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Abstract. The passive advection of tracers in the field of three identical point vortices is
considered as the hydrodynamical analogue of the restricted three-body problem. The chaotic
motion is analysed by means of two-dimensional maps, its parameter dependence, Lyapunov
exponents and topological entropies. The latter can be obtained as the growth rate of a dye
droplet’s perimeter in time. Similarities and differences of the vortex and gravitational problem
are discussed.

1. Introduction

The dynamics of point vortices in an ideal two-dimensional incompressible fluid has attracted
great recent attention [1–16] These vortices mutually interact: the centres undergo a passive
advection, i.e. their velocity takes on the value of the velocity field generated by the others
instantaneously. The recent interest in this subject is due to the fact that the motion of a
low number of vortices can already be chaotic. It is known from the classical papers of
Kirchhoff and other researchers [1, 17, 18] that the vortex dynamics can be described as a
Hamiltonian system. For unbounded fluid otherwise at rest, the Hamiltonian ofN vortices
appears in the form

H({xi, yi}) = − 1

π

∑
i<j

κiκj ln ri,j (1)

wherexi andyi are the coordinates of vortexi of strengthκi , andri,j = ((xi − xj )2+ (yi −
yj )

2)1/2 stands for the distance between vorticesi and j . The dynamics is represented by
the canonical equations:

κi ẋi = ∂H

∂yi
κi ẏi = −∂H

∂xi
i = 1, 2, . . . , N. (2)

Since the Hamiltonian,H , does not depend on time explicitly, its valueE = H({xi, yi}) is a
constant of the motion. In analogy with point mechanics,E can be called the energy of the
vortex system. The invariance ofH under translation and rotation implies the conservation
laws [19] ∑

i

κixi = constant
∑
i

κiyi = constant (3)
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and ∑
i

κi(x
2
i + y2

i ) = constant (4)

respectively. If the sum of all vortex strengths is nonzero, equation (3) defines a centre of
vorticity that is fixed relative to the fluid, and can be used as a fixed point of reference. In
view of equation (2),pi ≡ κiyi can be considered as a canonical momentum. The deviation
of equation (4) from the usual angular momentum is due to the fact that the invariance
against rotation holds now in the(x, p) (coordinate-‘momentum’) plane. ForN > 3 the
dynamics is typically chaotic [4].

At this point it is worth recalling the celestial mechanicalN -body problem [20, 21].
Restricting, for simplicity, the motion to the(x, y) plane, the Hamiltonian reads as

H({xi, yi, px,i , py,i) =
∑
i

p2
x,i + p2

y,i

2mi
− γ

∑
i<j

mimj

ri,j
(5)

wherexi andyi are the coordinates of the point massmi , andγ denotes the gravitational
constant. The canonical equations are

ẋi = ∂H

∂px,i
ṗx,i = −∂H

∂xi
ẏi = ∂H

∂py,i
ṗy,i = −∂H

∂yi
i = 1, 2, . . . , N.

(6)

The energyE = H({xi, yi}) is again a constant of the motion. The invariance ofH

under translation and rotation in the(x, y) plane implies the conservation of momentum
and angular momentum, respectively [22]. Due to the Galilean invariance of the equations
of motion, there are two further integrals of motion, the two coordinates of the centre of
mass. This problem is well known to be nonintegrable forN > 2 [20].

The difference in the number of vortices and point masses which mark the limit of
integrability is related to the number of independent variables. By this we mean the
number of variables governed by independent first-order differential equations, taking into
account the global conservation laws. The difference is due to the different character of
the velocity- and force-field mediating the interactions. The total number of first-order
differential equations (2N and 4N ), and the number of conserved quantities (4 and 6)
provide us the number of independent variables: 2N–4 and 4N–6 in theN -vortex, and in
theN -body problem, respectively. For general integrability this number must not be larger
than two, which leads to the different limit numbers mentioned above.

A problem related to the vortex dynamics and of hydrodynamical relevance is the
advectionof passive tracer particles in the flow of the vortices [23–35]. The tracer is a test
particle having no influence on the flow field, therefore, it can be considered as a special
vortex of strength zero. Consequently, the advection in the field ofN vortices is a problem
of the same complexity as the(N + 1)-vortex dynamics [4].

The celestial mechanical analogue of passive advection is the motion of a small satellite
whose mass is negligible compared with those of the celestial bodies and does not influence
thus the gravitational field of the latter. The simplest two-dimensional problem of this type is
the celebrated restricted three-body problem whose nonintegrability was shown by Poincaré
[20]. The celestial bodies in this model are two point sources of equal mass rotating around
their common centre of mass on circular orbits with a constant angular velocity.

The closest fluid dynamical analogue of this is the passive advection in the field of
two vortices of equal strength which also rotate on circular orbits with a constant angular
velocity. The motion in this case is regular [36] since the two-dimensional flow field is
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stationary in the co-rotating frame. This also follows from the observation that the model
is a special case of the three vortex problem and cannot be chaotic. The simplestchaotic
vortex problem analogue of the restricted three-body problem is the advection by three
vortices of equal strength. We shall see that the centres do not move then on circular orbits,
but have nevertheless an average angular velocity. In a reference frame co-rotating with
this angular velocity, the advection of a passive tracer has similarities, but also differences,
to the motion of the satellite in the restricted three-body problem. Our aim is to study in
detail the advection problem in the field of three identical vortices, and to compare it briefly
with the restricted three-body problem.

The advection problem has been studied in different contexts [2, 3]. Here we also
present a detailed investigation of the parameter dependence. The strength of chaoticity
is measured by the average Lyapunov exponent, and by a somewhat less conventional,
independent parameter, the topological entropy. The latter naturally arises as the growth
rate of a dye droplet’s perimeter in time. The droplet dynamics can also be followed in
the restricted three-body problem, we find, however, that the method cannot be used to
measure topological entropy. We explain an essential feature of the three-body dynamics;
the possibility of a collision with the centres, as a consequence of the Hamiltonian’s local
behaviour.

The paper is organized as follows. In section 2, the motion of three identical vortices
is briefly summarized in terms of a spherical phase space representation. In section 3,
the advection dynamics, and its parameter dependence is studied in terms of a stroboscopic
map, the droplet dynamics, the Lyapunov exponent and the topological entropy. Section 4 is
devoted to a brief summary of the restricted three-body problem. We discuss the possibility
of its characterization by means of a particle ensemble (a droplet). Finally, in section 5 we
give a comparison of the two problems by pointing out important similarities and differences.

2. The motion of three identical vortices

The three vortex problem was studied in classical papers of Novikov [2] and Aref [3] for
identical and different vortices, respectively. For the identical vortices that we consider,
equations (2) can be put into a dimensionless form using the transformations:

(x, y)→ (lx, ly) t → πl2

κ
t E→ κ2

π
E. (7)

Here l is a characteristic length scale, which can be chosen in view of (4) as

l = [(r2
1,2+ r2

1,3+ r2
2,3)/3]1/2 (8)

representing an average distance between the vortices. After transformation (7) the only
free parameter is the dimensionless energy,E, of the motion.

The dynamics of three identical vortices can be seen as a superposition of a relative
motion and a rotation of the whole system around the centre of vorticity. The relative
motion is periodic with a periodT . The global rotational motion can be characterized
by measuring the angular displacement,1ϕ0, around the centre of vorticity between two
identical triangular configurations that are separated in time byT . The corresponding
angular velocity is then obtained asωrot = 1ϕ0/T . The frequency of the relative motion,
ωrel ≡ 2π/T , and the frequency of the rotation,ωrot, depend onE and are generally
incommensurate, implying a quasiperiodic dynamics. In figure 1 we show the energy
dependence of these frequencies obtained by numerical integration of equations (2) for
N = 3 in its nondimensional form (7), (8).
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Figure 1. Energy dependence of the angular velocity corresponding to the rotating (ωrot) and
relative (ωrel) motion of a system of three identical vortices. The right branch ofωrel(E) grows
monotonically in the region not shown, i.e. forω > 5.

We briefly recall Novikov’s results concerning different types of motion that can occur
while changing the energyE. According to (7), (8) the product of all distances cannot be
larger than unity, thus the dimensionless parameterE cannot be a negative number. For
the following, it is convenient to also define the orientation of the vortex systemσ , taking
the value+1 and−1 when the vortices 1, 2 and 3 appear in anticlockwise and clockwise
order, respectively.

For E = 0 the vortices form an equilateral triangle of unit edge size which rotates
uniformly around the centre of vorticity without relative motion. At small positive energies,
the vortices exhibit an oscillation around the equilateral configuration. In general, for
0< E < Ec ≡ (ln 2)/2 the triangle spanned by the vortices oscillates between two isosceles
triangles, a sharp and a flat one (figures 2(a) and (b)). This oscillation in the shape of the
triangle spanned by vortices is accompanied by the cyclic permutation of vortices (see also
figures 4(a) and (d)). The system can never pass through a collinear configuration, so the
orientation,σ , of the triangle remains unchanged in time.

The critical valueE = Ec corresponds to a special kind of motion, a convergence to
the collinear state of the vortices. This motion is aperiodic, as it is also indicated by the
vanishingωrel at this value ofE.

ForEc < E <∞ the quantityσ is no longer conserved and a new characteristic of the
trajectories is that two vortices remain closer to each other than to the third one during the
motion (figures 2(c) and (d)). The triangle spanned by the vortices oscillates between two
identical isosceles triangles having different signs ofσ due to the exchange of the two near
vortices by passing through the collinear state twice in one period (see also figures 4(e)–
(h)). As E →∞ the two vortices tend to coalesce and the dynamics converge to the two
vortex problem where one of the vortices has double strength.

In order to eliminate the rotation, it is worth introducing a reference frame rotating
uniformly with ωrot around the centre of vorticity in which the motion of the vortices is
periodic. This leads to a considerable simplification of the trajectories.

In figure 2 we show trajectories in the(x, y) plane viewed both from the standing and
from the co-rotating reference frame. The two examples are taken from the two energy
intervalsE < Ec andE > Ec with qualitatively different dynamics.

Since the number of independent variables in the relative motion is two, the phase space
is two-dimensional. In order to give a representation more reminiscent to point mechanics,
we propose a different phase diagram than the one used by Novikov [2], and it can be seen
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Figure 2. Trajectories of the three vortices viewed from the standing (a), (c) and from the
co-rotating (b), (d) reference frame forE = 0.24< Ec ≈ 0.346 andE = 0.4> Ec. The initial
conditions are isosceles configurations symmetric to the vertical axis. Because of the invariance
against exchange, the trajectories of the two lower vortices coincide in (d).

as a modified version of the representation introduced by Aref [3]. We define a phase space
on the surface of the unit sphere (figure 3(a)) on which a point can be determined by means
of two spherical angular coordinates related to the vortex system according to

θ = σ arcsin
4A√

3
= σ arcsin

√
3(2r2

2,3r
2
1,3+ 2r2

1,3r
2
1,2+ 2r2

2,3r
2
1,2− r4

2,3− r4
1,3− r4

1,2)
1/2

r2
1,2+ r2

1,3+ r2
2,3

ϕ = arccos

√
3(r2

1,3− r2
1,2)

2(r4
2,3+ r4

1,3+ r4
1,2− r2

2,3r
2
1,3− r2

1,3r
2
1,2− r2

2,3r
2
1,2)

1/2

(9)

whereA denotes the area of the triangle spanned by the vortices. We note thatϕ can be
obtained as an angle variable deducible from the planar phase diagram of [3]. Thus, a
projection of our phase diagram to a horizontal plane gives something similar to that used
by Aref. For a better visualization we also show a projection to a vertical cylindrical surface
concentric with the sphere (figure 3(b)).

This phase space illustrates the symmetry properties of the relative dynamics: (i) the
transformationσ ↔ −σ corresponds to a reflection with respect to the equatorial plane, and
(ii) the cyclic permutation of the vortices corresponds to a horizontal rotationϕ ↔ ϕ±2π/3.

The curves in figure 3 are labelled by different energy values. Now we can identify the
fundamental points and curves corresponding to the motion of vortices. The elliptic fixed
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Figure 3. The phase space of the three vortex problem. (a) A spherical phase diagram defined
in terms of the azimuthal angle,θ , and the rotational angle,ϕ, of equation (9). (b) The phase
portrait projected on a vertical cylindrical surface concentric with the sphere which has a form
characteristic for integrable Hamiltonian point mechanics.

points on the poles belong to the equilateral configuration atE = 0. The three other ones on
the equator (θ = 0) represent the caseE = ∞ when two vortices coincide. The hyperbolic
points on the equator belong to the symmetric collinear configuration of the vortices. The
curve connecting them is labelled by the critical energyEc, and is a separatrix lying on
the boundary between regions in which the trajectory has different symmetry properties:
invariance against the exchange of any pair of vortices, and against the cyclic permutation
of all three vortices. The trajectories corresponding to figure 2 are also indicated by arrows
in figure 3(a).

3. The advection problem

The advection of passive tracers is determined by the underlying velocity field. In the case
of two-dimensional incompressible flows this can be expressed by using the streamfunction
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ψ(x, y, t) whose derivatives give the velocity components as

vx(x, y, t) = ∂ψ

∂y
vy(x, y, t) = −∂ψ

∂x
. (10)

The velocity field of a single point vortex consists of a circular vector field of modulus
κπ/r, r being the distance from the centre. This is an irrotational flow everywhere except
the centre. The streamfunction in this case is−(κ/π) ln r. For a system ofN vortices, the
velocity fields are superimposed because of the linearity of the governing Laplace equation,
and the streamfunction is:

ψ(x, y, t) = −
∑
i

κi

π
ln ri(t). (11)

Due to the motion of vortices,ψ is time dependent throughri(t) which stands for the
distance between the point(x, y) and vortexi at time t .

In the case of three identical vortices, the time dependence ofψ is two-frequency
quasiperiodic. For the advection problem it is also convenient to introduce a reference frame
co-rotating with the average angular velocityωrot of the whole system, as described in the
previous section. In the co-rotating system the dimensionless streamfunction, measured in
units of κ/π , can be written as

ψ̃ = −
∑
i

ln ri(t)− ωrot(x
2+ y2)

2
. (12)

Note that the only parameter of̃ψ is the vortex energyE. In figure 4 we show the time
dependence of instantaneous streamlines for the two representative energy values of figure 2.

The dynamics of passively advected tracers is given in the co-rotating frame by:

ẋ = ∂ψ̃(x, y, t)

∂y
ẏ = −∂ψ̃(x, y, t)

∂x
. (13)

Thus, the advection problem corresponds to aperiodically forced Hamiltonian dynamical
system. Because of the time dependence ofψ̃ , the number of effective degrees of freedom
is 1.5, allowing in general for chaotic motion (figure 5).

For the special valuesE = 0 or E = ∞ the relative motion of the vortices freezes in
and the time dependence of the streamfunctionψ̃ disappears, i.e. we have a stationary flow
in the co-rotating system. Obviously the tracer dynamics is then nonchaotic, the particles
just follow the streamlines (thẽψ = constant curves). Some of the streamlines correspond
to the elliptic fixed points, or the separatrices connecting the hyperbolic fixed points of the
advection dynamics. In figures 6(a) and (b) we show the streamlines for these special cases.

The caseE = Ec is also special due to the asymptotically decaying character of the
forcing, i.e. the relative motion of vortices. For initial conditions on the separatrix of the
vortex system, first a nonstationary flow field is present resulting in chaotic motion of the
tracers, but as the relative motion of the vortex system decays, the particle trajectories
converge towards regular trajectories. So, this is some kind of transient chaos [37], but
a rather trivial one being a simple consequence of the transient character of forcing. If
the vortex positions correspond to one of the hyperbolic fixed points, a similar situation is
obtained (figure 6(c)) as in the previous special cases. The main difference is that in this
case the state of the vortex system is unstable against perturbations.

Besides these special cases, we have a robust connected chaotic region among the
vortices. In the hydrodynamical context, a strong mixing of the fluid takes place here, and
therefore, we shall also call such extended chaotic regions,mixing regions. To visualize
tracer dynamics we use astroboscopicmap on which we represent the position of the tracers
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Figure 4. Instantaneous streamlines in the co-rotating frame forE = 0.24 at t = 0, t = T/9,
t = 2T/9, t = 3T/9 (a)–(d); andE = 0.4 at t = 0, t = T/6, t = 2T/6, t = 3T/6 (e)–(h).
Due to the permutation of the vortices, the relative motion is self-repeating for the rest of the
period, with vortices permuted.

taking snapshots with a time differenceT , whereT = 2π/ωrel is the period of forcing, i.e.
the period of the relative motion of vortices.

In figure 7 we show the stroboscopic maps for different representative energy values.
As can be seen, the area occupied by the chaotic sea depends onE. WhenE � Ec or
E � Ec, this is restricted to the vicinity of the separatrices in the integrable cases shown
in figures 6(a) and (b). As we depart from these cases in energy, the chaotic region is
extending. We mention that, although theE = Ec case is asymptotically integrable, one
does not necessarily observe an integrable behaviour on the stroboscopic map, due to the
divergence ofT . It is worth noting that the most extended chaotic sea seems to appear
betweenE = 0.25 and 0.4. Even at these parameter values no chaos has been found very
close to the vortex centres, in the vortex ‘cores’, and outside a circle with an approximate
radius of 1.6. Despite the large extent of chaos, there appear to be elliptic islands outside
of the cores in the chaotic sea. This becomes more pronounced when going below 0.25 or
beyond 0.4 in the energy values. These islands are surrounded by usual KAM surfaces and
contain chaotic bands inside.

The reason for having found no chaos in the vortex cores and in the outside region is
due to the fact that the perturbation of the integrable Hamiltonian system is rather weak
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Figure 4. (Continued)

Figure 5. Chaotic tracer trajectory in the standing (a) and co-rotating (b) reference frame for
E = 0.24. The initial condition for the tracer particle wasx = −0.175 andy = 0.1.

in these regions. The effect of a given vortex close to its core is so pronounced that this
leads to the suppression of chaos. We note that forE > Ec three separate vortex cores
can be observed, but whenE > Ec, the two near vortices form acommon coreand thus,
nonchaotic orbits connecting these two vortices also exist. The streamfunction, which plays
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Figure 6. Streamlines in the co-rotating reference frame for special vortex configurations (a)
E = 0, (b) E = ∞ and (c) E = Ec, hyperbolic fixed point. The flow in the co-rotating frame
is stationary and streamlines coincide with tracer trajectories in these cases.

the role of the Hamiltonian, diverges as lnr whenr → 0. The perturbation due to the other
vortices is basically constant in the vortex core. Thus, the relative weight of the perturbation
is 1/ ln r and goes to zero when approaching the vortex centre.

Far from the vortex centres the velocity field is approximately the same as in the case
of one single vortex of triple vortex strength. The corresponding streamfunction behaves
like ln r whenr →∞. The approximate strength of perturbation due to the relative motion
of vortices can be obtained by expanding the streamfunction as ln(r+a) ≈ ln r+a/r. Here
a represents the finite relative displacement of the vortex centres during the motion. So the
relative weight of the perturbing term is 1/r ln r and decays to zero asr →∞.

These arguments explain the absence of chaos asymptotically close to the centres and
infinitely far away from them. The mechanism that leads to the formation of vortex cores of
finite sizes (and a finite circle around the three-vortex system outside of which the advection
is nonchaotic) is still unclear and certainly deserves further attention.

In order to illustrate the difference in the mixing properties in the chaotic and nonchaotic
regions, respectively, we show the evolution of a dye droplet injected into the flow at two
different positions in figure 8. The numerical procedure used to follow the contour of the
droplet has been carried out by adding interpolating particles whenever the distance between
two adjacent particles becomes larger than a predefined small number. The droplet either
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Figure 7. Stroboscopic maps obtained by trajectories started in the mixing region of the flow
for (a) E = 0.01, (b) E = 0.24, (c) E = 0.4 and (d) E = 0.7. Dots represent intersections
with the Poincaŕe plane for a single chaotic trajectory; initial conditions: (a)–(c) (0.1, 0) and
(d) (0, 0.25).

Figure 8. Contour of a dye droplet after a few periods, in the mixing (a), and nonmixing
(b) region. The initially disk-shaped droplet of radius 0.05 was placed at(0, 0) and (1, 0),
respectively.E = 0.4 in both cases. The contour was obtained by adding interpolating particles
whenever the distances between two adjacent particles became larger than 0.005.
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Figure 9. Energy dependence of the tracer dynamics’ Lyapunov exponent and topological
entropy.

Figure 10. Time dependence of the number of particles (N ) used to obtain the droplet contour
by keeping the distance between adjacent particles smaller than 0.005. The initially disk-shaped
droplet of radius 0.05 was placed at(0.1, 0.1) for two energies,E = 0.24 andE = 0.5. The
value of the topological entropy obtained from the slope of the lnN versust curve is 2.23 and
2.80, respectively.

extends to the whole mixing region or it remains located in an island, depending on its
initial condition.

For the quantitative characterization of the chaotic advection dynamics in the mixing
region we calculated the Lyapunov exponents [38] for different energy values. The
calculation was carried out by considering the length stretch of an infinitesimal segment
(dl = 10−4) averaged over a long-time trajectory (t = 2000). The results are summarized
in figure 9. In the rangeE < Ec the exponent is almost constant, falls down around
Ec, and then increases again. This increase can be related to the steep increase of the
mixing frequency,ωrel, in this region. In the last region even ifωrel increases further, the
mixing region shrinks due to the convergence to an integrable case and the dynamics is
dominated by the KAM tori forming the boundary of the mixing region. This results in a
slow convergence of the Lyapunov exponent.

Another useful and independent characteristic of chaos can be extracted from the growth
of the droplet contour’s length. In the chaotic case an exponential growth can be observed,
after some transient time, which depends on the initial size of the droplet (figure 10). The
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corresponding exponent gives the characteristic number calledtopological entropy[38, 39]
being a quantitative measure for the folding property of the chaotic dynamics. It has already
been used to characterize the stretching of material lines in some hydrodynamical flows
[28, 40, 41]. In figure 9 the value of the topological entropy is also presented for different
energies; it has a similar trend as the Lyapunov exponent. Note that the topological entropy
is always larger than the Lyapunov exponent in accordance with the fact that this entropy is
an upper limit to the metric entropy [38] that coincides with the Lyapunov exponent in our
case. From the continuous time Lyapunov exponents and topological entropies one can also
obtain these quantities taken with respect to the stroboscopic map by simply multiplying
their values byT .

4. The restricted three-body problem

As mentioned in the introduction, an analogy can be drawn between the advection problem
described above and the restricted three-body problem of gravitationally interacting bodies.
The restrictions consist of the following: (i) the mass of the third body is vanishingly small
in comparison with the other ones (m3� m1, m2), so its effect onm1 andm2 is negligible;
(ii) the two bodies of finite mass (m1 andm2) revolve in circles around their centre of mass;
(iii) the light mass (m3) moves in the orbital plane of the other two bodies. It follows from
(i) that the motion ofm3 is determined by the other two bodies, but it exerts no force on
them. So it can be considered as the ‘advection’ ofm3 by the rotating gravitational field of
m1 andm2.

It is convenient to introduce a co-rotating reference frame in whichm1 andm2 are fixed.
In this system the dimensionless equations of motion form3 are [21]:

ẋ = vx ẏ = vy v̇x = 2vy + ∂�
∂x

v̇y = −2vx + ∂�
∂y

(14)

where

� = −1

2
[(1− µ)r2

1 + µr2
2] − 1− µ

r1
− µ

r2
(15)

is a kind of potentional energy, and

r1 =
√
(x − µ)2+ y2 r2 =

√
(x + 1− µ)2+ y2 (16)

is the distance from the two centres. The system has one dimensionless parameter, the
reduced massµ = m2/(m1 + m2). Here we consider the casem1 = m2 (µ = 0.5), in
analogy with vortices of equal strengths.

The invariance against temporal translation in the co-rotating system results in a constant
of motion,

E = 1
2(ẋ

2+ ẏ2)+� (17)

that is the dimensionless energy ofm3 in the co-rotating frame. (C ≡ −2E is called the
Jacobi integral [21].) Thus, the orbits in the four-dimensional phase space are lying in
three-dimensional hypersurfaces defined by the conditionE = constant.

To have a simple representation of the possible orbits one can introduce a two-
dimensionalPoincaré sectionof such hypersurfaces [42]. A good representation can be
obtained by the sectiony = 0 which means that whenever an orbit crosses the axis
connecting the massesm1 andm2 from one side, we represent this event by a point in
the (x, vx) plane. We show such a Poincaré section in figure 11(a) for E = −1.9.
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Figure 11. (a) Poincaŕe section of the restricted three-body problem forE = −1.9. The
gravitational centres are placed at−0.5 and 0.5. Regular (b), and chaotic (c) orbits in thex− y
plane viewed from the co-rotating reference frame. Chaotic orbits can approach the gravitational
centres arbitrarily close. Initial conditions: (b) x = −0.4, y = 0, vx = 0, vy = 3.423 45 and
x = 0.6, y = 0, vx = 0, vy = 4.210 39; (c) x = 0.1, y = 0, vx = 0, vy = 0.791 619.

Since the kinetic energy ofm3 cannot be negative, the trajectories must belong to the
regions defined by the inequality� 6 E. This results in an energy-dependent zero velocity
boundary on the Poincaré plane. WhenE < E1 ≈ −1.85 this boundary intersects the
x-axis. Thus, at the preselected value ofE = −1.9, the phase space, which is accessible
for the trajectories, splits into a bounded and unbounded component. The former is a finite
compact region while the unbounded component extends to infinity.

In the bounded component there are orbits surrounding each of the two centres separately
and others surrounding both of them. The former are mostly quasiperiodic (cf figure 11(b))
represented by closed curves on the Poincaré section and lie in a finite region on the left
of the centres. The midpoints of these curve families corresponds to periodic trajectories
bounded to one of the centres. The orbits surrounding both centres are typically chaotic but
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this time chaotic orbits can comearbitrarily close to the centres (figure 11(c)). Thus,no
gravitational ‘cores’ are created.

When changing the energy belowE1, the situation remains similar until reaching the
valueE2 ≡ −2.125. WhenE < E2 the bounded component of the phase space splits into
two regions and the orbits surrounding both centres disappear. The behaviour around each
centre remains, however, qualitatively unchanged, but the chaotic regions shrink and the
regular orbits tend to dominate.

Finally, we note that in the unbounded component both regular and chaotic orbits are
present. The latter ones correspond to a chaotic scattering [43, 44] of the small massm3. At
E = E1 the bounded and unbounded components merge, and in the energy rangeE > E1

only a connected unbounded component exists.
For the quantitative characterization of the chaotic dynamics the corresponding

Lyapunov exponent has been measured by different methods [42]. In analogy with the
‘dye droplet experiment’ one can also simulate the evolution of a continuously distributed
ensemble of noninteracting particles in the gravitational field ofm1 andm2. We have to
follow the evolution of the ensemble on the Poincaré map.

Because the chaotic region contains singular points at(±0.5, 0), after some iterations
the ensemble will have points arbitrarily close to these singularities and with arbitrarily large
velocities, resulting in a contour with infinite length in finite time. This divergence is not a
consequence of the chaotic dynamics and can be avoided by an appropriate transformation of
the variables. This regularization is also required for the numerical integration. One possible
method is the so-called global regularization of Birkhoff [21] based on the transformation

x = 1

4

(
2x̃ + x̃

2(x̃2+ ỹ2)

)
y = 1

4

(
2ỹ − ỹ

2(x̃2+ ỹ2)

)
dt

dτ
= (x̃2− ỹ2− 1

4)
2+ 4x̃2ỹ2

4(x̃2+ ỹ2)2

(18)

wherex̃, ỹ andτ are the new spatial and temporal variables, respectively.
As an example for a droplet shape, we show in figure 12 the contour of a small circle

after six iterations on the Birkhoff regularized Poincaré map. The contour has evolved in a
complicatedly winding curve similar to the advection problem.

Figure 12. Contour of an ensemble after six iterations in the chaotic region of the Poincaré
section defined bỹy = 0 in the regularized variables̃x and ṽx (ṽx ≡ dx̃/dτ ) at E = −1.9.
The initially disk-shaped ‘droplet’ of radius 0.0004 was centred at(x̃ = −0.25, ṽx = 0) on
the Poincaŕe surface. Note that the initial connectedness of the ensemble is not preserved, in
contrast to stroboscopic maps, due to orbits tangent to the Poincaré surface. The contour is
coiled infinitely around two closed curves shown by arrows (see text).
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It is natural to ask whether the topological entropy can be extracted from this procedure.
Unfortunately, a further difficulty makes the determination of the topological entropy in
this framework impossible. If the phase space contains such periodic orbits which do not
intersect the Poincaré surface (and this cannot be avoided in general) then the ensemble
might contain points which come arbitrarily close to these kind of orbits after some time.
Thus, they can spend an arbitrarily long time around them and those who reach the Poincaré
map again trace out pieces of the periodic orbits’ unstable manifold [44]. Thus, at certain
points the Poincaré map is ill defined and there can be an infinite number of such points.
We conclude that due to this effect, namely the trapping by periodic orbits between two
sections, Poincaré maps are not suitable to compute the topological entropy via the length
of contour lines.

5. Discussion and conclusions

In this section we discuss the similarities and differences of the hydrodynamical advection
problem and the restricted three-body problem.

As shown in section 3, the advection problem can be described by a Hamiltonian system
of two nonautonomous differential equation, thus the number of effective degrees of freedom
is 1.5. The gravitational problem is autonomous with 2 degrees of freedom, but due to the
existence of the Jacobi constant, the number of effective degrees of freedom is reduced to 1.5
again. Thus, the trajectories are embedded in three-dimensional spaces in both cases, being
problems with the minimal necessary complexity for chaotic behaviour. Furthermore, in
both cases the structure of the phase space can be represented by two-dimensional sections,
i.e. the dynamics can be described by means of two-dimensional maps.

A striking difference is that in the case of the restricted three-body problem, one has
a continuum set of three-dimensional hypersurfaces with different values of the Jacobi
constant. This energy parameter isnot analogous to the energy of the vortex system. The
latter one is just a tunable parameter characterizing the forcing, while the advected particles
have no conserved energy-like quantity. The energy of the advection problem instead
corresponds to the mass ratio,µ, of the three-body problem.

In both cases a co-rotating system of reference can be introduced. While in the
gravitational problem this transformation makes the time dependence of the driving
disappear, the quasiperiodic motion of vortices is reduced to a periodic time dependence.
This allows for the introduction of a special kind of map, the stroboscopic map, in the
advection problem.

In both cases of the structure of the phase space, there exists a chaotic ‘mixing’ region,
some ‘central’ regions dominated by singularities and an ‘asymptotic’ region far from the
singularities. In the two latter regions the trajectories are locally regular. The essential
difference is that, while the advected particles, depending on their initial coordinates, remain
in one of these regions forever, the small mass can enter and leave any of these three regions.
This difference can be simply explained by the fact that for the advection problem in the
field of a single vortex, which is relevant in the core and in the asymptotic region, the
trajectories are concentric circles, but for the corresponding restricted two-body problem
a continuous set of orbits is possible, ranging from circles to very elongated ellipses or
even hyperbolas. The orbits with large eccentricities are responsible for the possibility of
switching between different regions. Of course, also in the case of the restricted three-body
problem there are orbits which stay in one of the three regions forever.

This is again a result of the difference between velocity- and force-fields that is in
the dimensionality of the phase space (4 and 2) in these integrable elementary problems.
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Thus, the local dynamics around the centres is characterized by trajectories lying on two-
dimensional tori (defined by the conserved quantities) and circles, respectively, centred at
the singular point. While the toroidal surfaces connect points close to the centre with ones
further away, where the local approximation is no longer valid, this is not true in the case
of concentric circles.

The fact that the particles advected by the flow in the mixing region will never get
close to one of the point vortices makes the numerical integration of this problem much
easier than that of the gravitational problem, where a regularization procedure is required,
as mentioned in the preceding section.

Note that the argument above is independent of the number of singular points and
their dynamics. The fact that gravitational centres lie in the chaotic region even in more
complicated cases might be a reason for the relatively emptiness of the interplanetary region
of the solar system. On the other hand, regular islands around the vortices seem to be a
universal feature of advection in point vortex systems since they are also present in cases
when the vortex centres move chaotically [14].

Finally, we note that the analogy between the restricted three-body problem and
hydrodynamical advection has long been discussed in literature [20]. It was pointed out
by Mulholland [45] that a realistic flow in which the advection fully corresponds to the
equations of the restricted three-body problem cannot be found. Thus, the advection in the
field of point vortices can only be a partial analogy. This is also expressed by the fact that
the restricted two-vortex problem is integrable. On the other hand, the advection in the
field of the three vortices is also an analogy of the restricted four-body problem [46] where
the gravitational centres lie on the corners of an equilateral triangle. They rotate with a
constant angular velocity, therefore the dynamics of the light mass is of a similar type as
in the three-body case, just the geometry is different.

A more realistic celestial mechanical arrangement is the elliptic three-body problem
when the two gravitational centres move along Kepler ellipses instead of circles. In this
case however, the force acting on the third mass is time dependent even in the co-rotating
frame, and no Jacobi integral exists. This dynamics of the light mass has thus a higher
degree of freedom (2.5) than in the circular problem. In conclusion, we believe that the
advection field of three point vortices is a very natural analogue of the classical restricted
three-body problem, but the analogy is necessarily incomplete.
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