-enter the wake, and thus produce an advection which is
only transiently open (figure 16a). The droplet points later become distributed in a
large but finite area (figure 16b), indicating that the asymptotic advection dynamics
is closed. One can observe a very slow expansion of the chaotic set even at late times.

A statistical measure of the strength of the Lagrangian transport out of the
neighbourhood of the vortices is provided by the escape rate (Tél & Gruiz 2006).
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1

0

–1

–1

0

1

–2

–3

–2y

–3

–4

–5

–6

–2 –1 0 10 2 4

x x

6 8 10 12

(a) (b)

Figure 15. Open advection for Ec < E = 20 < E0. (a) Shape of a droplet of size 300 × 300
points initiated at [−0.1, 0.1] × [0.13, 0.23] after 5T , where T (E =20) = 4.017 time units. The
horizontal line again represents the level ȳ = σ ′/2. (b) The chaotic invariant set (a chaotic
saddle) obtained by starting 4 × 106 points in [−1.5, 1.5] × [−3.5, 1.5] and plotting at 5T the
positions of those points which do not escape the wake (do not cross the x = 6 line) up to
20T as in Benczik, Tél & Toroczkai (2003). The set turns out to contain points around the
vortex cores as well, where the set appears to be dense.
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Figure 16. Transiently open advection dynamics of the figure-of-eight orbit, E =E8 =
14.2746 <Ec , σ = 9. Shape of a droplet of size 300 × 300 points initiated at [−0.1, 0.1] ×
[0.07, 0.17] after (a) 5T , (b) 50T , where T (E8) = 7.483 time units.
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Figure 17. (a) Dependence of the escape rate kT over a period T on the energy E of the
vortex couple for σ = 9. We started 250 000 uniformly distributed particles in a circle of
radius 1 around the centre of mass of the vortices, and measured the number N (t = nT )
of non-escaped particles at integer multiples n of the vortex period T (E). A particle was
considered to have escaped if it left a square of size 16 × 16 centred at the centre of mass.
Particles in the vortex cores, i.e. in a circle of radius 0.47 around the individual vortices, are
excluded from the statistics. To determine kT we took the average slope of the function ln N
versus n in the interval n ∈ (10, 20) since the very long-time behaviour is typically dominated
by a non-exponential decay due to KAM tori. (b) The period T of the vortex motion as a
function of energy E.

We start with a large number of particles distributed in a fixed region around the
vortices. The escape from the chaotic set of open flows is known to be exponential, i.e.
the number of non-escaped particles after time t is proportional to exp (−kt), where
k is the escape rate. The escape rate of particles starting outside the vortex cores (or
other KAM tori) is independent of the region chosen for the initial conditions; it is
thus a property of the chaotic saddle (Tél & Gruiz 2006). In figure 17(a) we display
the escape rate kT (E) over a period of the flow. One can see that the escape process
takes place faster and faster with increasing energies, until the couple approaches the
energy of the figure-of-eight orbit. The vanishing escape rate at this energy shows
that the flow is only transiently open; the particles of the droplet eventually become
trapped around the vortices. Increasing the energy further, the escape rate kT formally
develops a singularity at the critical energy Ec since at this point the period of the
vortex motion is infinite (see figure 17b). In the region Ec < E < E0 the flow is still
open, and consequently the escape rate is non-zero. Finally, the vanishing escape rate
at energy E0 represents the transition from an open to closed flow regime. For higher
energies, all the particles are trapped around the vortices forever.

9. Conclusions
We have shown that a linearly location-dependent modulation of the vortex

strength, modelling the β-effect, leads to a complex, though integrable, motion of a
couple of vortices. This dynamics can best be described in terms of effective potentials.
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To understand the complete dynamics of the modulated point vortices we need inform-
ation from two potentials: the angle dynamics can be extracted from potential W (α),
while potential V (y) provides information about the spatial shape. From the point of
view of the centre-of-mass orbits, the location-dependent potential V contains much
more information than the angle-dependent potential, and it has the unusual feature
of bi-valuedness in a broad range of parameters. As a consequence, the centre-of-mass
orbit develops spikes in such cases. It is also possible to deduce two other potentials
V1(y1) and V2(y2) describing the motion of the individual vortices 1 and 2, respectively.
The full information provided by the two new potentials V1 and V2 gives a full descrip-
tion of the global dynamics, equivalent to the representation by potentials V and W .

The β-effect makes the advection dynamics chaotic in the field of the two modulated
vortices. An interesting feature found here is the change in the character of the
advection process due to a change in the initial condition of the couple. The initial
angle determines whether the vortices are able to trap an area of the fluid in their
neighbourhood (outside the cores or other tori) forever, or whether they can only
generate transient stirring, and eventually leave all the advected particles (with the
exception of a small set) in their wake.

Finally, we point out an interesting analogy between the dynamics of a modulated
point-vortex couple and that of a single inertial orbit on a rotating Earth worked
out by Paldor and coworkers (Paldor & Killworth 1988; Paldor & Boss 1992; Rom-
Kedar, Dvorkin & Paldor 1997; Dvorkin & Paldor 1999; Paldor 2007). The orbits
of figure 5 are remarkably similar to the ones shown in figure 1 of Paldor &
Killworth (1988), indicating that a typical centre-of-mass orbit of the vortex couple
is similar to that of a point mass, although the latter is on a rotating sphere where
the latitude-dependence of the Coriolis parameter is taken into account without any
approximation. Mathematically, the explanation lies in the similarity of the equations
of motion: both take place in a potential whose shape changes from single-welled to
double-welled. Physically, the reason is that the vortex couple is a kind of rotator,
with the rotation angle as an internal degree of freedom (the distance between the
vortices is fixed), but the centre of mass, subjected to the β-effect, can exhibit similar
motion to a single point mass.
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stage of this research. Useful discussions with N. Paldor, P. Newton and A. Provenzale
are acknowledged. The support of the Hungarian National Science Foundation is
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Appendix. The figure-of-eight-shaped orbit
The appearance of a figure-of-eight orbit and the sign change of the drift is not

accompanied by any characteristic change of the potentials W or V . This is due to
the fact that the equation of motion for the centre-of-mass coordinate x is decoupled
from that of the other degrees of freedom. From (2.13) and (3.1) the drift velocity
along the x-axis is, in terms of the rotational angle,

dx

dt
=

β

2
(σ − cos α) cosα. (A 1)

For periodic dynamics, the average drift velocity is

v =
β

2
(σ − cosα) cos α, (A 2)
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where the averaging is taken over a single time period T (E). Owing to the nonlinearity
of the problem, no exact statement can be made, but a perturbation theory can
successfully be applied.

Let us consider the equation of motion for the angle around the origin, expanded
up to third order in α, for σ > 1. From (3.3)

d2α

dt2
= −β2(σ − 1)α + β2 σ − 4

6
α3. (A 3)

The perturbation solution of this nonlinear oscillator dynamics with initial angle α0

and zero initial angular velocity is known to be (see e.g. Landau & Lifshitz 1985)

α(t) = α0 cos ωt − α3
0(σ − 4)

192(σ − 1)
cos 3ωt (A 4)

with frequency

ω = β
√

σ − 1

(
1 − σ − 4

16(σ − 1)
α2

0

)
. (A 5)

The average drift velocity from (A 2) is at second non-trivial order

v =
β

2

(
σ − 1 − σ − 2

2
α2 +

σ − 8

24
α4

)
. (A 6)

Since α(t) can be expressed by cosine functions,

α2 = 1
2
α2

0, α4 = 3
8
α4

0 . (A 7)

The initial angle is related to the energy E:

E = W (α0) =
σ − 1

2
α2

0 − σ − 4

24
α4

0, (A 8)

from which

α2
0 =

2

σ − 1
E +

σ − 4

3(σ − 1)3
E2. (A 9)

The average drift velocity is thus expressed in terms of the energy as

v =
β

2

(
σ − 1 − σ − 2

2(σ − 1)
E − σ 2 + 3σ + 8

48(σ − 1)3
E2

)
. (A 10)

The wavelength of the orbit is then λ = v2π/ω with the frequency given by (A 5).
From the vanishing of the drift velocity we obtain the perturbative result for the

energy value E8 of the figure-of-eight orbit

E8 =
2(σ − 1)2

σ − 2

(
1 − σ 2 + 3σ + 8

12(σ − 2)2

)
. (A 11)

For σ = 9 used in figure 5 this first-order approximation yields E8 = 14.678.
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Velasco Fuentes, O.U. & Velázques Mũnoz, F. A. 2003 Phys. Fluids 15, 1021.

Zabusky, N. J. & McWilliams, J. C. 1982 Phys. Fluids 25, 2175.


