
J. Phys. A: Math. Gen. 22 (1989) L691-M97. Printed in the UK 

LETCER TO THE EDITOR 

On the organisation of transient chaos-application to 
irregular scattering 

Tamas TClt 
lnstitut fur Festkorperforschung, Kemforschungsanlage Julich, D-5 170 Julich, Federal 
Republic of Germany 

Received 25 May 1989 

Abstract. It is shown how the local structure of chaotic repellers, being responsible for 
transient chaotic behaviour, is deduced from the properties of hyperbolic periodic orbits. 
Relations between static and dynamical multifractal spectra, with respect to the natural 
invariant measure on the repeller, are derived for invertible maps of the plane. The results 
obtained for maps with unit Jacobian apply to Hamiltonian systems with two degrees of 
freedom which exhibit the phenomenon of irregular scattering and are characterised by 
an exponential decay of trapping probabilty. 

Chaotic behaviour can often be observed on finite timescales both in experiments [ l ]  
and in numerical simulations [2-141. This transient chaos is associated with a so-called 
chaotic repeller (more precisely, chaotic saddle) in the phase space [4-71. In contrast 
to chaotic attractors, these invariant objects are ‘double’ fractals [ 151; they also possess 
structures on all length scales along their unstable directions [7]. Such strange sets 
play a role in different fields of physics ranging from hydrodynamics [ l ]  through 
certain problems of disordered systems [5] to irregular scattering [ 16-23], a 
phenomenon of recently revived interest. 

Irregular scattering occurs in scattering problems characterised by an extended and 
non-trivial interaction region. There exists then, in the phase space, a fractal set of 
initial conditions for which trajectories stay within the interaction region for arbitrarily 
long time and exhibit chaotic properties. For a review, see [21]. The set of the bounded 
trajectories can be considered as a repeller, whereas trajectories coming close to it are 
transiently chaotic. Although such systems are Hamiltonian, we point out that their 
chaotic and multifractal properties can be understood by applying the same laws as 
in dissipative cases, and finally letting the dissipation disappear. The only condition 
found for this is an exponential decay (in time) for the number of particles staying 
inside the interaction region. 

Permanent chaos is organised around (unstable) periodic orbits [24-301. Based on 
the fact that strange attractors are densely covered by such orbits, it has been shown 
[28, 291 that the location and stability of periodic orbits determine the structures of 
strange attractors in their neighbourhoods. Our aim here is to extend this approach 
to the problem of transient chaos. We shall show that the local structure of chaotic 
repellers also can be derived from the properties of hyperbolic orbits, and that useful 
relations follow among multifractal spectra of entropies and partial dimensions. Certain 
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aspects of this problem have been treated in 0 VI1 of [30]. We apply here a different 
method which enables us to deduce the fractal structure not only along the stable 
direction but also along the unstable one. 

We investigate invertible maps of the plane x’ = M ( x )  and assume that the repeller 
is hyperbolic, i.e. to each point of it there exist distinct stable and unstable manifolds. 
Hyperbolicity is much more common for repellers than for attractors since often the 
folds of the unstable manifold (where homoclinic tangencies may occur) do not belong 
to the repeller [7]. 

The main problem in describing the metric properties of transient chaos is how to 
find an invariant distribution. In fact, sooner or later, all trajectories, except for a set 
of measure zero, leave any neighbourhood of the repeller. The probability that a 
randomly chosen point has not yet escaped a given neighbourhood after n steps decays, 
typically, as exp( - K n ) ,  where K is the escape rate [5]. Nevertheless, an invariant 
distribution can be defined by compensating for this escape. Let us start by distributing 
a great number of initial points on a surrounding S of the repeller. In other words, 
we start with an initial measure on this region. By subsequent applications of the map, 
the boundaries of the image region approach the repeller along the stable direction 
but escape is taking place along the unstable one. The final measure would be zero 
on the original neighbourhood S of the repeller. If, however, after each step the 
measure is multiplied by exp(K), i.e. if exactly that number of particles is pumped 
onto S which escaped it, a well defined limit exists [3 ,7 ,8] .  The procedure is the 
analogue of the Bowen-Ruelle-Sinai construction of the natural measure on chaotic 
attractors [31]. 

The limiting measure, known as the conditionally invariant measure [3] (or c-measure 
for short) is in hyperbolic cases smooth along the unstable manifold but has fractal 
structure along the stable one [3,8].  The crowding index [32] along the stable direction 
will be denoted by CY,. The true invariant distribution sitting on the repeller can then 
be approached by restricting the c-measure to a refining coverage of the repeller and 
normalising so that the total measure stays constant, where the refining partition is 
obtained by taking the cross sections of the nth images and pre-images of the surround- 
ing s, for n >> 1. This natural invariant distribution can be obtained in experiments or 
numerical simulations from asymptotically long chaotic transients [7]. It will be crucial 
for what follows that the fractal properties of the true invariant distribution differ from 
those of the c-measure only along the unstable direction where the former has non-trivial 
crowding indices, a,. 

Chaotic repellers seem to be the closures of the set of all hyperbolic periodic orbits 
[4,5]. Let us consider a small box of size I ,  ( I , )  along the unstable (stable) manifold 
around an element xo of a hyperbolic m-cycle, m >> 1. The c-measure inside this box 
Pc(ll, I * )  can be expressed, according to the definition of the crowding index as 

Here no anomalous scaling appears in 1, since the c-measure is smooth along direction 
1. The mth pre-image of the box is of size ( I ,  exp(-A!”’), I,exp(-A:”’)) where 
exp(hi””) denote the eigenvalues of the m-fold iterated map at xo. Due to the 
quasi-invariance of the c-measure 

Pc(ll, 1,) = PC(ll exp(-h\”’), 1, exp(-h$”’)) exp(Km) 

exp(-h\”’+Km+h:”n,). (2)  
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In the last line, we used the fact that the mth pre-image of the box is again around 
xo. Thus, the relation 

(3) 
follows where the local Lyapunov exponents A i  = Aj”’/m , i = 1,2, have been intro- 
duced. By repeating the argument now for the true invariant distribution (no compensa- 
tion, but non-trivial aI), one obtains a second equation (which holds also for attractors 

A I  - U +A2a2 = 0 

~ 8 , 2 9 1 1 ,  
A l a 1  + Aza, = 0. (4) 

aI = 1 - K / A ~  ( 5 )  

Consequently, 

i.e. along the unstable manifold the same relation holds as for repellers of one- 
dimensional maps [33,34], as might be expected. Equations (3)-(5) imply that fractal 
properties of the repeller can be deduced by determining the local Lyapunov exponents 
of a nearby hyperbolic periodic orbit. The number of cycle points N i ( a i )  with a given 
partial crowding index ai(i = 1,2)  defines a functionf;(ai) via N i ( a i )  - E ; ~ ( ~ I ) ,  where 

is the length scale of the corresponding box in the above-mentioned refining partition. 
By using cycles of length m, these local scales can be approximated [28,29] as 

-exp(-A\”’) and f:?- exp(A$”). The partial generalised dimensions 0;’ [35,36] 
can then be obtained as the Legendre transform of J;(ai) ( i  = 1,2): 

(4 - 1 ) 0;’ = qai( 9) -.L (ai(q )) (6) 
wherefj( ai(q))  = q, and the total generalised dimension Oq is their sum Dq = DY’+ 0:’ 
[361. 

As for the multifractal properties of the local Lyapunov exponents, the latter are 
connected with the generalised entropies, or the so-called dynamical multifractal 
spectrum,f,(a,) [37-391 (g(A) in the notation of [37]). In the case of strange attractors, 
the path probability @jm’ for trajectories of length m having the same symbolic fate 
as the m-cycle j, is proportional to the reciprocal value of the expansion rate exp(A‘,“’) 
[37]. For transient chaos, the latter is to be multiplied with the probability that the 
trajectory has not yet escaped, which leads to [7,39] 

WI””-exp(rcm) exp(-Ai”’). (7) 
The dynamical scaling index ao, defined in [37] via Wj - exp(-aom) is then obtained 
as 

ao= A l  - K.  (8) 
The number of trajectories with a given a. grows like exp(mf,(a,)) [37,38]. This can 
be used to calculate the generalised entropies Kq [40]. One finds 

( 4  - 1)Kq = W o ( 4 )  -fo(ao(q)) 

( ( W j  ) >-exp(m(l-q)K,) 

(9) 
with f !Jao(q) )  = 4. 

We note in passing that based on the definition 

(10) 
another relation also follows. The bracket ( ) denotes here the average over the invariant 
distribution. From (7) and a cumulant expansion, we obtain 

m )  (9-1) 
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where mQ, is the order 1 cumulant of the fluctating quantity A\*) [36] on the repeller. 
Q1 = 1, denotes the averaged Lyapunov exponent. Equation (1 1) is an extension of 
the formula derived in [36] for chaotic attractors. 

Equations (3)-(5) and (8) can easily be checked on the example of a generalised 
Baker's transformation [8] 

y'=(" Y < C  

1 - t(i - y )  y >  c. 

For 0 < a, b, c < and sc, t (  1 - c) > 1 this map possesses a chaotic repeller which is a 
prototype for a hyperbolic horseshoe [41] and is expected to be present locally in 
every hyperbolic repeller. 

In what follows, we derive further relations between static and dynamical quantities. 
Since there is a unique connection between A I  and a I ,  the number of trajectories 
exp(mfo(ao)) with a given scaling index a. is the same as the number of boxes with 
acrowdingindex a ,  = ao/(ao+ K )  (see ( 5 )  and(8)). Since thelatter is E ; ~ I ( * ~ ) ,  weobtain 

By differentiating and taking into account (6) and (9) an implicit relation is found: 

which is the analogue of what is valid for repellers of one-dimensional maps [lo]. 
Since a2 is expressed in terms of two variables A I ,  h2 (see (3)), one cannot derive 

an equation between the partial dimensions 0:' and the entropies. Nevertheless, 
numerically, f2( a2) can always be determined by calculating the escape rate and h I ,  h2 
for all cycles of length m ( >> 1 ) .  

In maps with a constant Jacobian J ,  however, 

h , + h2 = In J (15) 
holds leading to a unique relation between a2 and ao. By repeating the argument 
above, we find 

or 

As a consequence 

and 
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Thus, repellers of two-dimensional maps with constant Jacobian are particularly simple 
multifractals since any of the spectraf;(a,), i = 0,1,2, completely determines the other 
two. For q + 1, equations (14), (17) and (19) become explicit, we recover the expression 
[7] K = (1 - D\”)X, and (19) goes over into a Kaplan-Yorke formula [42]. Furthermore, 
in the limit K + 0, relations (14), (16) and (17) go over into those derived for hyperbolic 
attractors [43]. 

Finally, let us turn to the Hamiltonian limit where a considerable simplification 
occurs. For J = 1, due to the reversibility of the motion on the repeller, A I  = -A2  and, 
consequently, 

a1 = CY2 f , ( a * )  = f 2 ( 4  

i.e. the multifractal spectra along stable and unstable directions are equivalent. 
These formulae can be relevant for the phenomenon of irregular scattering. It has 

been pointed out [ 17,201 that the set of unstable periodic orbits is responsible for the 
irregular scattering. In order to apply the formulae above, an extra condition is the 
exponential decay of the survival inside the interaction region. This is ensured if there 
are no KAM tori in the system, but might be fulfilled in more general cases too. The 
averaged lifetime of a particle inside the interaction region corresponds then to 1 / ~ .  
If so, in systems with two degrees of freedom, where a PoincarC plane can be introduced 
(see Jung (1986) in [ 1 7 ] ) ,  relations (20) hold. They imply that the repeller with its 
natural invariant distribution is an isotropic multifractal. 

As a special consequence of (~OC),  we obtain for the partial fractal dimensions 

The relevance of these quantities follows from the fact that DC’ = D”’ c an easily be 
measured in scattering problems. Let us fix, as done in [20], a straight line in the 
phase space sufficiently far away from the repeller. Start trajectories from this line 
and specify the intervals from which trajectories do not leave the interaction region 
until at least n collisions. In the limit n + CO these intervals approach a Cantor set C. 
Since the stable manifolds of the repeller are assumed to extend smoothly to infinity, 
the fractal dimension of the set C is the same as that of the refining partition along 
the unstable direction, i.e. DY’. Furthermore, the dimension of C is independent 
of the orientation of the line on which C is sitting. 

In the case of sufficiently rarified repellers, when 1, the quantity 

KO 
KO+ K 

d =- r- 

where KO denotes the topological entropy, might be a good approximation to the 
partial fractal dimensions. In fact, d f  has been introduced as an approximant to the 
dimension of the Cantor set C [20]. For exceptional monofractal repellers K q =  
K O ,  Ob‘’= 0:’ and one finds DF’ = df ,  but otherwise the difference df- D:) is propor- 
tional to the derivative dK,/dq taken at q = 0 which can be considered as a number 
characterising the multifractality of the .repeller. 



Letter to the Editor 

We have shown that the concept of transient chaos can successfully be applied to 
irregular scattering in unbounded systems. Measuring the escape rate and the distribu- 
tion of either the local Lyapunov exponents ( fo(ao) )  or the partial crowding indices 
( f i (  a,)) completely specifies all multifractal properties of such Hamiltonian repellers 
in systems with two degrees of freedom. 

The author is indebted to I Procaccia for illuminating exchanges of ideas concerning 
the organisation of chaos. He benefited from discussions with B Eckhardt, 
G Eilenberger, P Grassberger, Z KOVBCS, and U Smilansky, The kind hospitality at 
the IFF of the KFA Julich is acknowledged. 

Note added in proof. It is worth giving also the global versions, containing sums over all hyperbolic periodic 
orbits of length m >> 1 ,  of a few relations treated above. The generalised entropies and partial dimensions 
of chaotic repellers, with respect to the natural measure, can be deduced from the rules 

( 2 3 ~ )  e - A \ l : " q  - e-(sq+70~ql18?2 

I 

p m  eA:;'<r,<q)-q) - 1 (236) 

1 ( 2 3 4  

j 

e ~ q m  e - A ~ y J v J q ) - A ~ ~ ' q  - 
J 

where ro(q)  = (9 - I ) & ,  r i ( q )  = ( 9  - l ) D t ' ,  i = 1,2.  Equation (14) and, in case of constant Jacobian, 
equations (17) and (19) immediately follow. For A',';''= -A$;"' relations (23) apply to irregular scattering. 
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