L Iil’tm_duction’ - -

§ Phys, A: Math. Gen. 24 (1991) 2793-2805 Printed in the UK

Dimension and escape rate of chaotic scattering from class:cal
and semiclassical cross section data

Christof Jungt and Tamds Téff

Institut fir Festlorperforschung, Forschungszentrum Julich, D-Sl’J'D Jitlich, Federal
_Republic of Germany

Received 29 January 1991

Absiract. A new method is presented to extract information concerning the strange repeller
underlying chaotic potential scattering based on classical and quantum mechanical seatter-
-ing cross section data in the semiclassical limit. In particular; we show that both the fractat B

_ dimension and ihe escape rate of the classical system can:be deduced from quantum

measurements. The method can be applied in_the limit of small # or small wavelength of -

the incomung projectile compared with the size of the target. ‘As input, the differential-
guantum ¢xoss section is needed against the angle and/or the energy in such a_good
resolution that _fast interference oscillations are well resaived, ~

Even though the phenomenon of chaotic scatteTing has been known in numerical
model computations for 20 years {for review see [1-3]), the investigation of deeper
prob]ems has only recently been started, and some interesting aspects of expenmental
1mportance are still open. The most spectacular féature of classical scattering chaos is
“'a complicated deflection function having singularities on a fractal set (2 manifestation
of the ‘sensitivity to initial conditions?). This behaviour is due to the existence of a.
chaotic repeller [4] in phase space. Its topological structure and quantltanve conpection
- to the singularities of the deflection function have been investigated in several case
studies [5-16] of potential scattering. The knowiedge of the deﬂectwn function provides
us with information on-the structure of the repellet and, in particular, on the most
important quantitative characteristics l:ke (partial) fractal dlmensaon Dy, escape rate
x and Lyapunov exponent A,

Unfortunately, the deflection functionis hard to obtameven in classical expenments
and is not at all measurable in micro-gystems. Hs measurement would require an exact
preparation of momentum and impact parameter of the projectile: However, these two
quantities are conjugate, and according to quanturm mechanical uncertainty, they cannot
be specified simultaneously with unlimited acéiracy. In usual scattering expenments
" the momentun: is specified as precisely as possxble, and the impact- parameter is
completely unspecified. ‘The quantity which_is really measured both classically and
quantum mechanically is the differential cross section as a. function of angle and/or
energy. The maximal information which can be obtained from a scattenng expenmentf

~ on-micro-systems is ‘provided by the dlﬁerentlal cross section. .
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1t is of particular intérest if one can decide from quantum cross section data whether
the classical scattering is chaotic and if one can extract D, x and A out of these data:
Of course, an affiriiative answer is expected to exist in the semiclassical limit only.
One possible way is a statistical analysis of the fiuctuations in the cross section: a
computation of the correlations and a check for properties which we expect for random
matrix theory. This procedure was shown to yield the escape rate and has been applied
to several examples [2, 171. In the present paper we introduce another method from
which not only the escape rate x but also the fractal dimension D, can be deduced s
From these two data the Lyapunov exponent A can be estimated.

In section 2 we first extract ‘I, out of the classical cross section by investigating
_the pattern-of rainbow singularities in two degrees of freedom systems. One might
hope that a similar method also works for the quantum mechanical cross section,
Unfortunately,‘this is not the case and we shail see in more detail why not: The quanturs _
CTOss SEhLiuu, however, has an. impaﬁaﬁt iype of siructure that the classical ¢ross -
section does not have, namely interference oscillations. In section 3 we use these
oscillations appearing aiready in the semiclassical approximation to extract Dy and &
by means of a néw type of scaimg argument. The techmcal detalis of the method are
relegated to an appendix. :

As an illustrative example we take a scattering system for whlch the repe]ler is
completely knOWn [5 14]. The process is defined by the fol]owmg two variable potential ’

V(x, y)= e-—lx-t--")‘-# e :/J‘)l—(y-w’sT >?+e—(r~l!«/‘)=—(y fT )1 ( 1)
To the best of our knowledge n-hill pmblems, a special case of which is provided by
(1) for-n=3, are the only scattering processes known so far with the following
-properties: (i) the potent:ai decreases sufficiently fast in all directions so that the
asymptotic conditions of scattering theory are fulfilled, (if) the potential is smooth, _
- (iif) the symboli¢ dynamics of the repeller is known i ina globally exact ferm and turns
out to be complete,

Property (iii) is irrelevant from the pomt of view of our analysis. It only makes

- easier the investigation of the classical repeller and thé determination of quantities
like Dy, #; A. In section 2 we work with classical rambow singularities. Therefore, we

_ need a smooth potential where the rainbows have generic structure. Billiard scattering

systems with hard wall targets, which are the subject of quite extensive investigation _
f6,7,9,11, 13, 15], do not show generic rainbows and are thus not suitable for demon-
strating the arguments of section 2. The general results of the. semiclassical analysis,
however, do nof rely upon smoothness propemes and are vahd for all cases fuIﬁllmg

property (i).

2. The pattern of rai_nhow singularities -

As has been explained in [18], the most spectacular feature of chaos mamfested in _
the classical differential cross section as a function of the angle isan mﬁmty of rainbow .

singularities. They are atranged in a fractal pattern- reﬁectmg ‘the structure of the
underlying chaotic repeller in phase. space. - i

Let us give a short outline of the explanation: i ina measurement of the Cross sectmn —

- the i mcommg momentum p,, is fixed and the impact parameter axis is covered evenly
by incoming pariicles. In the casé of chaotic scattermg, the impact parameter-line sphts .
mto an infinity of intervals I; in which the deﬂectmn funct;on 8(b)is con“tmuous, and
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the boundaries of the [, are points of discontinuity. Here # is the scattering angle and
b is the coordinate along the impact parameter line. Let us assume that the set {1} of
intervals js ordered according to their lengths r,: /> " if r, <r,. In each interval , the
deflection function oscillates smoothly and creates -3 rambow singuiarity in the cross
section at each of its relative extrema. Trajectories starting in shorter intervals I, stay -
longer near the repeller and leaveits neighbourhood closer _io-some branch of its
unstable manifold. The intersection of these branches with a plape reﬂects the. fractal'
structure of the repeller itself. We can Tepresent such a cut in angular momentum and

“angle variables and consider its projection on to the’ angle axis. Accordmgly, the angular

minima and maxima of the manifold are also arranged in this fractal _pattern, The
minima and maxima of the deflection function (i.e. the rainbows) accumulate towards-
these angufar extrema of the manifold. Thus, the distribution of the rainbows- aleng
the angle axis reflects the fractal pattern of the chaotic set in phase space.- -In particulat,
the fractal dimension of the rainbow-pattern is expected to coincide with the >artial -
fractal dimension Dj [4] of the repeller. (The total dimension in & three variable
autonomous flow can be-expressed as 2D+ 1.} Thus, measunng the dzmensmn of the
set where the rainbow singularities sit should yield D;. A non-zero value of the partial - A
fractal dimension is 2 sign of chaotic scattering,” = - .
There is, however, & practical difficulty which- makes the determmation aF Do
mon-trivial. This is dué to the huge number of very weak rambow«smgulantles whlch

~oannot be distinguished from a smooth” background With _unlimited accuracy, one

could see an_infinity of rainbow singularities. They all are” “locally-described by a
function of type Afe— g7t vz
corstant on the other side. “This follows from the fact that . . -

B (b)] T “(:é)’_

) s the contnbutmn of a trajectory thh lmpact parameter b to. the dlﬂerentlal cross
section. Close to a-local extrenium @y; of the deflection. function, we can “write

(b} =0, —a(b —b,)* from which ¢ ~}(5,— b,}| ~ |6 — 8, |7 s obtained. The peaks are, :
sharp and, therefore, g; can, in principle, be determined exactly from the cross section,’
By using a finite resolution, i-¢. by dw:dmg the angle variable i ina ﬁmte number of

| boxes, the he:ght of a peak in a box is given by

w =f A;e~9 -[“f2d0

where the mtegratlon runs from By, tO the boundary of the box in which GR_, lies:
Unfortunatel,r, the weights A; and, therefore, also the weights w, decrease expanemually,
rapidly for increasing j [18] In addition;, the very weak rainbows are groupe&*egether
very densely on the & axis, so that they cannot be resolved Consequently, we only
can read -off a finite-number of strongest rainbows. The rest are not separated or. .
disappear in the, statistical fluctuations, Thus, we expect to be ablé to- ldennfy onlya-
few (of order 100) smgulanues and the task is to try to get the number Do nut of
these data. - 3 - - -
For this purpose, we recommend touse a method that has beeri shownf 0 bermuch
more efficient than box counting, in connection. with both dynamical systﬁms [19} and .
growth processes [20]. The idea is to distribute points uniformly on the f /actal 2nd use
these as’ centres of balls of radms R. Then count the number of pomt% (R) of the,

N

on one side of the rambow posmon Orys and by a -’
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fractal falling in such a box. The average of 1/ N{R) over all balls should scale with
the radius as R~ [19, 20}, i.e.

(N"Y(R)H~R™P

where [, is the fractal’s dimension. If only a few {(n} points of the fractal are known,
we can take all of them as centres, count the numbers N,(R) of points falling in ball
i, and use the formula

—ln(% )E Nj'(R)) = Dy Ir R+ constant 3)
=1

to estimate the fractal dimension. R can change between the iower cutoff § of the
system (the degree of resolution) and the total linear size L. Relation (3) is expected
to hold for R« L. If the number of fractal points is low, the system seems to be a set
of isolated points on very fine scales. Thus, the true fractal behaviour can show up
only in an intermediate range § <« R« L.

Let us apply now this method to a numerical example. We take system (i) with
an incoming momentum p,, = (—1.0, 0.0). This corresponds to an energy E = 0.5 of the
projectiie, being quite close to the saddle energy of the potential E, =~ 0458, For E =0.5
we obtamed the partial fractal dimension of the repelier, from the discontinuities of
the deflection function, as D= 0.59 which is not too small. (With increasing energy,
D, would decrease rapidly and would go to zero at the hill maximum E_, = 1.005 of
potential (1) [12].)

The impact parameter interval I, =[0.08, 0.28] has been covered evenly with 10°
incoming particles. Initial conditions outside I. do not contribute to rainbows, they
only give a smooth background in the cross section which is irrelevant for our
considerations. Further, we have divided the angle interval between 46 and 74 degrees
{a range where the unstable manifold of the repeller extends to infinity) into 28 060
boxes of length 10~ degrees and counted how often they were hit by outgoing particles.
The result is plotied in figure 1. It gives the differential cross section without the smooth
background coming from b values outside I.. At this resolution we could identify only
66 rainbow singularities clearly.

dg/d8 (8)
&~

]

) 55 &0 85 70
8

Figure L. Classical differential cross section for potential (1) in the angular interval [46°,
74T taken at E=05, ==
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Figure 2. Computation of the fractal dimension for the 66 singutanties identified in figure
1, based on the method described by (3) The dashed line has a stope of 0.66

Measuring the number of points N,(R) falling in ball i (1 =1, 66) we did find a
linear behaviour (3} over two decades of R as illustrated in figure 2 (although nc
straight line can be seen on the usual In N against In 1/£ plot of the box counting
method). As a result we obtain D,=~0.66 which has to be compared with the exact
result Dy=0.59. It is easy to understand why this value is somewhat too large: since
densely clusiered weak rainbows are not resoived, we oniy see ihe sirong ones which
are more evenly disiributed than the totality of ail zainbows.

Finaily, we ask what would happen if we tried to apply the same method to gquantum
mechanical data? In the quantum cross section the rainbows are not completely sharp;
they acquire a width proportional to #*>. In addition, the shape of the peaks is strongly
influenced by interferences, so that it is extremely difficult to locate the actual rainbow
angles with sufficient accuracy even at small values of f. (What the rainbows look like
in a semiclassical calculation for our model system (i) has been shown in [21].)
Therefore, the method to determine I, from the rainbows of the quantum differential
cross section seems to be hopeless. In the next section we work out a completely
different approach based on the properties of interference oscillations.

3. The pattera of interference oscillations

When comparing classical and the quantum differential cross sections of the same
system, the most spectacular differences are the quantum mechanical interference
oscillations. In this section we demonstrate that on a semiclassical level they contain
relevant information concerning the classical repeller.

In a semiclassical approximation the scattering amplitude is given by [22]:

£le, B, 0)=3 Ve exp(iS,/ h —imp, /2) (4)

provided the angle ¢ is away from the classical rainbow singularities: & # 8g,. The sum
runs over all classical scattering trajectories I', coming in with a specified incoming
direction & and energy E and going out with the measured scattering angle 8. ¢ is
the contribution of trajectory T', with impact parameter b, to the classical differential
cross section and is given by (2) taken at b= b,. The quantity S, = —frj q dp is the
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reduced action [22} of trajectory ', and g, is its Maslov index, i.e the number of
caustics met by the trajectory. The differential cross section is then obtained as

do 2
@{an ‘El 9)—;f(ﬂ, ES e)l - R (5)

Let us investigate the interference effects in {(5) in the limit of small #. In principle,
¢, is a slowly varying function of &, E and 0. Investigating very smail intervals of E
and 6 only, the variation of ¢; is irrelevant, and in our present derivation we can take
the function ¢, at some reference value ay, E,, 6. Let us stay away from caustics, so
that the number of contributions to (4) does not change and u, stays constant. The
only source of rapid variation is then the phase §,/# because the classical action is
divided by a small quantity #.

First, we keep E = E, fixed and expand §, linearly around éy:

5,(8)=5,(6.)+ (8- o)L, (6)

where L, =95,/06(8,) is the outgoing angular momentum of trajectory T',. The cross
section then becomes

g (@0 Ea, 0) =5 ¢+ T 2Va cos(oy — 0(Lc= L)/ B) ™)

where the @5 are constant. The first term is the classical contribution; the double sum
represents the interference oscillations. As has been explained in [21, 23], the values
of angular momentum differences define a fractal set reflecting the fractal pattern of
the chaotic repeller. Based on this idea, lef us take at fixed a,, E, the Fourier transform

w02

of the differential cross section over a suitable range of 9 around some 6, away from
c¢lassical rainbow positions. One can then analyse the positions of the frequency
contributions and determine their fractal dimension. Unfortunately, with this direct
method we did not succeed in numerical examples due to the rather uneven resolution
of g(L) (see figure 3). We had better success with the following strategy.

; |

]

lng[LJ

zi |
| SN

L

Figure 3. Logarithm of g(L), of the Fourier transform of the semiclassical differential cross
section (computed in [21]) as & function of angle for E=06, a=w
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Constder the plot of g(L), where the frequency (angular momentum difference)
axis has been divided into identical boxes. Take a variable threshold S and count the
number Z(S} of boxes whose content is iarger than 8. The exact Z(5) is a step function
In the following, however, we consider a smooth approximation to it. We claim that
this function exhibits the scaling behaviour

Z(S)~ (%)w" In (ESM) : (9)

Here Sy is the largest box content, and I is the partial fractal dimension of the
repeller. A derivation of (9) is given in the appendix.
Taking the logarithm of (9) yields

InZ(8)= zDoln( S)Hn(ln( S ))+constant {10}

This relation provides a simple method for obtaining the fractal dimension D,: measure
Z{(8) and 8, and consider the plot In Z(8}~In(In(S,,/S8)) against In($,,/S). In the
range S <S8, a straight line should be found with slope 2D,.

Let us apply this method to our illustrative example (1). We took A=2x10",
ag =1, picked out the @ interval [5.4, 5.402], and computed the cross section with a
semiclassical method described in [21]. For such a smali value of # a numerical solution
of the Schriodinger equation would be hopeless-but the semiclassical approximation
is expected to be excellent. The ¢nergy is chosen to be E;=0.6, because at this value
the semiclassical sum (4) is already sufficiently rapidly absolutely converging. (At
E =0.5, which we have taken in section 2 for the classical cross section, the semiclassical
sum is only osciltatory convergent.) The Fourier transform g{L} of this cross section
is shown in figure 3. Here the frequency axis has been divided into 8192 boxes. A
comparison of this plot with that of the classical angular momentum differences shown
in figure 2 of [23] shows that g(L) is really a broadened version of the classical
distribution.

After determining the function Z(8) from figure 3, we obtain the plots of figure 4.
The graph of figure 4(a} seems to have a constan{ curvature but on the piot where the
logarithmic correction has been subtracted {figure 4(b)) we find an approximately

8 {a}

InZ(5)

6 1 2 3 4 5 & 1 & 9
(n1§,/81

Figure 4{a). Logarithm of the number of boxes n the histogram of g(L)} with contents
larger than S against the logarithm of Sy /S (8y, = 5900)
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in ZISh - 1nlInl 54 /51)

In'5,/8]

Figure 4(b). As figure 4(a), but with the logarithmic correction of (1<} subtracted The
dashed line has a slope of 079

linear range and read off the slope as 0.79. This gives a value for the dimension as
Dy=0.395 which has to be compared with the value D;=0.39 which we obtained from
analysing the classical deflection function.

Next, let us consider the cross section as a function of the energy for fixed 8,
{+ 8g,) and apply an analogous procedure. We expand S,{ E) linearly around some Ej:

S(B)=S/(E)+(E-E)T, (11)

where T, =48,/3E(E,) is the time delay of trajectory T',. The cross section becomes

87 (@0, E, 00 =T ¢+ 3 2Vag cos(t, ~ E(Tu~ T}/ h) (12)
ds 7 k<y
with the Y5 as constants, The pattern of delay time differences again reflects the
fractal structure of the classical repeller [21]. Therefore, we take the Fourier transform
g(A) of the cross section over an appropriate interval of energy values {ay, ; fixed),
divide the frequency {delay time differences) axis into boxes, and count the number
Z{(8) of boxes whose content is abeve the threshold 8. Because in (12} the same weight
factors ¢, appear as in {7), we expect the same scaling behaviour (9} and (10) to hold.
From the treayment of the energy dependent cross section, more precisely from
g{A), we can obtain an additional information. The probability density for finding a
ciassical trajectory with time delay T is given by

P(T)=we™" a3

in the limit of sufficiently large values of T. Here x is the escape rate of the repeller.
Correspondingly, the distribution of time delay differences must also show the same
exponential behaviour. From a logarithmic plot of the Fourier transform of the cross
section we can, therefore, read off « as the slope of the envelope.

To give a numerical example for system (1), we choose E €[0.6,0.602], ao=m,
=54, h= 107", Figure 5 shows the logarithm of g(A). Inserted is a straight line of
slope —0.4 which is a good it to the envelope towards large time delay differences.
The exact value of the escape rate is x = 0.42 which comes out of an evaluation of the
discontinuities in the deflection function. Next, we divide the time axis in figure § into
8192 boxes and count the number Z(8) of boxes with contents above the variable
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19

Figure 5. Loganthm of g{A)}, of the Fourier transform of the semiclassical differential cross
section (computed in [21]) as a function of energy for 8 =354, & = 7. The dashed line
shows the envelope and yields an approximate value for the escape rate as « ~0.4.

g4 lal

o t 2z 3 & 5 & 1 & 9
tn (5,75}

Figure 6(e). Loganthm of the number of boxes m the tustogram of g(A) {see figure 5),
whose content is larger than S ageinst the loganthm of S,/ § (S, = 5000)

n Z(S) - ln {in{S,7SH

ln {5,/5)
Figure 6/b}. As figure 6{a), but with the loganthcaic correction of (10) subtracted. The
dashed line has a slope of 0.83.
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threshold §, Figure 6 shows the plet of In Z({5) with and without logarithmic corrections,
Towards the right boungdary of tne plots a saturation occurs because of the finite
number of boxes. Therefore, we read off the slope from the first part of the curve
in Z —1Infin(S,,/ $)} and obtain a value of approximately 0.83.

It is worth mentioning that the knowledge of the escape rate and partial fractal
dimension makes an accurate cstimation of the Lyapunov exponent possible. Lt us
recall 2 famous relation valid for hyperbolic repeifers in three variable flows [24]:

K
1-D,

A= (14)
where I}, and A are the partial information dimension and Lyapunuv exponent,
respectively, belonging to the natural measure on the repeller. The partial fractal
dimenstion D, we deduced from the cross section data difiers from D, << Dy, but the
difference is typicaily rather smaii. (In our exampie ai £ =0.6, =.g. Dy = D, +0.01.) Thus,

.4

i—Ly

A== (15
is expected to be a good approximation of (actually an upper bound to) the Lyapunov
exponent. Using the values x =0.4, Dy =0.38 we obtain i ~ (.66 which is close {0 the

exact exnonent A =068, Note that the annroximate value is ln“mr than the sxact one

ZavaAL i CEELAR M HE S H RS MU H 3 H

due to our underestimation of the escape rate which happens to have an effect stronger
than replacing D, by D,.

Finally, we note that x as obtained from g(A) yields the escape rate measure:d in
real time. From the mvestigatlon of the deflection function one obtains, however, the
escape rate kn,, on an appmpnate Poincaré section, i.e. in diserete time. These two
quantities are simply relater Jia k., = /T where 7 is the averaged turnover time
between two pomjs of the repem:r on the Poincaré section. bxmﬂariy, the Lyapunov
exponent A, measured in discrete time is obtained as A, = A/ where 7 is the same
turnover time as above. As & consequence, (15} holds for the map in the form of
Ainap ™ Kinap/ (1~ Dy). In our example v=246.

4. Final remarks

This paper shows how characteristics of the classical strange repeller can be extracted
out of the differential scattering <ross section which is a clearly measurable quantity
both classically and quanium mechanically. In the classical case; the fractal dimension
can be read off from the pattern of rainbow singnlarities. Although we believe that the
cross section contains more information, we have not succeeded in finding a practical
method for deducing the escape rate from the classical data.

It is remarkable that both quantitic: can be obtdined from the semiclassical cross
section. The procedure relies essentially on the interference oscillations which are
typical quantum effecis. In contrast to the classical method, here we have to restrict

. our attention to a @ range which is away from rainbow singularities. This indicates
that in the averaging out of the interference oscillations, which oceurs in the transition
-from the quantam to the classical cross section, valuable information is discarded; the -
fractal dimension cannot be extracted out of a short & mtevval classically but can be
extracted semiclassically.
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Our method requires two conditions to be fulfilled: first, it only works in the limit
of small & In practical examples this means, that the wavelength of the incoming
projactile is very small cempa;gd with the size of the target potential. Second, we have
assumed that the incoming diréction of the projectiles relative to the target is kept
fixed. For real scattering experiments this- &haﬁg_saqulrehhat the orientation of the
target is fixed in space. Otherwise, all interference oscillations areaveraged out. Usuaily,
these conditions are not fulfilled in the scattering of two microscopic particles off each
other. However, they are fulfiled in the scattering of a particle off a macroscopic target,
e.g. the scattering of an electron off electrically charged metallic objects. They are also
fulfilled for the motion of ballistic electrons in mesoscopic semiconductors. In this
case the motion is esseatially two-dimensional and, therefore, it comes even closer to
the case considered in this paper. Interestingly, the chaotic fluctuations of the conduc-
tivity of small semiconductors have recently been interpreted in terms of chaotic
scattering [25].

Let us close with a remark on the relation of our results to the ones presented in
{17]. There the energy correlation fanction of the scattering amplitude has been
evaluated. This correlation contains an averaging process over small enerpy intervals.
Thereby, the knowledge about the detailed fractal structure of chaos is lost. Con-
sequently, as an essential measure of the classical repeller only the escape rate x can
be read off. In the method presenied here we also obtain « when disregarding the
details of g{A) and looking at the asymptotic stope of the envelope only. This parailels
exactly the extraction of x as in [17]. By an evaluation of the fine fractal details of
the Fourier spectram, however, we ubtain in addition the value of the partial fractal
dimension Dy, information which is lost during any kind of averaging process.
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Appendix. Derivation of equation (%)

‘When catculating the classical cross section, the incoming momentum is kept fixed
and the impact parameter axis is covered evenly by projectiles. The deflection function
6{b) gives the scattering angle & for the impact parameter b. All trajectories which go
into the measured final direction contribute to the cross section do/d6(8,), i.e. all
trajectories I'; which start with an impact parameter b, such that #(d)=0,. Their
contribution to the cross section is ¢, as given by (2) taken at b=b,. In the case of
scatiering chzos, the impact parameter axis is cut into an infinity of intervals I where
the deflection function is continuous. Between these intervals a Cantor set of discon-
tinuities remains. ‘

Let the length of interval I, be denoted by r.. Using a resolution 2 in measuring
the impacgt parameter, the number M () of intervals resolved (i.e. the number of
intervals I, with r, > £) increases with decreasing e. The gaps between the resolved
intervals are of crder ¢ and provide a coverage of the Cantor set of discontinuities.
Its dimension D, was shown to agree with the partial fractal dimension of the chaotic
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repeller {13]. The number of gaps is, however, practically M{e}, therefore, one expects
M(e)=g", (A1)

The next important observation is that the deflection function looks similar in all
intervals I, it is just scaled by the length r, (for some figures see [18]). If there is a
contribution ¢, to the cross section {rom a trajectory I', starting from interval I, then
there are other trajectories I'y starting from all other intervals I, and give contribution
¢, to the cross section, where

[ (Az)

o I;‘

in the limit of small intervals. Accordingly, if a threshold § is prescribed, the number
N{8)} of ¢, values with ¢, > S increases with the same power D which gives the growih
of the number of intervals m {Al).

DD
N(s§)= (%'—') (A3)

where Sy, is some constant, essentially the maximum of ¢,. For simplicity, let us assume
for the moment that S), =1, or that § is measured in units of 5);. Note that in the
semiclassical sum {4) not the ¢s but rather their square roots appear. Taking the square
root of the weights in (A3} is equivalent to taking the square of the threshold S or to
taking twice the exponent. Therefore, the number N(S) of values \/E; which le above
S is given by

N(§)=87%P (A4)
P L, R SR Y B A o & NPT TR, S PR S T o B
aliu it UCUSILY A0 ) Ul i..UllI.ilUi.l.LlDllb d[Uu[lU 11 Zil'tit: [u B k)
aN
a{8§)= ———=2D,8720,
(5) as o (AS5)

For the cross section in (7), (8) or (12) we need the number of cross terms for
which Ve, > S This inequality cau be fulfilled for any k with Ve, = a, if j is chosen

ench that fo = €a Tha Aa P o1 T I
Suta Wlal V&~ S/ 4 ing ucnau}' u\u} of contributions with v =4 is glvcu ctu..ununug

to (A5) by n{a)=2Dya"*%"", The number N{S/a) of contributions with v >5/a
is obtained from (A4) as

N(S/a) S—ZD ZD

The number Z(S} of all pairs with Ve, > S can then be found by multiplying n(a)
with N(S/a} and integrating over all allowed values of 2. The upper limit of ¢ is 1
{or S); in the unscaled case). For a smaller than S, the value of S/a in the argument
of M would be larger than I, which is not allowed. In order to avoid double counting
of all contributions, we take as lower limit of a the value VS, Thus, sae finds

Z(S)=J:/__n(a)N(S/a) da = Dy(S)*PeIn(1/ ). (A6}
5

After replacing 1/8 by S,,/ 8§ we obtain (9).

g



dAriesT i al i 1 ke

Dimension and escape rate of chaotic scattering 2805
Refereaces

[1] Eckhardt B 1988 Physica 33D 89
{2} Smulansky U 1990 Chaos and Quantum Physics ed M-J Giannoni er al (New York- Elsevier)
{3] Bliimel R 1921 Dureciions in Chaos vol 4, ed Bai-lin Hao et of (Singapore: World Scientific), in press
{4] Tél T 1999 Directions in Chaos vol 3, ed Bai-lin Hao (Singapore’ World Scientific) pp 149-221
[5] Eckhardt B and Jung C 1986 J. Phys. A Math. Gen 19 L829
Jung C and Scholz H J 19837 L Phys. A: Math. Gen. 20 3607
{6] Eckhardt B 1987 J Phys A- Math, Gen, 20 5971
{7} Hénon M 1988 Physica 33D 132
[8] Troli G and Smmiansky U 1989 Physica 35D 34
I¢] Gaspard P and Rice S A 1989 J. Chem. Phys 99 2225, 2242, 2255
[10] Tél T 1989 J. Phys A- Math. Gen. 22 L691
[11} Cwitanovié P and Eckhardt B 1989 Phys Rev. Lert. 63 823
{12] Bleher S, Ott E and Grebog C 1989 Phys. Rev. Lert. 63 919
Bicher §, Grebogi C and Ot E 1990 Physica 46D 87
[13} Kovides £ and Téi T 1990 Phys Rev Ler 64 1617
[14] Jung C and Richter P 1990 J Phys. A- Maih. Gen 23 2847
[15] Chen Q, Ding M and Ott E 1990 Phys Lett 147A 450
[16] Doron E, Smulansky U and Frenkel A 1990 Phys, Rep. Lett. 65 3072, 1990 Chaotic scatteting and
transmission fluctuations Freprint
[17} Blume!l R and Smilansky U 1988 Phys. Rev Lert. 60 477; 1989 Physica 36D 111; 1990 Phys Rev Leu.
64 241
{187 Jung C and Pott § 1989 J Phys A Math Gen 22 2925
[19] Grassberger P 1986 Chaos ed A V Holden {Manchester Manchester Unsversity Press) p 261
[20] Tél T, Filep A and Vicsek T 1989 Physica 159A 155
Vicsek T, Family F and Meakin P 1990 Europhys Lent 12 217
{21] Jung C and Pott S 1950 J Phys. A. Math. Gen 23 3729
{22] Mitler W H 1975 Adv. Chem. Phys. 30 77
[23] Jung C 1990 [ Phys A' Math. Gen. 23 1217
[24] Vantz H and Grassberger P 1985 Physica 17D 75
{25] Roukes M L and Alerhand O I 1990 Phys Rev. Leit. 65 165t
Jalabert R A, Baranger H U and Stone A D 1990 Phys. Rev. Lert. 65 2442



