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The controlled signal then exhibits a periodic behaviour which is qualitatively different 
from that ofthe actual attractor. The time needed to achieve control is shown to be constant 
and to lie in the order of magnitude of the transient lifetime. The number of controlled 
trajectories, however, decreases the maximum perturbation according to a power law. 
Applicability to experimental situations and comparison with permanent chaotic cases are 
discussed. 

The problem of controlling chaos has attracted recent interest [l-111. The method of 
Ott, Grebogi and Yorke (OGY)  [3] has the unique feature that it enables one to select 
a predetermined time-periodic behaviour by making only small time-dependent per- 
turbations. They show that permanent chaos can always be depressed by stabilizing 
one of the many unstable periodic orbits embedded in the chaotic attractor. The idea 
is to start with any initial condition, wait until the trajectory falls into a target region 
around the desired periodic orbit and then apply feedback control. 

In this letter we demonstrate that transient chaos can also be controlled in the same 
spirit. This has the striking consequence that in such cases a behaviour completely 
diferenf from that ofthe actual attractor(s) can be selected. Furthermore, the controlling 
process exhibits novel features: the time needed to achieve control turns out to be 
constant, independent of the maximum perturbation, as a consequence of the finite 
chaotic lifetime in the unperturbed system; the number of trajectories controlled does, 
however, depend on the maximum perturbation and follows a power law. 

In systems exhibiting transient chaos there exists in phase space an invariant set 
called a chaotic saddle or repeller [IZ-lS], together with an attractor which is often 
simple, i.e. periodic. Trajectories start from randomly chosen initial points then 
approach the attractor with probability one. Before reaching it, however, they might 
come close to the strange repeller and stay in its vicinity for a shorter or longer time. 
This results in the appearance of chaotic motion with an average lifetime of I / K  where 
K is the escape rafe, a basic characteristic of the chaotic repeller. Furthermore, the 
strange set has a fractal structure along both stable and unstable directions and, just 
like a chaotic attractor, appears to be the closure of an  infinity of hyperbolic periodic 
orbits Li6-lXj. A s  an exampie, figure 1 shows the invariant sets (attractor and chaotic 
repeller) for the Henon map x.,, = a - x i  + by., yn+l  = x. at a parameter setting where 
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Figure 1. Invariant sets of the Henon map xn+, = a - xt + by., yn+, = x. at the parameter 
setting D = 1.45, b =0.2 where the attractor is a 5-cycle (black cmses).  The fractal set is 
the chaotic repeller. Any periodic orbit on it can be stabilized by applying the method of 
OGY. We select the fixed paint denated by a dot. 

the attractor is a period-5 orbit. Methods for constructing chaotic repellers are available 
[13-151. Long-lived chaotic transients-the best candidates for experimental observa- 
bility-are present around crisis configurations [12], at parameter values just beyond 
the disappearance of the chaotic attractor. It is worth mentioning that systems with 
fractal basin boundaries [19] are also accompanied by transient chaos since such 
boundaries are, in general, the stable manifolds of chaotic saddles. 

The astonishing feature in controlling transient chaos is that one stabilizes an 
atypical behaviour associated with a chaotic repeller, a set with a measure zero basin 
of attraction. In order to  achieve this, one has to use a large ensemble of points starting 
from some region of phase space including the repeller and concentrate on long-lived 
chaotic transients. We assume that the dynamics can be represented by a k-dimensional 
(ka 1) nonlinear map en+, =f(&,p)  where p is some accessible system parameter. 
We choose to stabilize a periodic orbit on the chaotic repeller and specify a target 
region around it. For simplicity, we take here always a fixed point but note that any 
of the hyperbolic periodic orbits of the strange set can be chosen, providing the method 
with a high degree of flexibility. Without loss of generality we set 6 = 0 and p = 0 at 
the desired fixed point. 

Next, take a ball around the repeller (or some part of it), choose randomly a large 
number of points in it, and iterate them forward. Some will stay around the repeller 
over many time steps and might fall near the desired fixed point at c=O. Therefore, 
wait until en of any trajectory enters the target region around the origin and then 
change the actual value p .  of the perturbation parameter p to be different from zero. 
Fickp. so that the next iterate &+, =f(&, p . )  falls on the stable manifold of the origin 
of the uncontroiied map. if this is the case, the paramete pertuibation can again be 
set to zero ( pn+,  = 0) and the orbit will approach the fixed poi according to a geometric 
progression. This mechanism is exactly the same as for chaotw attractors; therefore, 
the result for the appropriate choice of p .  can be taken over from OCY. The computation 
based on the linearized dynamics around a fixed point of a two-dimensional map says 
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[3] that 

Here A. and/. are the unstable eigenvalue of the fixed point in the uncontrolled map 
(p = 0) and the corresponding left eigenvector, respectively. The quantity gp yields the 
shift of the position of the fixed point when changing the perturbation parameter by 
a smaii amount of p. it is supposed that the parameter p can be varied in a smaii range 
IpI<p* only. Thus, if 1p.I happens to be greater than the maximum perturbation p* 
we set p. =O. This last condition also specifies the size of the target where control is 
activated. 

Using this algorithm the control of chaotic transients can be carried out. Figure 2 
exhibits an uncontrolled transient chaotic signal of the H6non map with a period-5 

illustrates, by modifying a statement of OGY, that improvement is possible via small 
control even in systems with periodic attractors, provided they coexist with chaotic 
repellers in phase space. If the only invariant set is a periodic attractor, small perturba- 
tion can change the orbit only slightly [3]. If, however, weak chaos is present, i.e. the 
topological entropy of the system is positiue, one can choose to stabilize any of the 
periodic orbits of the chaotic repeller. This leads to a behaviour, selected according 
to some criterion [3], which is completely different from that of the attractor. 

The average time r needed to achieve control of permanent chaos was found [3] 
to depend on the maximum perturbation p* according to a power law: r -p ; '  with 
an exponent y s  1 for small p*. Here we show that this rule is no longer valid for 
transient chaos. The reason is that not all trajectories will now be controlled since the 

This can be best demonstrated by the example of one-dimensional maps. We 
consider a single humped map f (x) defined on some support interval and having a 
maximum outside this interval (see figure 3). Such maps generate transient chaotic 
signals and possess Cantor-like sets as  their invariant repellers. The position of the 
actual attractor depends on the form off (x) outside the support interval. Since it does 
not play any role in what follows: we do not specify this form. Let us start with a large 
number No of initial points distributed uniformly on the support. Control sets in if, 
after any number of interations, a trajectory falls into the target region, an interval I 
of length A around the fixed point xF( #O). In general, A is proportional to the maximum 
perturbation p*.  A single humped map f (x) can be embedded in two dimensions by 
considering the recursions xn+, = f (x"), y.+, = x.. The vectors/. and g then point along 
the x-axis and the diagonal, respectively, and (1) can be applied. (In the example of 
the controlIedparabolamapx.+,=a+p.-x?,, (1) yieldsp.=2x,(x,-xF) if Ip./<p*, 
and thus A = p * / x F . )  The number of trajectories controlled in the first step is propor- 
tional to the lengths A, and A, of the two pre-images I, and I ,  of the interval I, 
respectively, as shown in figure 3. One of the pre-images of the interval I o ,  which 
contains the fixed point, falls into itself, the other one into I,. Therefore, when counting 
the number of controlled trajectories in later steps, it is sufficient to follow the pre-images 
of I, without those of I,,. The number of trajectories controlled in the nth step is thus 
proportional to the sum ofthe lengths I!"-'), i = 1,2,. . . ,2"-' ofthe ( n  - 1)th pre-images 
of I,. Note that in transient chaotic cases these pre-images do not overlap for sufficiently 
small A-values, i.e. for the maximum perturbation pc much less than unity. The 
independence of the controlling time on p* for p* + 0 relies essentially on this property. 

Biiiagoi, an: ;is cofii io;~e~ veiGon by aplipying r& (1) .With p*=o , ; ,  =,is 

mzje&y .sq!ps the rep&r before reaching !he desired fixed point: 
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Figure 2. ( 0 )  Transient chaotic signal xn versus n starting from the point x,, = yo = 1.014 782 
in the HCnon map of figure 1.  The trajectory ceases to be chaotic at about the 38th time 
step where if comes lo the neighbourhood of the attractor. (The average lifetime of chaotic 
transients is I J r  = 22 at these parameters [13].) ( b )  Controlled signal started from the same 
initial point. The HCnon map was taken in the form given in the text with a = 1.45+p. 
where the perlurbation parameter p. is specified by (1) with p* =O.l. The fixed point is at 

fixed point becomes stabilized. 
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Figure 3. One-dimensional map generating transient chaos. Control is achieved if a trajec- 
tory fails into interval I having Length A. Some pre-images of I and their sizes relevant 
for computing the average time of control are also shown. 

The total number of trajectories controlled at any time step can thus be expressed 
as 

The total number of steps before control is then 

(3) ) ( ">* i=, 

2"-, 

T = N o  A , + E  1 nl$'-" 

from which the average time to achieve control is computed as r = TI N. Next, let us 
observe that Po and A, can be obtained by dividing A with the slopes e and c, of the 
map taken at the iixed point xF and its pre-image x, (figuie 3j, iespziiivePy, foi h 
sufficiently small. In general, the length scales {[!"I, i = 1,. . . ,2") can similarly be 
expressed by means of the derivative of the n-fold iterated map /" taken at the nth 
pre-images of x,. It has been shown [20] that the sum X? If"'(f-"(x))l-' scales for 
large n at any value of x as exp(-Kn) where K is the escape rate. Therefore, the 
number of controlled trajectories can be rewritten for A + O  as 

(4) 
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with A and B as constants, because the sum converges for K > 0. Similarly, we obtain 

c, [1 -exp(-~)]' 

where C is another constant. Since both N and T are now proportional to A, the 
average time T to achieve control tums out to be independent of A and, therefore, of 
the maximum perturbation p*. For long-lived chaotic transients, i.e. for K << 1, we find 
from (4) and (5) that T =  1 / ~ ,  which says that the time of control and the chaotic 
lifetime then coincide for p*+O. 

The argument breaks down at K = 0 since the geometric series does not converge 
and the pre-image intervals overlap, so that all trajectories will be controlled. Therefore, 
one expects for K + O  a crossover to the permanent chaos rule [3] T ( K  = O ) -  l / p ,  of 
one-dimensional maps if p* is not infinitesimally small. Interestingly, the crossover 
can be seen in an extremely close neighbourhood of the crisis configuration only. To 
illustrate this, figure 4 shows T as a function of p* for the parabola map at (1 = 2+ 
The behaviour can be understood by applying the following argument for K and p* 
small. Both the decay from the repeller and the decay into the target region are 
essentially random processes. In cases when the pre-images ofthe target region overlap, 
the rate constant of the control is essentially the same as that of permanent chaos, i.e. 
~ / T ( K  = 0) .  These decay processes are, in a first approximation, independent, therefore, 
the combined process is described by the sum of the rates, and thus 1 / ~  = K + ~ / T ( K  = 0) .  
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Figure 4. Average time T to achieve control vcrsus the maximum perturbation in the 
parabola map x.+, = LI -xz with (1 = 2+ IO-! IO' initial points uniformly distributed on 
the suppon were iterated either up lo IO' sleps or until they did not reach the interval I 
of length p&, around the fined point xF = 1 + 10-6/3. The logarithm of T is plotted against 
In p* in the range IO-'Sp, 6 IO-'. The straight line shown has a slope - I  and corresponds 
to the scaling in permanent chaos. Note the cross over into saturation far p*< IO-'. The 
broken linerepresenfstheaveragelifetime oftransient chaos 111 =392 Ointhe uncontrolled 
system. The cross over into saturation cannot be seen any longer if a > 2 +IO-? 
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For one-dimensional maps l/T(K=O)=cp+ where c is a constant, and we obtain 
T = 1 / ( ~  + cp,), which gives a very good fit to  the data of figure 4 with c = 0.097 3. This 
rule also implies that the saturation range where T = I / K  holds is reached forp, smaller 
than some crossover value which scales with parameter a in the same way as the escape 
rate, i.e. as ( a  -2)"2. 

The essential features in determining T were the following: (i) the pre-images of 
the fixed point's surrounding did not overlap, (ii) their characteristic lengths along the 
U,IS,LI"I~ UIISbLIVII  CVUlU vc SUIIL,,,CU up, y,cEu,, ,~ cxyVLLGL1LL.i1 ucyr;r,"G,ru VI1  L l l r  

escape rate, and (iii) the infinite sum of such factors was converging. Since these 
properties also hold for repellers of any higher-dimensional map, the time of control 
r ( p J  at a maximum perturbation p* is expected to he found in general as 

____. "LL A:---&:*- -".,A L^ _..-Î  1 .. :-,A:.... -- ̂ ..-^^^-&:^I .l----.4 ---- -- *t.- 

( 6 )  
1 

r ( p * )  =constants-. 
K 

for p* sufficiently small. Results for T of the HCnon map at the period-5 attractor are 
shown in the lower part of figure 5.  The independence on the maximum perturbation 
is clear. 

The number N ( p , )  of the trajectories controlled is influenced by the shape and 
size ofthe region where control is activated. Fortwo-dimensional maps, this is typically 
a parallelogram situated around the fixed point having some lengths l , ( p * )  and 12(p*) 
along the unstable and stable manifolds of this orbit, respectively. N ( p , )  is obviously 
proportional to the probability of falling into the control parallelogram. Since we use 
an ensemble of trajectories distributed uniformly on a neighbourhood of the repeller, 
subsequent images of this neighbourhood will tend towards the unstable manifold of 
the chaotic set and the limiting distribution will be smooth on the manifold. The 
measure generated in this way is proportional to the so-called conditionally invariant 
measure [21,18] (c-measure for short). Another relevant measure is the natural measure 
[13,15,18] obtained by taking the normalized restriction of the c-measure to the 
repeller, which is therefore not smooth along the unstable direction. The fractal 
properties of these measures along the stable manifold are, however, identical. 

The c-measure of the control parallelogram can thus he written as 

d P * ) -  4 ( P * ) M P * ) m x  (7) 

with m2 being the crowding index (pointwise dimension) along the stable direction at 
the hyperbolic fixed point of the repeller. Because of smoothness, U, = 1. The non-trivial 
crowding index has been determined by means of the periodic orbit theory of strange 
sets and reads [18] 

where A"(&) denotes the larger (smaller) eigenvalue at the fixed point. Since for p, + 0 
the dimensions of the control parallelogram should be proportional to some powers 
of we find the number of controlled trajectories to follow a power law 

with an exponent also depending on, besides local properties, the escape rate of the 
repeller. Although derived for maps of the plane, this law is conjectured to hold for 
higher dimensional systems, too. 
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Figure 5. Average time to achieve control and number of controlled trajectories in the 
HCnon map with a period-5 attractor. Parameten as in figures I and 2. IOs initial points 
were dstributcd on the square (O<x<l, -1 <yCO). Control was not activated during the 
first IO steps. The number of funher iterates of the non-escaping trajectories was computed 
until they did not fall within a circle around the fixed point with radius 2.9p*, in the range 
10-4Sp,S IO-'. Lawer pan: the logarithm of the average of these times as a function of 

logarithm of N ( p , )  against Inp,. The straight line has the slope y'(r)= 1.256 given by 
(12). The results do not depend on the shape of the region where trajectories Stan from. 

!",E*. E., b:c-'.cx !ili C0;;e;pold; :o :he C h 8 k  !iR:iza ::*=::. upper p8R: i h i  

The control parallelogram mainly used by OGY has sizes proportional to p* and 
pL'2 along the unstable and stable directions, respectively. With the same choice of 
the control parallelogram one thus finds the exponent for transient chaos to be 

Another way of specifying the condition for turning on the control is to take a ball of 
radius proportional to p * .  The corresponding exponent is then 

( i i j  

For one-dimensional maps A, = O  and Y ( K )  = 1 follows in agreement with (4). 
In order to check the prediction, we initiated an ensemble of trajectories around 

the repeller of figure 1. They were first iterated up to 10 steps in order to have time 
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to approach the distribution corresponding to the c-measure. It was then determined 
how many trajectories fall in later steps into a circle of radius proportional to p* 
centred at the fixed point, where iteration was stopped. (For the analogous permanent 
chaos case see [3].) The upper part of figure 5 shows In N ( p , )  obtained this way 
against In p* , along with the predicted slope. 

At this point a simple argument can be given from which the difference between 
the control ofpermanent and transient chaos clearly follows. The number oftrajectories 
controlled per time steps is proportional to the c-measure (natural measure in the 
permanent case) p( p * )  of the control parallelogram. The number N (  p + )  of all control- 
led trajectories can then be estimated-up to a constant factor-as the measure 
multiplied by the number of iterates ~ ( p , )  needed to achieve control in average. 
Therefore, 

N ( P * ) - - P ( P * ) T ( P * )  (12) 

is expected to be valid for both permanent and transient chaos. For chaotic attractors 
all trajectories are controlled, N (  p * )  = constant; therefore, ~ ( p * )  - l/p( p*)  and the 
rule T ( p * ) - p ; l ( 0 )  derived by OOY is recovered. For transient chaos not extremely 
closetocrisis wesaw,onthecontrary,that ~ ( p + )  =constant,from which N ( p , ) - p ( p , )  
follows. 

Note that (12) seems to hold even if neither N nor T is constant. One can easily 
check that in the parabola map at a = 2 +  loT6 N first grows linearly with the maximum 
perturbation but then (for p*> goes into saturation. Nevertheless, N ( p , ) / ~ ( p , )  
is proportional to p+ in the entire range investigated. 

In conclusion, we can see that controlling transient chaos is more difficult than 
permanent chaos as one has to use ensembles of trajectories, but it is also simpler 
since the time needed does not grow with decreasing perturbation and remains bounded 
by the average transient lifetime. 

The assumption conceming the existence of a nonlinear map allows the investigation 
of any system, including experiments, for which a faithful PoincarC section can be 
constructed. Ensembles of trajectories can be generated by repeating the experiment 
several times with different initial conditions. Both the construction and the analysis 
of periodic orbits is nowadays straightforward [25] from measured time series. Unfortu- 
nately, the experimental investigation of transient chaos has received disproportionately 
little attention. Experimental control of permanent chaos has, however, been carried 
out [6-81 exactly in those systems (a driven magnetoelastic ribbon [22], a convection 
loop [23] and a spin wave [24] experiment) which had earlier been studied (at other 
parameter values, of course) in detail from the transient chaotic point of view. All 
these dynamics can be approximated by low-dimensional maps. Thus, we can hope 
that the possibility of stabilizing a non-trivial state in the presence of simple periodic 
attractors can be verified experimentally in these systems. 

Finally, we mention that the results also hold in the Hamiltonian limit of transient 
chaos, which corresponds Io chaotic scattering 1261. The method described here, 
together with the construction of the chaotic repeller, then provides us with the ability 
to stabilize intermediate complexes of driven classical scattering systems (e.g. chemical 
reactions) in time-periodic states. 

The author is indebted to M Eisele, C Grebogi, Z KovAcs and K G Szab6 for useful 
comments and a critical reading of the manuscript. He thanks the referee for pointing 
out that the crossover process can be described by the sum of two decay rates. The 
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