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Abstract. The advection problem of passive tracer particles in the time-periodic velocity field
of leapfrogging vortex pairs is investipated in the context of chaotic scattering. We numerically
determine a few basic unstable periodic orbits of the tracer dynamics, and the non-attracting
chaotic set responsible for the motion of particles injected in front of the vortex system. The
Jatter consists of two parts: a hyperboelic component based on strongly unstable periodic orbits,
and a non-hyperbolic component that is close to Kam surfaces. The invariant manifolds of the
chaotic set are also plotted and their relevance for the particle dynamics is discussed. The tracer
dynamics has one single dimensionless parameter: the energy of the vortex system. As a new
phenomenon, we point out the existence of stable bounded trajectories between the vortex pairs
at sufficiently large energies. A quantitative characterization of the tracer dynamics in terms of
the so-called free energy function is given and the multifractal spectrum of Lyapunov exponents,
the escape rate and other characteristics of the transient chaotic motion are determined.

1. Inireduction

The advection of passive tracer particles in non-stationary fluid flows has attracted recent
interest since particle motion is generally more complex than the underlying velocity
field [1—4]. Chaotic advection provides an appealing application of the chaos concept in a
phenomenon observable by naked eyes. The connection with dynamical system theory is
especially strong in two-dimensional incompressible flows where the latter property implies
the Hamiltonian character of the particle motion.

The investigation of chaotic advection in viscid flows [5-12] led to a better
understanding of mixing in closed containers. The associated particle dynamics is then
characterized by a bounded phase space. Advection in open flows [13—19] has the novel
feature of having unbounded particle trajectories. Because of the asymptotic simplicity of
the motion, the particle dynamics can be considered as a type of scattering process. In fact,
the motion in time periodic flows can be chaotic, like, for example, that of particles coming
close to the obstacle in a von Kdrmén vortex street [17-19]. Knowledge accumulated in
the field of chaotic scattering [20-22] has turned out to be a powerful tool to describe this
phenomenon.

Chaotic advection in inviscid fluids typically occurs in the velocity field of interacting
vortices [23-26]. In systems of a few interacting point vortices one often finds both bounded
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and unbounded tracer trajectories. Previous studies had certain difficulties with interpreting
chaos associated with the unbounded motion. The aim of this paper is to show that this
difficulty can be overcome by using recent results of the theory of chaotic scattering, or
more generally of transient chaos [27].

In particular, we point out that for the scattering tracer dynamics there exists an infinity
of unstable periadic orbits. In fact, the number of periodic orbits Increases exporentially
with their period. Periodic orbits provide a backbone for this dynamics in the sense that
the particle might stay close to a periodic orbit for a while, then Ieave it and come into the
vicinity of another one, and so on before escaping to infinity. The union of all the bounded
unstable periodic orbits together with their heteroclinic and homoclinic connections forms
a non-attracting chaotic set. The chaotic set possesses a stable manifold along which
trajectories can reach the set itself. It is essential for the understanding of the advection
problem that the stable manifold is an object of measure zerc and provides a fractal foliation
of the space. This is why a particle has zero probability of being trapped forever by a
periodic orbit, or by the entire chaotic set. Although the chaotic set itself is also a fractal,
there exists a aatural measure on it. Chaotic characteristics, like, for example, the average
Lyapunov exponent, of trajectories coming close to the set can be computed by taking
averages with respect to this natural measure [27].

We consider a simplified model of the so-called leapfrogging motion of two vortex
rings. If the rings have the same sense of rotation, they travel in the same direction.
In cases when the rings move along the same axis, the rear vortex ring attempts to pass
through the front one. The Jeading ring then widens due to the mutual interaction and
travels more slowly. Simultaneously, the other ring shrinks, travels faster and penetrates
the first one. The process can then be repeated again and again. Recently Shariff and
coworkers [28, 29] have performed 2 detailed simulation of particle trajectories in the field of
leapfrogging vortex rings in viscid fluids and found good agreement with smoke visualization
pictures reported in experiments [30]. We shall study the two-dimensional analogue of this
process in an inviscid flow: advection in the field of two pairs of ideal point vortices of
the same strength exhibiting leapfrogging motion. It will tarn out that this simple model
faithfully describes the qualitative features of the advection in the field of three-dimensional
leapfrogging vortex rings. At the same time its simplicity allows for precise calculations and
a detailed investigation of the parameter dependence. Alternatively, the advection problem
induced by two leapfrogging vortex pairs can also be considered as that induced by two
vortices moving in front of 2 wall lying on the symmetry axis of the original problem [31-
331

It is known that the integrability of the advection in the field of autonomous point
vortices depends on the number of vortices and on the type of solid boundaries [34-37].
Let us consider cases without external flows. In unlimited space, the tracer dynamics is
always integrable if the number of vortices is at most two. With more vortices the tracer
dynamics is non-integrable even if the vortex motion itself is periodic or quasiperiodic, like,
for example, in the case of three vortices [23,35). When the presence of solid boundaries
breaks either the rotational or translational symmetry, the minimum nuinber of vortices
leading to non-integrability is decreased by one [36]. If both symmetries are broken, as
in a general closed domain, even the advection induced by a single vortex, exhibiting
periodic motion, becomes non-integrable [36,37]. In our problem a straight line boundary
breaks the rotational symmetry and thus the advection generated by two vortices is already
non-integrable,

The paper is organized as follows. In section 2 the leapfrogging motion of two vortex
pairs is described. Analytical results for the period and the average velocity are given in the
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appendix. Section 3 is devoted to the discussion of the corresponding advection problem.
We point out that the phenomenon is especially simple in a frame comoving with the cenire
of mass of the vortex pairs and is then invariant under certain symmetry operations. A
few basic unstable periodic orbits are also determined. Next, in section 4, we turn to the
investigation of the chaotic set responsible for the scattering tracer motion, and its invariant
manifolds. We show that around the vortex centres there is always a region that cannot be
reached by trajectories coming from outside and that region is bounded by a kind of KAM
torus. Thus, because of the mere presence of the vortices, the advection dynamics is never
purely hyperbolic. It has one single dimensionless parameter: the energy of the vortex
system. The dependence of the advection on this energy is briefly discussed in section 5.
As a new phenomenon, we point out the existence of stable bounded trajectories between
the vortex pairs at sufficiently large energies, The region of bounded motion outside of the
vortex cores is separated by typical KAM surfaces. Simultaneously bounded chaos inside
these KAM tori becomes easily observable. In the limit of very large energies the advection
can be considered as a slight time-dependent perturbation of the advection in the field of
a single vortex pair. A quantitative characterization of the tracer dynamics in terms of
the so-called free energy function is given in section 6. It is emphasized that most of the
important characteristic numbers can be extracted from this single function. The paper is
concluded in section 7 with the discussion of some open problems.

2. Leapfrogging motion of two vortex pairs

The dynamics of point vortices in two-dimensional flows of ideal incompressible fluids, or
of parallel vortex lines in three-dimensional ones, is a classical field of hydrodynamics. It
was recognized by Helmholtz and other researchers at the end of the last century [31-33]
that the equations of motion of a system of such vortices can be cast into a canonical form.
The Hamiltonian of » interacting vortices reads as

i, yh = —= 3 sy Inri )
TS
where (x;, y;) stands for the position of vortex { ({ = 1,..., n) of strength «, in the (x, y)
plane, and r;, is the distance between vortices ¢ and j. The value E of the Hamiltonian is
constant in time and can thus be called the energy of the vortex system. The equations of
motion are of the Hamiltonian form [31-33]

KX = K ¥r = oH
T YT T
Note the analogy with the canonical equations of point mechanics when one identifies,
for example, x and xy with the generalized coordinates and momenta, respectively. The
equations can be rendered dimensionless by means of the transformations
2 2
K

(x,y) = Ux,1y) t— %z H— —H (3)

where « is a preselected vortex strength, and ! denotes a characteristic length scale.

It is known [34-41] that the motion of four or more vortices is, in general, chaotic. In
this paper we study a case where the dynamics of four vortices is integrable: the motion
of two vortex pairs of equal strengths that move in the same direction along a common
symmetry axis perpendicular to the extension of both pairs (see figure 1). When interpreting
the problem as the motion of two point vortices in front of a wall, the vortices in the lower

(2)
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D Figure 1, Geometry of two leapfrogging vortex pairs. Relative
Ka = —x and centre-of-mass coordinates are also indicated.

half-plane appear as ‘mirror’ vortices introduced in the same spirit as mirror charges are in
electrostatics. We shall call this version the symmetry-reduced problem.
The Hamiltonian of the system defined in figure 1 reads as
2
K
H(xi, x2, y1,¥2) = E(—zlﬂ"’i,z +2Inrsq+lnry g +1nry3)

K* (xy — x2)}* + (3 +J’2)2)
=—Inl4
o “( I e =2 + Ot ~ y2)2

The extra factor % missing in (1} appears here because the mirror vortex coordinates are
not independent variables in the symmetry-reduced problem [42]. Since the centre-of-mass
coordinate

=E. @)

xo = (x1 +x2)/2 (5)
does not appear in H (is a cyclic variable), the conjugate variable
2y0 = (1 + y2) = constant (6}

is conserved during the motion. 2yp can be considered as the average width of the vortex
pairs. In what follows we choose 2y, as the characteristic length

! =2y, Q)

and rescale the problem according to (3). It is then worth using, besides the centre-of-mass
coordinates, the relative variables

A EX X Yr=Y2— N &

The energy conservation (4) provides us with the explicit form of trajectories in the
relative coordinates as
11 ok
t—3 142
Bounded trajectories are present for energy values E > E, = 0 where no real solution y,
exists for x, — oo. The energy E, = 0 corresponds to a separatrix in phase space lying on
the boundary between regions occupied by open and closed trajectories (figure 2). The latter
correspond to strictly periodic motions of the vortex pairs, called leapfrogging [28-30]. In
the remainder of the paper we concentrate on this region, E > 0.
Because of the conservation of yp, there are only three independent dynamical variables
left. Since the Hamiltonian depends on x, and y, only, their equations of motion form a

©®)
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Figure 2. Vortex trajectories in relative coordinates
{xr, y,) for different energy values £ = pIn2 with
n = 0,051,152 Dimensionless variables defined
by (3), (7) are used. £ = 0 is the separatrix, (full curve)
on the boundary between closed and open trajectories.

2.8 T T T T

(b}

Figure 3. Leapfrogging motion for £ = In2. (@) Cycloid shaped trajectories of the two
upper vortives in the standing reference frame, The initial condition taken is x12) = —(+)0.5,
yim = 0.5. (b) The velocity of the centre-of-mass coordinate wp{t) = xo(r) in the standing
reference frame. The period and the average velacity are T = 2.16 and Tp = 1.83, respectively.

closed system (explicitly given in the appendix) that can be solved by direct numerical
integrations. Figure 3(a) shows the cycloid shaped trajectories of the vortices in the
standing reference frame. After solving for the relative motion, xg(¢) is obtained by simple
quadrature. We emphasize that the velocity vo(f) = xo(¢) of the centre of mass along the
x-axis is not constant in contrast to the usua! two-body problem. Its average value Uy (see
figure 3(b)) is close to 2 for a broad range of energies.

The period T(E) and the average velocity Tp(E) of the motion depends solely on
the energy and can be expressed in terms of elliptic integrals (see the appendix). The
dimensionless energy value belonging to the plots of figure 3 is £ = In2 = 0.693 that we
shall keep as an illustrative case also in the next two sections,

3. The advection problem

An isolated vortex of strength « generates at distance » from its centre a'circulational flow
with a velocity field proportional in modulus to «/r, The stream function ¥ (x, y), whose
cross derivatives yield the velocity components v, and v, [31,32], is —(x/7)Inr. In the
system of n vortices these contributions are superimposed, and one obtains

¥y, 0 ==Y Ll (10)

i



2196 A Péntek et al

where r;(t) stands for the distance of point (x, y) from vortex j. Because the vortices
follow their own dynamics, the distances r;(2), and consequently also the streamfunction,
are time-dependent. The velocity components at a given point (x, y) and time ¢ are then
obtained as

ay

3
vel(x,y,8) = % vy(x, 3.8) = R (11)

A passively advected particle simply follows the local velocity field, therefore, its equations
of motion, sometimes called the Lagrangian dynamics, are given by

foWEND e

ay ax

Note again the canonical character of the problem in which the streamfunction plays the
role of the Hamiltonian.

The difference compared with the vortex meotion is that the dynamics is now
non-autonomous. The advection problem can be cast into a dimensionless forim via
transformations similar to (3). For the streamfunction we shall use the rescaling ¥ —
(/).

In the particular case of the leapfrogging vortex pairs of equal strength (i.e. &y = &3 =
—ky = —ky = k) the dimensionless streamfunction (10) takes the form (cf figure 1)

(12)

r3(t} ra(2)
Yix,y,)=1n (m) (13)
where
riy @) =[x — g OF + Iy - g OF (14)
i@ =[x — agyOF + [y + yay (OF (15)

with x; 2(2) and y; 2(¢) being the solutions of the vortex problem studied in the previous
section. Due to the periodicity of the vortex motion and the nonlinearity of (12), the motion
of advected particles can be chaotic.

It is particularly convenient to use a reference frame whose origin is comoving with the
point (xg(z), ¥ = 0) along the x-axis. We shall call this frame the centre-of-mass system
{CcMS) of the symmetry-reduced problem. The streamfunction valid in the CMS is

Yems(x, ¥, 1) = ¥r(x, ¥, 8} — vp(2)y (16)

where vortex coordinates x; = —x) = x, /2 relative to the CMS have to be used.

Due to the subtraction of the velocity vg(t) from the field generated by (13)-(15), two
instantaneous stagnation points P. are created in the CMS along the x-axis. Figure 4 shows
the instantaneous streamlines and stagnation points at two different instants of time t = 0
and t = T/4, We use the convention that : = 0 corresponds to the configuration when the
width of both vortex pairs is the same (y; = y» = yo). The stagnation points exhibit a
periodic motion of period T/2. The particles situated at these stagnation points have zero
velocities and cannot follow the periedic motion of the geometrical points P.. The motion
of the stagnation points, therefore, does not correspond to a periodic orbit of the advection
dynamics.

Both the advection dynamics and the motion in the frozen streamlines of figure 4 share
some basic properties. The y = O line is an invariant curve, the motion restricted to it is
dissipative and possesses two fixed points: an attractor and a repellor. This is not surprising
since the dynamics on invariant surfaces of Hamiltonian systems are in general not area
preserving [43]). In the instantaneous streamline pattern the two fixed points are the two
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Figere 4. Instantaneous streamilines in the cMs frame for £ = In2 at (a) ¢ =0 and (b) T/4.
These configurations correspond to extreme positions of the two stagnation points Pa., V is the
central stagnation point at half-way between the vortices.

Tugr 0
2 b o
Figure 5. Stroboscopic map {taken at multiples of T/2) of the
dynamnics restricted to the y = 0 axis of the cMs for £ = In2.
_ A I Observe the unstable and stable fixed points at xf, = F1.114
-4 -2z 0 = 2 4 with slopes 34 and ﬁ, respectively corresponding to two

In hyperbolic period-1 orbits Py() shown in figures 8-10.

stagnation points P,.;, while in the advection problem they are two other orbits Pag.
The latter correspond the trudy periodic motions of particles inside the region in which the
geometrical points P, , are oscillating.

In order to specify the position of the periodic orbits Py on the x-axis, we numerically
solved the dynamics restricted to y = 0 in the CMS. In a similar spirit to [13], we determined
a one-dimensional return map by computing the x-coordinate after a time difference of 7 /2.
The result obtained at t = 0mod T/2 for £ = In2 is given in figure 5. It clearly shows the
existence of an attractor and a repellor point at x; = 1.114 and x] = —1.114, respectively.
Note the rather large (small) value of the slope at the repellor (attractor) point. Being
embedded into the (x,y) plane, these invariant points appear to be hyperbolic on the
stroboscopic map of the full Hamiltonian dynamics. Thus the larger eigenvalue of the
periodic orbit P, is the same number as the slope A = 34 of the map at x7.

In order to study periodic orbits outside the x-axis, it is worth taking into account the
symmetry properties of the velocity field.

(i) The obvious invariance against the exchange of the vortex céntres implies the
periodicity of the velocity field with 7/2 where T is the period of the vortex motion.
Thus it is worth defining a two-dimensional stroboscopic map for the advection problem by
taking snapshots with a time difference /2.

(if) In the CMS a stronger symmetry also holds when applying the transformations:

(@) x1@) = X201 or &) yviy = Y2 (17)
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Figure 6. A few basic pericdic orbits of the symmetry-reduced problem in the cMs. {a) An
axisymmetric period-2 orbit. Coordinates on the stroboscopic map taken at ¢ = Omod T/2
are V1(0,0.575) and V2(0,071). (b} Asymmetric periodic orbits: a period-1 orbit and a
period-2 orbit around it. They generate points H+(0.902, 0.388), and H[‘” (0.95},0.375) and
Hy (0.814, 0.346), respectively, on the stroboscopic map.

together with changing the sign of the x-coordinate of the tracer particle (x = —x) in both
cases. Because of the time-reversal symmetry of the voriex dynamics and the symmetry
of the graph of the ¢Ms velocity (figure 3(a)), the exchange (a) and (b) of the vortices
connects configurations taken at some time ¢ and T/2 — 7. Thus the velocity field fulfils
the relation

Ux(xiyvr)=v1(_x’y1r/2_t) (18)
vp(x, ¥, 1) = —vy(—x,y,T/2~1) (19

for any 0 < t <« T/2. As a consequence, a irajectory starting from some point (X, Yin)
at time ¢ will have the same shape as the time-reversed trajectory started from (—xXip, Yin)
at T/2 —t. These trajectories will be mirror images of each other with respect to the y-axis.
This implies that periodic orbits are either axisymmetric themselves or appear in pairs that
are mirror images with respect to the y-axis. At times ¢t = 0, T/4 (mod T/2) holds in
addition that if a periodic orbit starts from (xy,, yi,), its mirror image orbit will start from
{—Xin, ¥in). This property makes the use of stroboscopic maps taken at ¢t = 0 or T/4 (mod
T/2) especially convenient.

It is worth mentioning that these symmetries ate due to the assumption that both vortex
pairs are of equal strength (k1 = x2 = «). In a model with different strength they would
not be present.

A few basic periodic orbits obtained numerically are shown in figure 6. The
axisymmetric orbit (figure 6(a)) is of period ¥. Therefore it generates two points Vi
and V; on the stroboscopic map taken with a time difference of T/2. This axisymmetric
orbit is unstable, too, its eigenvalue is 8. We have also found a pair of asymmetric orbits
of period T/2 (figure 6(b), thin curve) defining fixed points H* on the stroboscopic map.
These unstable trajectories stay mainly in one of the half-planes. Around them, there exist
similar two-loop trajectories of period T (figure 6(&), full curve) each generating two points
Hf'.- é_) on the stroboscopic map.

Typical particle trajectories in the CMS are plotted in figure 7. Particles injected outside
of the vortex system escape to infinity (figure 7(a)—(d)). Some of them follow a simple path
(figure 7(a)) but some others exhibit a complicated motion before escaping. Long-lasting
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Figuve 7. Tracer trajectories of the symmetry-reduced
problem in the cMs. (a)~{d} Scattering trajectories with
initial conditions (xiy, yin} (@) (2.0, 0.2), (&) (2.0, 0.12),
(c) (2.0, 0.118) and (d) (2.0, 0.097). (e} Quasi-periodic
motion with initial condition (0.5, 0.4).

chaotic motion between the vortex pairs can be considered as a random walk among unstable
periodic orbits. Thus, for example, on figure 7(a) and (b) parts of the periodic orbits shown
in figures 6(a) and (&) can, respectively, be seen. Particles put initially very close to one of
the vortices do not escape and exhibit a periodic or quasi periodic motion around the vortex
(figure 7(e)). Thus, depending on the initial conditions, particle trajectories can be both
bounded and unbounded. Correspondingly, the full invariant set can be decomposed into
a part responsible for the bounded motion and into another one accessible by trajectories

coming in from infinity.
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QOur numerical experience indicates that at modest values of the vortex energy, £ < 0.9,
chaotic sets responsible for bounded chaotic motion (e.g. in the vicinity of one of the
vortices) must be very small. Therefore we shall concentrate in what follows on chaotic
sets connected with scattering trajectories coming in from infinity.

4. Invariant manifolds of periodic orbits, and the chaotic set

Let us consider the non-trivial manifolds of the fixed points Py and P, (denoted by W}
and Wy, respectively) discussed in the previous section producing several heteroclinic
intersections. Taking the stroboscopic section just at ¢+ = Q or ¢t = T/4 (mod T/2), the
manifolds W} and W} are mirror images of each other with respect to the y-axis.

To help understanding, the schematic figure 8 illustrates the most important topological
features of the manifolds’ intersection pattern. One can define an interaction region S
bounded by segment P, of W) and segment PO of W}, where O is the first heteroclinic
intersection point along both manifolds. Lobes formed by W} and the boundary of the
interaction region are denoted inside {outside) § by E; (D;) for i > 0. The direct Lagrangian
dynamics transforms each lobe E; (D;) after ¢t = T/2 onto E, .y (D;41). This rule extends
the definition of the lobes for i < 0, 'We use the convention that the first (last) lobe that lies
inside the interaction region has label { = 0. Due to the Hamiltonian nature of the problem
the area of all the lobes should be equal.

A direct numerical computation of the manifolds W} and W; shows that their actual
form is much more complicated than those depicted in the schematic diagram of figure 8.
Figure 9(a) displays the first branches of W} and W} while the full unstable manifold is
shown in figure 9(6). The complex form of the lobes, and so their non-trivial intersections,
can be understood by also taking into account the axisymmetric unstable periodic orbit
(Vi and V5 on the stroboscopic map). It plays an essential role due to its relatively high
eigenvalue. The first lobe Eo comes close to V1, V, and becomes strongly stretched along
their unstable manifolds. Because of its strange shape, lobe Ey intersects Dp in six points,
which also implies that each lobe E; has the same number of intersections with D;. A
high-resolution investigation indicates the splitting of lobe E; into many fine strips (not
only in two as for Ep) due to the presence of other periodic orbits causing altogether 24
intersections with Dy (not shown).

It is instructive to follow how the content of the lobes is evolving, i.e. the so-called lobe
dynamics [4,9, 24,44]. One can observe that points from E; N D; spend time (f— j+1) T/2
instde §. In particular, points escaping the interaction region after 7/2, independently of
when they entered §, lie in Dy, Those spending just one time unit T/2 in the interaction
region lie in EgN Dy. The escape rate « is defined as the exponential decay rate of the time
delay statistics, i.e. of the probability to find frajectories spending a time longer than 7 /2
trapped by the vortex system. Assuming the validity of this exponential form for any time
(that does not hold exactly in general), we can estimate the escape rate as the logarithm of
the area ratio between § and §— Dyp. In our case this yields the approximate value o = 0.34,

Figure 8. Schematic diagram of the stable
and unstable manifolds W§ and Wj of
the fixed points P; and P; in the ©M5,
respectively, on the stroboscopic map.
Note that in the full problem the invariant
manifolds have other branches that can be
obtained as the mirror images of Wy and
W, taken with respect to the x-axis.
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1.2 - ' ; . .

Figure 9. The non-trivial manifolds of Py,3 obtained numerically in the cMs at ¢ = Omod T/2.
{a) The first branches of the manifolds W§ and W}, () The full unstable manifold W), The
corresponding stable manifold Wy is just its mirror image with respect to the y-axis. The vortex
centres are marked by full circles.

The heteroclinic intersections of the manifolds W} and W} implies the existence of
a Smale horseshoe and a chaotic set in the system. Correspondingly, unbounded particle
trajectories might come close to this set and exhibit chaotic features. Since, however, the
set is globally not attracting (that would contradict the Hamiltonian character) this chaos is
necessarily of transient type restricted to finite time-scales [27]. In other words, particles
can be trapped by the vortex system but, with the exception of a set of inifial conditions of
measure zero, sooner or later they escape. The union of the heteroclinic points between W}
and W} is a good approximation to the non-aftracting chaotic set existing in the unbounded
part of the phase space (unstable periodic orbits also belong to the set but they are close to
the heteroclinic orbits and thus do not change the geometrical appearance).
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The numerical construction of this chaotic set is very efficient by means of a method
called the PIM triple algorithm. This method introduced by Nusse and Yorke [45] yields a
long sequence of very short pieces of trajectories (called a saddle-straddie orbif) assumed
to straddie a true orbit on the chaotic set. The algorithm is the following. Take a segment
which crosses the stable manifold of the set, and iterate a number # of points distributed
evenly on this segment. Measure their time delay, ie. the time the different trajectories
spend in the interaction region. Three neighbouring initial points with the property that
the midpoint has the longest time delay are called a proper interior maximum (PIM) triple.
Trajectories starting in the sidepoints of a PIM triple obviously straddle a filament of the
chaotic set’s stable manifold. Choose a PIM triple and, by distributing the same number n
of points on it as originally, find a shorter one, Iterate this refinement until the length of the
last PIM triple becomes shorter than a preselected value ¢; < 1. Then, follow the evolution
of the sidepoints of such a PIM triple as long as the distance between the trajectories is
shorter than another preselected value ¢; € 1 (e3 > €1). Next, start searching for a new
PIM triple on the segment connecting the endpoints of these trajectories, and repeat the
whole procedure again and again. The generated series of segmenis of length shorter than
€ will cover the chaotic set in a coarse-grained description of resolution ¢, and the pieces
of trajectories starting in the sidepoints of the narrowest PIM triple straddle an orbit on the
chaotic set with accuracy €z. In order to avoid an overaccumulation of points on the KAM
surfaces, we have used a slightly modified version of the original algorithm by choosing
PIM triples at random, as worked out for generic Hamilionian systems in [46].

The chaotic set plotted in this way is the invariant set felt by scattering trajectories
(figure 10). It can clearly be divided into two parts. One of them contains structures of
double fractal character that are approximately direct products of two Cantor sets. The
deltoidal forms along the symmetry axis at the height of 0.6, and the ones at the two sides
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Figure 10. The chaotic set of the symmetry-reduced problem in the cMs obtained at 1 =
Omod T/2 by means of the pid triple algorithm. The parameters of the algorithm have been
n=10 ¢ = 10~% and ¢, = 1074 {see text). Notice the direct praduct structure of the
hyperbolic part containing the main periodic points (P2, Vj,2. H™~) and the dense spirals
around the vortex cores forming the non-hyperbolic part, Note that the periodic points Py 2 are
the extremal points of the set. The vortex centres are marked by full circles.
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of the plot at the height of 0.4 are of this type. The two latter forms are mapped onto
themselves under the Lagrangian dynamics after 2 time T/2. The elongated structure on
the bottom of the figure is the image of the deltoidal form on the symmetry axis but its
direct product structure is Jess striking because of the strong stretching along the x-axis.
These four blocks can be considered to be the Ayperbolic component of the non-attracting
chaotic set as they contain the strongly hyperbolic periodic orbits (like e.g. £y 2,Vy2 or
H?*) of the dynamics. The existence of such structures is well known for purely hyperbolic
chaotic scattering systems [21,22].

In order to understand the spiral-like patterns, we first mention that the white ellipsoidal
regions around the vortices are obviously not accessible by scattering trajectories. These
are the regions where the effect of one vortex is more pronounced than that of any other
one and can therefore be called the vortex core for the Lagrangian dynamics. Inside this
core the effect of the other vortices is just a weak perturbation, and the conditions of the
KAM theory [47] are thus fulfilled. Tracer particles put into this regime can also exhibit
bounded chaotic motion but the size of such chaotic regions inside the core is obviously
very small at energy values less than E =~ 0.9. The majority of trajectories will thus be
quasiperiodic as illustrated by figure 7(¢}. The boundary of the core is a KAM torus. At
first sight it appears rather smooth but an enlargement of the torus surface (plotted for
convenience in pelar coordinates in figure 11) shows that by approaching it from outside
complicated structures appear with little istands and chaotic regions intertwined. It is worth
mentioning that such tori surrounding the vortices are present in the advection induced by
any oumber of vortices [48]. They provide a region where the Lagrangian dynamics is
non-chactic in spite of the strong chaoticity of the vortices and play an analogous role as
coherent structures in two-dimensional turbulence {49].

It is known that around KaM tori periodic orbits of arbitrarily weak instability are
present. These orbits are nearly marginally stable and cannot thus be considered hyperbolic.
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Figure 11. Magnification of the outer surface of the core of vortex 1, presented in polar
coordinates r and p. Although it looks rather smooth, many small tori are rotled up and seem
to accumulate on the surface that is a kam torus. The plot has been obtained by starting 200
trajectories on a small segment [0.63 < x < 0.7,y = 0.5}
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Figure 12, Motion of a droplet of dye particles on the stroboscapic plane in the CMs taken at
r=nT2withn=0,..,,5 @~ 5 x 10* tacer particles were started from a disc of radius
0.05 centred at (2, 0.1). Observe that after only five time steps the ensemble of dye particles
approaches the unstable manifold of the chaotic set very closely. This is always the case if the
set of initial conditlons crosses the stable manifold of the chaotic set.

Consequently, the component of the chaotic set lying around these KAM tori will be called
the non-hyperbolic component. Due to the weak instability of the periodic orbits here (the
stickiness of the tori), the decay from this region is rather slow, and the local structure of
the set is dense, as being characterized by a fractal dimensionality close to unity [50],

The (un)stable manifold of the periodic point (F;) P is expected to come arbitrarily
close to that of any other periodic orbit located in the unbounded part of the phase space.
These manifolds together {more precisely, their closure) form the (un)stable manifold of



Chaotic advection in leapfrogging vortex pairs 2205

the chaotic set. In the cMs, the stable manifold at time ¢ is mirror image with respect
to the y.axis of the unstable one taken at T/2 — rmod T'/2 (see equations (18), (19)).
This equivalence of the manifolds is 2 consequence of the Hamiltonian character of the
Lagrangian dynamics. Nevertheless, for the tracer particles the unstable manifold plays a
distinguished role.

To see this, let us imagine that particles are injected into the flow in front of the vortex
system. If the point of injection is not close to the x-axis or more generally to the stable man-
ifold of the chaotic set, then the injected particles will not be trapped and will be advected
away by the flow quite rapidly. Otherwise, however, the particle will be attracted, because
of the stable foliation, to a vicinity of the chaotic set where it spends a finite amount of time,
and escapes finally along the unstable manifold of the chaotic set. Therefore, we conclude
that dye particles remaining for a long time around the vortex system will trace out the
unstable manifold. This is consistent with recent results on chaotic advection in open flows
[17,19,24,28] showing that streakiines exhibiting fractal patterns asymptotically coincide
with the unstable manifold of chaotic sets of the Lagrangian dynamics. (Streaklines [2,30]
are defined as sets of points reached, at a given instant of time, by a continuum of particles
injected at a given point into the flow at any previous time before.) This is also an exten-
sion of the observations [5,6, 8] obtained in closed flows claiming that dye particles move
asymptotically along unstable manifolds of periodic orbits embedded in the chaotic sea.

In a series of pictures (figure 12) we present how a droplet of dye particles put into the
flow in front of the vortex system evolves. It illustrates nicely the convergence toward the
unstable manifold of the chaotic set. The shape of the structure traced out by the ensemble
of droplet particles after time ¢ = 5T is given in figure 13 letting both the upper and lower
half-planes and a few lobes from the tail of the chaotic set’s unstable manifold be seen.
The resemblance with the flow visualization picture of two leapfrogging vortex rings [30]
is striking although the latter was made with three-dimensional rings in a real fuid,

3 T T T T T T T

Figure 13. Unstable manifold of the full chaotic set in the cMs on large scate. The shape of
the droplet at + = 3T and its mitror image with respect to the x-axis are displayed, (In order
to increase the density of points we plotted all images of the droplet points that remained in
the region shown after 7 = 5T up to at most ¢ = 607.) It has a similar form as the flow
visualization pattern in an experiment with three-dimensional vortex rings [30].
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5. The energy dependence

Up to this point we have focused our attention to the case of a given vortex energy £ =1n2
which illusirated the basic features of the dynamics. By increasing the energy slightly
further, the axisymmetric hyperbolic periodic orbit (V; and V» on the stroboscopic plane)
becomes a stable eliiptic one, In figure 14(a) we have plotted the unstable manifold of

1.2
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Figure 14, Invariant sets in the CMs for £ = In2.5 = 0.916 at 1 = Omod T/2. (a) Unstable
manifold of the chaotic set obtained by using the droplet method with ¢ = 5T (cf figures 12
and 13), The fixed points V; and V5 are now elliptic ones. (b) Magnification of the regular
island near V). The plot has been obtained by starting 100 trajectories on the vertical segments
x =0 and x = 0.075, 0.55 < y < 0.8, and plotting the first 200 iterates on the stroboscopic
map. The vortex centres are marked by full circles.
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Figure 15. Invariant sets in the ¢ms for £ = In25 = 3.2f at t = Omod 7/2. The unstable
manifold (full curve) of the chaotic set is obtained by using the droplet method with ¢ = 5T
(cf figure 12). Note that only a small part of the interaction region is available for scattering
trajectories restricted to narrow regions of linear size of order 10~3 around P| 2. The interior
structure occupied by bounded trajectories have been visualized by starting 100 trajectories on
the vertical line x = 0 and plotting the first 200 iterates on the stroboscopic map. The vortex
centres are marked by full circles.

the chaotic set at E = In2.5. One can observe two large islands around Vi and V, and
KAM tori on the boundary of them. The insides of these islands correspond to a bounded
motion of the advected particles alternatively ‘kicked” by the vortices. These regions are
inaccessible by scattering trajectories and can only be seen by injecting particles inside of
the vortex system. The structure of the phase space around the elliptic point V; is shown in
figure 14(b). One can also clearly see the period-four stable periodic orbit just appeared, and
the narrow bounded chaotic region around them. It would be interesting to check whether
such bounded tracer motion could also be seen experimentally between two leapfrogging
vortex rings.

By increasing the energy much further, bounded motion starts to dominate the dynamics.
As an illustrative example we have plotted the unstable manifold of the chaotic set for
E = 1n25 (figure 15). Most of the central region is unaccessible by scattering trajectories.
To illustrate this we have started 100 trajectories or the vertical line x = 0. One can clearly
observe that besides the quasiperiodic motion there is also bounded chaotic motion in a
layer close to the vortices. In addition to the large tori, many others show up on smaller
scales which are either black or white regions in figure 15, depending on whether the x = 0
axis, where the trajectories start, intersects the tori (or their image).

Obviously the limiting case E 3> 1 comresponds to the advection in the field of a single
vortex pair of strength 2 exposed to small periodic perturbation. The linear size of the region
containing the two vortex cores and the two large KAM tori drastically shrinks with energy as
it is of the order of exp (—E/2). Note, however, that the size of the interaction region is of
order unity, also for E — oo. (The position of Py, that is very close now to that of Py, is
x+ = £+/3/2 at any instant of time.) It is worth mentioning that the streamfunction in this
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limit is similar to that of the oscillating vortex pair studied by Rom-Kedar et al [24]. The
structural similarity of the two problems suggests that chaos in Melnikov’s sense is present
in the advection of leapfrogging vortices for £ 3 1 too, but its strength is diminishing as
E — o0

6. Quantitative characterization of the tracer dynamics

Early attempts to understand passive advection in the field of ideal vortices {24, 26] clearly
reported about transient features of the dynamics. They gave a detailed characterization of
escape but had difficulties in interpreting the motion as chaos because of the positivity of the
Lyapunov exponent on finite time-scales only, Recent developments in the field of transient
chaos [27] and chaotic scattering [20-22] help to overcome this difficulty by introducing
the concept of natural measure on the non-attracting chaotic set, and the Lyapunov exponent
taken with respect to this measure. The latter is thus a kind of ensemble average and is
positive for transient chaos, too,

A central object in the theory of chaotic scattering [20-22] is the time delay function
describing how the time spent in a region around the chaotic set depends on the initial
conditions. In practice, one takes a one-parameter family of initial conditions and measures
the number of pericds the particle needs to leave a neighbourhood of the chaotic set as a
function of the parameter. The time delay function of our model for E = In2 is shown in
figure 16. This function takes on an infinite value whenever the initial condition falls on
the stable manifold of the chaotic set. These infinities thus appear in a fractal pattern. As
the set of infinities is a kind of projection of the chaotic set along its stable manifold, the
former has the same dimension dp as the partial dimension [52] of the chaotic set on the
stroboscopic map.
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Figure 16, Time delay function 2(y} for £ = In2 where n is the number of periods T /2 spent in
|xf < 1.3, Trajectories were started on the x = 1.3 line. The first two levels in the hicrarchical
organization are also shown.
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In our numerical experiments 5 x 10* trajectories were started on a vertical line of length
0.1 at x = 1.3 with uniform distribution and we measured after how many time periods of
T/2 they crossed the vertical line at x = —1.3. The well defined blocks of singularities in
figure 16 correspond to the cross section of the initial line with the lobe E_; (cf figure 9(a)).
Since all these lobes are topologically similar, each of them contains the whole information
about the dynamics and the investigation can be reduced to one of them.

Trajectories characterized by different time delay values mark different levels of a
hierarchy. A quantity of cenfral interest that reflects the hierarchical organization of chaotic
scattering processes is the free energy F(B). It characterizes the scaling behaviour seen
by following tajcctoncs with an increasing number # of periods inside the interaction
region [51]. Let !; ™ denote on each level n the length of intervals where the time delay
fonction is greater or equal to nT /2 (see also figure 16). In the spirit of the thermodynamic
formalism of dynamical systems [51], the free energy is defined via the relation

No(n}
Z (l(n) —~ e—ﬂF(ﬁ)n (20)

where § is an arbltrary real number, 7 3> 1, and Ny(n) is the nurnber of intervals at level s,
The escape rate « describes the exponential decay of the total interval length 3, lf")

with n. Thus,
a=F(1). 2D

As long as no KAM tori are present or their role is not essential, & is non-zero, and 1/a
yields the average chaotic lifetime of scattering trajectories.

The topological entropy K can be defined as the quantity characterizing the exponential
growth of the number No{n) of intervals with the level index n. Since the total number
No(n) of intervals is obtained from (20) at § = 0, we find

=—(BF(B)p=0. (22)

Further important characteristics are the average Lyapunov exponent  taken with respect
to the natural measure, and the fractal dimension dy of the singularities in the time delay
function. They can be obtained [51] as the derivative of BF(8) taken at unity and as the
value of 8 where the free energy vanishes, respectively, i.e. as

= _}3 (BF(B)lp=r (23)

and
Fdg) =0. (24)

In the presence of KAM surfaces, the distribution of trajectories staying for a given
time in the interaction region decays more slowly than exponentially [S0, 53] and the long-
time behaviour is dominated by scattering trajectories staying close to the surface for long.
Since the decay of the statistics, and of the total length of the scales ll-(") is no longer
exponential in z, both the escape rate and the average Lyapunov exponent should be zero in
the asymptotic limit [54]. On general grounds one expects [50] that the fractal dimension
tends {o unity.

In figure 17 we have plotted the time delay statistics based on the time delay function
of figure 16: the number of trajectories N (n) with time delay larger or equal than a given
number # times T/2. For E = In2 a crossover between exponential and algebraic behaviour
can be observed around n =~ 15. For large n the scaling is algebraic due to the ‘stickiness’
of the tori, and we have found N(n) ~ n~° with ¢ ~ 2. Short orbits do nof feel the
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Figure 17. Time delay statistics for E = In2 (diamonds) and £ = In2.5 (crosses). 5 x 10*
trajectories have been started on the interval x = 1.3,001 € y « 0.11. The number of
trajectories N{x) spending more time than n7/2 in the reglon |x| < 1.3 is shown on a log-
linear plot. Observe the crossover around n ~ 15 for E = In2. For n <« 15 the scaling is
exponential with e = 0.22. For E =In2.5 no well defined linear region can be seen.

influence of the tori and their scaling is governed by the hyperbolic part of the chaotic set.
Indeed a well defined escape rate & = 0.22 can be derived from the slope of the straight
line for n < 15. The escape rate computed from the area of the lobes is nearly a factor
2 larger due to the crude approximation used there. It is worth noting, however, that for
orbits started close to the outer surface of the vortex cores we have found a much slower
algebraic decay in the time delay statistics with o ~ 0.6. This can be explained by the fact
that typical scattering trajectories do not approach the vicinity of the core’s surface. The
core appears to be surrounded by a rather smooth surface that seems to be impenetrable for
them, on finite time-scales at least.

For E = In2.5 no exponential decay can be observed, the dynamics is dominated by
non-hyperbolic effects. The algebraic decay exponent ¢ does not seem to depend strongly
on the vortex energy.

In view of these observations we conclude that the computation of the free energy from
the low-iying leveis of the hierarchy enables us to obtain reievant information about the
statistical properties of the kyperbolic component of the chactic set as long as the energy
is relatively small. So the results derived here are valid for not too long orbits (with time
delay shorter than ~ 15 for E =1n2).

The free energy for E = In2 computed from levels 4 and 5 is plotted in figure 18. For
B < 0 the shortest intervals dominate the partition sum (20). Since the number of initial
points influences essentially the resolution of the smallest intervals, for § < 0 one can
observe a convergence with increasing number of trajectories. Although the free energy we
obtained is not yet reliable for 8 < 0, in the range 8 > % it seems to be converged. Thus
we can read off the most important characteristics. For £ = In2 we thus obtain for the
fractal dimension, the average Lyapunov exponent and the escape rate do = 0.83, A = 1.18
and & = 0.22, respectively. The topological entropy is K¢ = 1.87 with a relative error of
~ 10% due to the uncomplete convergence at g = 0.
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Figure 18, The free energy function as obtained from (20), from levels 4-5 for £ =In2. The
convergence for § < 0 with increasing numbers of initial points 104, 5 x 10%, 10° and 10%
(taken on the interval x = 1.3, 0.01 £ y < 0.11) can also be seen.

The free energy BF(S) is the Legendre transform of the multifractal spectrum S(A)
of the local Lyapunov exponents ) [51]. Our results show that the latter spectrum can be
obtained in a natural way by using the analogy with chaotic scattering, a method that is
simpler than others based on directly following the deformation of material lines [55].

Since the chaotic set changes with energy, its properties also depend on this parameter.
Larger energy implies smaller escape rate and larger fractal dimension. We have found that
the approximate relation [56]

Al —dy) ~a (25)

is satisfied in the energy range 0.4 < E < 0.9 investigated. We also found that the average
Lyapunov exponent does not change significantly, thus, the escape rate is proportional
to 1 —dp. As the former was found to be a linear function of E in this range, we obtain

do = 0.83 +0.2(E —n2). (26)

We could not deduce any systematic change of the topological entropy due to the relatively
large errors.

7. Concluding remarks

The advection problem in the time-periodic velocity field of two leapfrogging vortex pairs
has been shown to comprise a variety of phenomena known to characterize different types
of nonlinear systems. The invariant set can be divided into two parts depending on the
boundedness of trajectories associated with it. One part is responsible for the motion of
particles that never leave the vortex system. It certainly contains a component connected
with bounded chaotic motion of tracer particles. The boundary of this part is formed by
KAM tori. The other part of the invariant set is accessible by scattering trajectories belonging
to particles injected into the flow far away from the vortices and exhibiting chaos on finite
time-scales. It consists of a hyperbolic component the backbone of which is a fractal set
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of strictly hyperbolic periodic orbits, and a non-hyperbolic one that is located close to the
outer surface of the KAM tori. We claim that the coexistence of these different types of
invariant sets is characteristic for general advection problems in open incompressible flows,

Whether bounded or scattering chaos dominates the tracer dynamics depends strongly
on parameters of the flow, in our case on the total energy of the vortices. The Ilatter
is roughly speaking proportional to the compactness of the two-vortex-pair system. Our
investigations showed that for loosely bounded pairs (£ < In2) it is hardly possible to
find initial conditions numerically that lead to permanent chaos, and any kind of bounded
motion can only be restricted to the cores of the vortices. At higher energies trajectories
can be bounded in a region lying benween the vortex pairs, too. Interestingly, the surface
of KAM tori on the boundary of these regions seems to be rougher than that of the Kam
tori on the boundary of the cores. Bounded chaos becomes more and more dominant
with increasing energy while scattering chaos becomes suppressed. At even larger energies
regular motion starts to characterize the problem since the limit £ — oo corresponds 1o so
strongly bounded vortex pairs that they can be approximately replaced by one single pair.
The advection problem is integrable in this limit.

The scenario briefly sketched above contains open problems that could be subjects
of further studies. It is not yet completely understood how the strongly hyperbolic
axisymmetric orbit will be elliptic in a narrow range of energies (between £ = 0.7 and 0.9).
Its bifurcation diagram, as well as of other periodic orbits, could be interesting to follow
with the energy.

‘We have not yet mentioned what happens to the advection dynamics at very low energies.
Our results show that the overall qualitative picture is similar to that found at £ = In2,
the quantitative characteristics, however, change drastically for £ — +-0. In particular, the
escape rate and the average Lyapunov exponent seem to diverge in this limit, while the
fractal dimension seems to tend to zero. This raises the question of what happens when
crossing the line E = 0 from the side of negative energy values where the vortex motion is
not bounded. It is possible that a chaotic set will be created suddenly at E = 0 very much
in the same spirit as in the course of abrupt bifurcations [57]. This, however, can only hold
for the hyperbolic component. The entire process should be more complicated due to the
presence of KAM tori around the cores, and certainly deserves further attention.
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Appendix. The equations of the vortex dynamics

Introducing the coordinates xg, x, and 2yg, y,/2 of (5), (6) and (8) as new variables, that
corresponds to a canonical transformation, the Hamiltonian (4) reads as

_1 (JC,? + (2}’0)2)((2)’0)2 — 40y, /%)
H(J.‘g, Xry 23’0- yrlz) =3 ln x} + 4()’:‘/2)2

(AD)
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The equations of motion are obtained in the form

. @y0)? + 2
, = A2
g T2y = yDG2 + yD) 42
. (2y0)* — y2
Yo = ((2}‘0)2 22 +2) 43
x2 — y2 4 2(2y) Ad

P 2y — YA((2yo)? + x2)
Yo=0. (A5)

Choosing the conserved coordinate 2y as the length scale [ (7) formally means replacing
2yp by 1. The first two equations form a closed system and can be integrated numerically
to describe the relative motion of the vortices. The third equation (A4) gives the net
transiational motion of the centre-of-mass coordinate.

Using equations (A2) and (9),

Al - yix)P
dt = ———1"——dzx, (A6
2 yr(x) )
follows, where 4 = e~£. The functional form of y.(x,) is given by (9) as
2 2y 172
SN it AT
y! :V (ﬁz + xg) - ( )

Here we have used the abbreviations y = /A/(1 — A), and 8 = /{1 + A)/A. From

equation (9) one easily sees that the trajectory is symmetric to the axes x, =0 and y, =0,
and therefore it is sufficient to integrate (A6) from x, = 0 to the maximum value ¥ of x,
which corresponds to a quarter of a period. Thus for the period T' follows

Y] — 2
T =24 f U-ye, (A8)
J’r(-xr)

This can be written as the sum of three terms:

T =2A(5 — 25 + &) (A9)
with

1%
S = fo [y €, 0% dx, (A10)
¥ 2 2y if2
R A d All

where g, = 2i — 3 (i = 1,2,3). These quantities can be expressed in terms of elliptic
integrals [58]. Inserting S; we find for the period T:
4 l
T=—|—— - Al2
3 [1 — AzE(A) K(A)] (A12)
where K (A) and E(A) are the complete elliptic integrals of first and second type,
respectively. Using the asymptotic expansion of these elliptic integrals for A < 1 {58, we
find in the high-energy limit (E 3> 1) that the period can be expressed as
Or

T~me 84+ e

“3E gL Al3
5 + (A13)
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Figure Al. The period T (diamonds) and the average velocity T (crosses) of the leapfrogging
motion of the vortex pairs as a function of energy E (cf equations (A12) and (A15) where
A=e"E),

Analogously, one can obtain the energy dependence of the mean velocity

1 T
Uy = —f Xo()de. (Al4)
T Jo
Using equation (9), (A4) takes the form
J'cn=1_yr2—A. (A15)
By means of (A6) and (A10) we obtain
To=A (45‘ ;Sz - 1) . (A16)
Proceeding similarly as for the period, finally one finds
2
30 = A2E(A) A7)

T B(A)-(1- ADK(A)’

The functions T{F) and Tp(£) are plotted in figure Al. Observe that even at relatively
small energies (E > In2) the mean velocity is practically independent of E. Using the
series expansions for elliptic integrals one obtains

To~2—3e 4. {A18)
implying that the saturation value 2 is reached exponentially fast with increasing energies.
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