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A generalized multibaker map with periodic boundary conditions is shown to
model boundary-driven transport, when the driving is applied by a ``perturba-
tion'' of the dynamics localized in a macroscopically small region. In this case
there are sustained density gradients in the steady state. A non-uniform station-
ary temperature profile can be maintained by incorporating a heat source into
the dynamics, which deviates from the one of a bulk system only in a (macro-
scopically small) localized region such that a heat (or entropy) flux can enter an
attached thermostat only in that region. For these settings the relation between
the average phase-space contraction, the entropy flux to the thermostat and
irreversible entropy production is clarified for stationary and non-stationary
states. In addition, thermoelectric cross effects are described by a multibaker
chain consisting of two parts with different transport properties, modeling a
junction between two metals.

KEY WORDS: Deterministic chaos; spatial extension; multibaker maps;
entropy balance; thermostating; thermoelectric cross effects.

1. INTRODUCTION

There is a recent interest in modeling transport processes by simple
dynamical systems with chaotic dynamics. One class of models, actually
inspired by Non-Equilibrium Molecular Dynamics (NEMD) simulations,
describes systems driven by external fields with a spatially uniform
dynamics subjected to periodic boundary conditions.(1�7) Another approach
concentrates on systems driven from the boundaries, which lead to steady
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states with sustained gradients of the thermodynamic fields.(8, 9) For a com-
paratively simple, but as far as their transport properties are concerned,
generic class of dynamical systems, the multibakers, (10�20) we show that
both mechanisms of driving can simultaneously be worked out. This leads
to an improved understanding of the relation between the approaches. In
the former approach transport is driven by a field acting uniformly in the
full system, while in the latter case the driving is concentrated to a
microscopic region in space. From this point of view, boundary-driven
transport is closely analogous to transport in a dynamical system with peri-
odic boundary conditions, which is driven out of equilibrium by a ``pertur-
bation'' of the dynamics localized in a macroscopically small region.

In all models for transport, as emphasized by Nicolis and
coworkers, (21, 22) a quantity of central interest is the heat flux, or equiv-
alently the entropy flux, from the system into its environment. A central
aim of modeling transport by dynamical systems is to identify settings,
which are consistent with the thermodynamic entropy balance

dS
dt

=
deS
dt

+
diS
dt

(1)

i.e., with the statement that the temporal change of the thermodynamic
entropy S can be decomposed into two contributions, called the external
and internal change of the entropy, respectively. This integral form can be
rewritten into a local balance equation when the two terms on the right
hand side correspond to integrals of local densities. In that case, the time
derivative of the entropy density s appears as

�t s=8+_(irr) (2)

where 8 and _(irr) represent the densities of the entropy flux and the rate
of irreversible entropy production, respectively. In the bulk of typical
macroscopic systems the entropy flux can be written as the divergence of
the entropy current j (s),

8=&{j (s) (3)

reflecting the fact that heat (Tj (s) is directly related to the heat current) can
only be taken out of the system at its boundaries.(23) On the other hand,
this form has to be generalized at positions where there is a heat current
flowing into an attached thermostat, and in cases where the entropy
current is not differentiable, like for instance across interfaces between dif-
ferent materials. In those cases the entropy flux is not a full divergence, and
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it need not even be defined as a density. Rather the flux should then be
written as

8=&{j (s)+8 (th) (4)

where j (s) is the entropy current in the system, and 8(th) accounts for a
direct flow of entropy into the surroundings, which acts then as a thermo-
stat.

In the present paper, we shall put special emphasis on the role of the
entropy flux 8(th), and on exploring under which conditions it can vanish.
We find conditions on how to model the entropy balance for ther-
modynamic bulk systems, and for macroscopic systems subjected to
thermostating by either a localized sink for the entropy or a spatially
uniform coupling to a thermostat.

The role of the thermodynamic entropy of dynamical systems is played
by the coarse-grained Gibbs entropy, whose usefulness in understanding
irreversibility from the point of view of dynamical systems is by now
thoroughly explained in the literature.(24�27, 12�20) (For stochastically perturbed
dynamical systems where noise generates a kind of coarse graining, see refs.
21 and 22.) The bulk dynamics is represented by a multibaker model driving
two fields, the density * and the the kinetic energy per particle T, with a
local source density q for the latter.(17, 18) A connection with macroscopic
transport equations is aimed at in a suitable defined continuum limit (the
macroscopic limit), where the field T will be interpreted as a temperature,
based on the experience that this quantity is closely related to the average
kinetic energy per particle.

We shall consider a sequence of periodic models of increasing com-
plexity. Model I corresponds to a homogeneous isothermal system
described by a thermostating algorithm. In this model no entropy current
is defined��its entire entropy flux stems from a 8(th). By allowing a spatial
resolution of the isothermal system (Model II), a non-vanishing &{j (s)

term appears in the transient behavior, but vanishes in the steady state,
where 8(th) remains unchanged. It is the only contribution to the flux in a
steady state. Model III is still isothermal but with a locally deviating
dynamics in one of the multibaker cells representing a boundary. The bulk
dynamics can then be chosen so that (3) holds in the bulk, and all the heat
taken out is concentrated in the boundary with a 8(th){0 there.
In model IV we allow for temperature changes and local heat sources.
By taking q locally deviating from that of the bulk in one cell, we find a
steady temperature profile with a bend (i.e., a jump in its first derivative)
at the boundary. The q distribution can then be chosen such that again
(3) holds in the bulk. The heat source in the boundary is however singular.
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It corresponds exactly to the one which follows from thermodynamics.
Finally, we consider a multibaker chain joined together from two sub-
chains with different material properties. This models a junction between
two metals so that one can observe thermodynamic cross effects, like the
Peltier and Seebeck effects, very much in the same arrangements as in
classical experiments.

This paper is organized as follows. In Section 2 the local dynamics of
the considered multibaker model is defined, and its local entropy balance
is worked out. In Section 3, Model I�Model IV are treated, which share
periodic boundary conditions and represent thermodynamic settings of
increasing complexity. Section 4 is devoted to cross-effects. We conclude
with a short discussion in Section 5.

2. LOCAL TRANSPORT AND THERMODYNAMIC RELATIONS
FOR MULTIBAKERS

In this section we describe the local dynamics of a cell of a multibaker
map modeling a system with particle(20, 12�16) and heat transport.(17, 18) We
work out its density and kinetic-energy dynamics, and present general rela-
tions for the entropy changes. The effect of boundary conditions will be
considered in subsequent sections for a few models with progressively
richer thermodynamics.

2.1. Phase-Space Dynamics of Multibaker Maps

The phase space (x, p) of the multibaker map consists of cells labeled by
the index m (Fig. 1). The division of the x axis into cells corresponds to a
partitioning of the configuration space into regions, sufficiently large to
characterize the state inside the cell by thermodynamic variables and small
enough to neglect variation of these variables on the length scale of the
cells (local equilibrium approximation). Every cell has a width a and height
b#1. The coordinates of individual particles in the cell are given as a posi-
tion variable x, and a momentum-like variable p. We are interested in the
dynamics of two dimensionless fields, the phase-space density *(x, p), and
a field T (x, p) characterizing the local kinetic energy per particle. After
each time unit {, every cell is divided into three columns (Fig. 1) with
respective widths alm , asm and arm . (Note that lm+sm+rm=1 for every
m.) The right (left) column of width arm (alm) is uniformly squeezed and
stretched into a strip of width a and of height lm+1 (rm&1), which is mapped
to the right (left) neighboring cell. The middle one preserves its area and
remains in cell m. Note that the map is one-to-one on its domain. It
globally preserves the phase-space volume, but it can nevertheless locally
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Fig. 1. Graphical illustration of the action of the multibaker map on cell m. The letters L,
S and R are inserted to visualize this action. Iteration of the rule after every time unit { defines
the time evolution. More details about the action of the mapping and the symbols needed for
its definitions are given in the text. The symbols *i and Ti indicated on the margins show the
average values of the fields on the cells and on its neighbors (i=m; m\1).

expand or contract the phase-space volume. In refs. 14 and 18 it was
argued that only the choice of the contraction factors given here can be
consistent with thermodynamics (one can find an analogous formulation
with a fully area preserving dynamics at the expense of a spatial variation
of the volume of the cells of the multibaker; cf. ref. 19).

The field T is advected by the particle dynamics, and��in order to
mimic a local heating of the system��it is also multiplied by a factor
(1+{q) depending on the averages characterizing the local currents and
the thermodynamic state. By this a mean-field-like coupling of the motion
of the particles in and around of a given cell is introduced. The source term
q will appear in the equation describing the time-evolution of the kinetic
energy density, where it expresses that the kinetic energy is not a conserved
quantity. Furthermore, it will characterize the entropy flux into the
thermostat. By choosing different functional forms of q, different couplings
to the thermostat can be described (cf. Subsection 2.5).

In general, the width alm , asm , and arm of the columns may depend on
the variables characterizing the thermodynamic state in the vicinity of the
cell, so that they vary in time and space. This is indicated by the explicit
dependence of the parameters on the cell index m.

Iteration of these rules defines the time evolution of the system. The
(x, p) dynamics generates ever refining structures in the distributions
*(x, p) and T (x, p). For simplicity, we take the fields initially constant in
each cell: *(x, p)=*m , T (x, p)=Tm . After one step of iteration, the fields
will be piecewise constant on the strips defined in Fig. 1. Due to the conser-
vation of particles, the phase-space density in cell m takes the respective values

*$m, r=
rm&1

lm
*m&1 , *$m, s=*m , *$m, l=

lm+1

rm
*m+1 (5)
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(The prime will always indicate quantities evaluated after one time step.)
The contraction factors lm �rm&1 and rm �lm+1 are the Jacobians corre-
sponding to the mapping from cell m&1 to m and from cell m+1 to m,
respectively. After division by { the logarithm of the factors gives the
negative of the local phase-space contraction rates. We define the phase-
space contraction rate _m of cell m as the the weighted average of these two
local contributions:

_m=
1
{ _*m&1 rm&1 ln

rm&1

lm
+*m+1 lm+1 ln

lm+1

rm & (6)

The Jacobian corresponding to the dynamics of the central region (S) is
unity so it does not contribute to _m .

2.2. Dynamics of the Particle Density and the Particle Current

After one time step, the average density *$m in cell m is a weighted
average of *$m, r , *$m, s , and *$m, l . It is determined by its initial density *m and
by the initial densities *m\1 of the neighboring cells. Multiplying the strip
densities (2.1) with the widths of the respective strips, adding them up and
dividing the sum by the width a of the cell, one obtains the average (or the
coarse-grained ) density after the iteration

*$m=sm*m+rm&1*m&1+lm+1*m+1 (7)

The coarse-grained density evolves according to this master equation,
which can be rearranged to obtain the discrete conservation law of the den-
sity

*$m&*m

{
=&

jm& jm&1

a
(8)

Here

jm=
a
{

(rm*m&lm+1*m+1) (9)

is the discrete particle current through the right boundary of cell m.

2.3. The Kinetic-Energy Dynamics and the Energy Current

According to the T dynamics described above the updated values
T $m, r , T $m, s , T $m, l for T on the respective strips R, S, L of cell m contain a
source term characterized by a local strength qm :
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T $m, r=Tm&1[1+{qm]

T $m, s=Tm[1+{qm] (10)

T $m, l=Tm+1[1+{qm]

This strength is yet undetermined. It depends on the physical setting of
thermostating to be modeled and on the average of * and T values in the
cells and in its neighbors.

The (x, p) dynamics also drives the field *T. After one iteration the
kinetic-energy density of cell m takes the value

*$mT $m=[sm*mTm+rm&1*m&1Tm&1+lm+1*m+1Tm+1](1+{qm) (11)

This equation can be rearranged as a discrete balance equation for the time
evolution of *T:

*$mT $m&*mTm

{
=*$mT $m

qm

1+{qm
&

j (*T )
m & j (*T )

m&1

a
(12)

where j (*T )
m =Tm jm&(a2lm+1 �{) *m+1(Tm+1&Tm)�a is a corresponding

discrete energy current. Note that the r.h.s of (12) is not a full divergence,
in accordance with the fact that the kinetic energy is not a conserved quan-
tity. In an isothermal system where there is no kinetic energy dynamics, no
source can be present (qm=0).

2.4. Gibbs Entropy and the Coarse-Grained Entropy

In this study we are interested in both the temporal evolution of the
exact fields *(x, p) and T (x, p), and in the evolution of their respective cell
averages *m and Tm . The former characterize the microscopic time evolu-
tion, while the averages describe the local thermodynamic state in spatially
small regions. Both levels of description admit entropy functionals, which
are commonly denoted as Gibbs and coarse-grained entropies.

The Gibbs entropy S (G) is related to the detailed knowledge of the
system. It is taken with respect to the exact densities *(x, p) and T (x, p).
In a given cell it is defined as

S (G)
m =&|

cell m
dx dp *(x, p) ln \*(x, p)

*C T (x, p)&#+ (13)
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Here, *CT # plays the role of a local T-dependent reference density with a
constant reference density *C and # as a yet undetermined constant. In
ref. 18 it is demonstrated that only this choice of the T-dependent reference
density can be consistent with thermodynamics.

The coarse-grained entropy Sm has a similar form, but it is based on
the averaged values in the considered cell:

Sm=&a*m ln \*m

*C T &#
m + (14)

The reference density *C in the expression of the coarse-grained entropy
coincides with the one chosen for the Gibbs entropy.

As mentioned above, throughout the paper we only consider initial
distributions, which are uniform in every cell (cf. refs. 14, 16, and 18 for
more general choices). As a consequence, initially Sm=S (G)

m , and after one
time step the entropies become

Sm
(G)$=&a _sm*m ln \*m

*C T $&#
m, s++rm&1*m&1 ln \*$m, r

*C T $&#
m, r +

+lm+1*m+1 ln \*$m, l

*C T $&#
m, l +& (15)

and

S$m=&a*$m ln \*$m
*C T $&#

m + (16)

2.5. Entropy Balance

The coarse-grained entropy fulfills a local entropy balance in direct
analogy to the one in irreversible thermodynamics. To derive this equation
one identifies at any given time the difference Sm&S (G)

m as the information
on the microscopic state of the system which cannot be resolved in the
coarse-grained description. The temporal change of this lack of information
is then identified with the irreversible entropy production 2i Sm , and the
change (S$ (G)

m &S (G)
m ) of the Gibbs entropy with the entropy flux 2eSm .

Thus,

S$m&Sm

{
=

2eSm

{
+

2iSm

{
(17)

which is a discrete analog of (1).
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The form of the entropy production is [cf. (15) and (16)]:

2i Sm

{
=

[S$m&S m
(G)$]&[Sm&S (G)

m ]
{

=
a
{ _&*$m ln \*$mTm$

&#

*m T $&#
m, s ++*m&1rm&1 ln \*$m, r T $&#

m, r

*mT $&#
m, s +

+*m+1 lm+1 ln \*$m, lT $&#
m, l

*m T $&#
m, s +& (18)

where we used that Sm&S (G)
m vanishes due to the particular choice of

initial conditions.
The entropy flux becomes

2eSm

{
=&

a
{ _(*$m&*m) ln \*m

*C T &#
m ++*$m ln

T $&#
m, s

T &#
m

+*m&1rm&1 ln \*$m, r

*m

T $&#
m, r

T $&#
m, s ++*m+1 lm+1 ln \*$m, l

*m

T $&#
m, l

T $&#
m, s +&

(19)

which can be split into a divergence of an entropy current and a flux into
the thermostat

2eSm

a{
=&

j (s)
m & j (s)

m&1

a
+8 (th)

m (20)

with

j (s)
m #& jm ln \*m

*C T&#
m ++

alm+1

{
*m+1 ln \*m+1

*m

T &#
m+1

T &#
m +&

a
{

(rm&lm) *m

(21a)

8 (th)
m #&

1
{ _*$m ln

T $&#
m, s

T &#
m

+rm&1*m&1 ln \rm&1

lm

T $&#
m, r T &#

m

T $&#
m, s T &#

m&1+
+lm+1*m+1 ln \lm+1

rm

T $&#
m, l T &#

m

T $&#
m, s T &#

m+1+&
&

(rm&lm) *m&(rm&1&lm&1) *m&1

{
(21b)

Note that (20) is a discrete counterpart of (4), and j (s)
m and 8 (th)

m are the dis-
crete entropy current and entropy flux to the thermostat, respectively.
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2.6. The Macroscopic Limit

The projection of the multibaker dynamics on the x axis corresponds
to a biased random walk with some diffusion coefficient and drift. The drift
has to be present if we want to model non-equilibrium systems subjected
to electric fields and�or temperature gradients. The requirement of con-
sistency with an advection diffusion equation in the large system and long
time limit, when the cell size is much smaller than the system size, and the
time unit is much shorter than the macroscopic relaxation time,
leads(12, 14, 15, 18) to the scaling relation:

rm=
{D
a2 \1+

avm

2D + (22a)

lm=
{D
a2 \1&

avm

2D + (22b)

We allow for a location dependence of the drift vm but assume that the diffusion
coefficient D is spatially constant. The continuum limit of the multibaker
dynamics, which is taken with these constraints, is called the macroscopic
limit. Formally, it corresponds to taking a, { � 0 while keeping D fixed,
and a, *m , Tm , vm and qm finite so that they approach a macroscopic
position coordinate x, and smooth functions *(x), T (x), v(x) and q(x),
respectively. After taking this limit we call *(x) the density and T (x) the
temperature distribution in the system. The macroscopic limit of all the
local relations given in (7)�(19) can be worked out explicitly.(12, 14, 15, 17) In
the following this limit will be indicated by an arrow ``�.'' Here we only
mention that the system's equation of state turns out(17, 18) to be that of
a classical ideal gas with #* as its heat capacity (measured in units of
Boltzmann's constant).

3. PERIODIC MODELS

3.1. Model I: Isothermal Single-Cell Multibaker for Field
Driven Transport

We start by discussing the simplest conceivable model for describing a
macroscopic transport process. A particle current induced by an external
field in an isothermal environment described by a single baker cell subjected
to periodic boundary conditions. The right boundary of the cell is identified
with its left boundary and the mapping is from the cell onto itself. Because
of driving r{l, and thermostating is applied via the appearance of the con-
traction factors l�r and r�l in order to reach a steady state. This mapping
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Fig. 2. Isothermal single-cell periodic baker map. The right boundary is identified with the
left one. In this and all following figures the indicated width of the strips (i.e., l, r) is to be
understood as the fraction of the total width of a of the cell.

propagates the coordinates of a large number of particles, which do not
interact, i.e., they all are mapped by the same mapping. Clearly, this system
does not admit a spatial resolution of the densities characterizing the trans-
port process. Its local and global behavior coincides, so that the subscript
m of the densities can be discarded in this case.

For the single-cell multibaker the master equation (7) predicts *$=
*#*� . This implies that the model describes transport in a steady state with
the average density *� . The particle current j=(a�{)(r&l ) *� =v*� is constant
in space and time, and the entropy production (18) becomes (T=const)

2i S
a{

=*�
(r&l )

{
ln \r

l+#_ (23)

It has the macroscopic limit:

2i S
a{

� _(irr)=*�
v2

D
(24)

In a similar way, the entropy flux (20), (21b) has the macroscopic form

2eS
a{

� 8(th)=&*�
v2

D
(25)

As expected in a steady state, 2iS and 2eS add up to zero. More inter-
estingly, however, these contributions to the change of entropy are also
directly proportional to the local phase-space contraction (6), which
reduces to *� v2�D in the macroscopic limit.
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3.2. Model II: Isothermal Multibaker Chain for Field Driven
Transport

In the single-cell multibaker the coarse-grained density cannot evolve
in time, since no spatial variations are resolved. For this reason, one also
cannot distinguish between the local entropy balance as described by (2),
(4) and the balance (1) for the full macroscopic system. In order to address
these points, we generalize the previous setting by considering a multibaker
chain of N+1 cells, with spatially constant driving (i.e., rm=r and lm=l )
and periodic boundary conditions: cell N+1 and cell 0 are identified. From
(9) we obtain for the particle current

jm=
a
{

[(r&l ) *m&l(*m+1&*m)] (26)

which has the macroscopic limit:

jm � j#*v&D�x* (27)

This current varies along the chain as long as the cell densities evolve in
time. The asymptotic state, however, is formed by a spatially uniform
density distribution with the average density *� .

For constant temperature T the irreversible entropy production (18)
becomes

2i Sm

a{
=

1
{ _&*$m ln

*$m
*m

+r*m&1 ln \*m&1

*m

r
l++l*m+1 ln \*m+1

*m

l
r+& (28)

Fig. 3. Isothermal multibaker chain of N+1 cells. The right boundary of cell N is identified
with the left boundary of cell 0.
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Using (7) and (22), a lengthy but straightforward calculation(14) shows that
in the macroscopic limit a, { � 0 and aN=const this local form is consis-
tent with thermodynamics since in a general non-steady state it approaches

_(irr)=
(*v&D�x*)2

*D
=

j 2

*D
(29)

In a similar way, (14, 15) the entropy flux (19) can be calculated, which in the
macroscopic limit has the form (4), with the entropy current

j (s)=&j _1+ln \ *

*C+& (30)

and the entropy flux

8(th)=&
vj
D

(31)

transferred directly to the environment. This local expression expresses that
every cell is coupled to the thermostat. In the steady state the coarse-
grained density is constant along the chain *=*� and the current takes the
form j=*� v, such that �x j (s) vanishes, and we recover (24) and (25).

Due to the additional spatial resolution (as compared to Model I) the
local and global features of the entropy balance can be different. It is worth
considering the global entropy production, defined as [cf. (28)]

:
N

m=0

2iSm

{
=

a
{ _ :

N

m=0

*m& (r&l ) ln \r
l++

a
{

:
N

m=0

[&*$m ln *$m+*m ln *m]

(32)

Here, the logarithms of ratios of densities of neighboring cells in (28) drop
out in the sum due to the periodic boundary conditions. The global
entropy production takes then the macroscopic form

:
N

m=0

2iSm

{
�

diS
dt

=_ :
N

m=0

a*m& v2

D
& :

N

m=0

a�t[* ln *]=N
v2

D
+

dS
dt

(33)

where N=a*� (N+1) is the total number of particles in the multibaker
chain, and S=�m Sm is the total entropy.

The global form of the entropy flux is [cf. (19)]

:
N

m=0

2eSm

{
=&

a
{ _ :

N

m=0

*m& (r&l ) ln \r
l+=& :

N

m=0

a_m (34)
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which takes the macroscopic limit

:
m

2eSm

{
�

deS
dt

=&N
v2

D
(35)

This shows that the local and the global entropy balances are markedly dif-
ferent. Locally, the entropy current depends only on the local current and
the local density. There is only an indirect influence of the drift velocity v
through its contribution to the current and its influence on the density
profile. In contrast, the macroscopic flux only depends on the total number
of particles in the system and on the drift velocity. It is constant in time
since it neither depends on the current nor on the density profile, which in
general both evolve in time. Interestingly, also in this more general setting
the negative of the global entropy flux equals the (total) phase-space
contraction rate at any time. This is in full harmony with the result
obtained for the entropy flux in noisy dynamical systems by Nicolis and
Daems.(21, 22) In contrast, the total irreversible entropy production is in
general no longer directly related to the phase-space contraction. Its local
form exactly amounts to Joule's heating j 2�*D, and globally it picks up an
additional contribution characterizing the time-evolution of the macro-
scopic states. Therefore, the often cited relation(1, 3, 5, 24, 28) between the
global entropy production and the phase-space contraction only holds in
steady states, where the modulus of the entropy flux coincides with the rate
of entropy production.

3.3. Model III: Isothermal Multibaker Chain with Driving
Localized to a Single Cell

A generalization of the previous case is a system modeling boundary-
driven transport. Here, we consider a setting with periodic boundary
conditions. Away from the point of driving, the steady-state macroscopic
properties correspond to those of boundary-driven transport, but due to
the periodic boundary condition the model is a well-defined dynamical
system, which sheds new light on our previous models.(14, 15)

We consider a multibaker chain where cell 0 has a behavior different from
the rest of the chain in the sense that its drift velocity differs from that of the
bulk where r=l (i.e., v=0). The diffusion coefficient, however, is still the same
in all cells. This implies r0&r=l&l0{0 [cf. (22)]. The driving in cell zero
has the tendency to generate an accumulation of particles right, and a
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Fig. 4. Isothermal multibaker chain with driving in cell 0. There is no drift in the bulk.

slowly decreasing density distribution on its left (we assume v0>0, r0>r).
In a steady state, this leads to a linear density profile

*m=*� +\N&1
2

&m+1+ $* for m=1,..., N (36)

whose increment $* is uniquely determined by r0 (or v0). In cell zero we
find *0=*� . A substitution into the master equation for m=1 or N leads to

$*=*�
2

N+1 \
r0

r
&1+ (37)

Again the average density *� is related to the number of particles N in the
system via a*� (N+1)=N. By taking into account that according to (22)
r0=r[1+av0 �(2D)], we obtain that $* is indeed proportional to v0 :

v0=D
$*

a
N+1

*�
=D

$*

a
N

a*� 2 (38)

The steady-state current is:

j=*�
v0

2
&D

*1&*�
a

=D
$*

a
=

v0*�
N+1

(39)

The diffusion current of cells N and 0 is much stronger than otherwise, due
to the sudden jump in the densities, but in the steady state the surplus is
exactly compensated by the local drift currents. Thus the particle transport
in the steady states of Model II and Model III are equivalent provided the
drift v in the former coincides with D$*�(a*� ) in the latter. As far as the
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steady-state transport is concerned, it does not matter, whether one applies
a small uniform field leading to a spatially uniform drift v or a large one
v0=(N+1) v in a single cell only.

All thermodynamic relations of relevance can be worked out not only
for the steady state (36), but for general non-steady states. The local forms
of the entropy production and the entropy flux in the bulk are special cases
of (29)�(31). Since r=l in the bulk, there is no entropy flux into the
thermostat 8(th)=0 for m=2,..., N&1. On the other hand, the entropy flux
in cell 0 and its neighbors does contain a part which cannot be written as
a divergence. Due to (21b), the flux into the thermostat turns out to be:

8(th)#8 (th)
N +8 (th)

0 +8 (th)
1 =

1
{ _(r*1&r0*0) ln \r0

r +&(r*N&l0*0) ln \ r
l0+&

=&a(_N+_0+_1) (40)

Again 8(th) is the negative of the total phase-space contraction rate:

:
N

m=0

2eSm

{
=& :

N

m=0

a_m (41)

Assuming that av0<<2D

8(th)
r

v0

2
*1&*N

a
&*0

v2
0

4D
&

*1+*N

2
v2

0

4D
(42)

In the steady state *N&*1=&(N&1) $*=&(N&1) aj�D, *0=(*1+*N)�2
=*� , and thus

8(th)#&
v0 j
D

(43)

In the macroscopic limit the quantity $*�a approaches the gradient &�x*
in the bulk, *� and N stay constant and thus v0 in (38) is proportional to
1�a. The driving is singularly strong and so is the entropy flux density into
the thermostat. By integrating, however, over the volume of cell zero and
its neighbors we obtain the total entropy flux into the thermostat
&av0 j�D=&j 2N�*� 2D. It coincides with the macroscopic limit of the total
entropy flux �N

m=0 2eSm �{ since the integral of �x j (s) vanishes in a peri-
odic system, i.e.,

deS
dt

=&
j 2

*� D
N

*�
(44)
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This result is equivalent to the steady-state version of (35) expressed by the
current.

In this model there is no need for taking out entropy (heat) along the
bulk. Thermostating is active in cell 0 and its neighbors only. It extracts
exactly the same entropy flux there as the full entropy flux of Model II in
the steady state. Thus the models refer to two different realizations of
thermostating the transport process.(8) Model II should be viewed as, e.g.,
a wire which is kept at constant temperature by removing the heat due to
dissipation everywhere along its length��Model III is closer related to a
thermally isolated system, where heat is transported to the ``boundary,''
from where the system is driven. For the multibaker this takes place in the
special cell m=0. Boundary driven transport typically leads, however, to
non-uniform temperature profiles. A full treatment of such transport pro-
cesses should be based therefore on a multibaker chain with kinetic-energy
dynamics.

3.4. Model IV: Multibaker Chain with Thermostating Localized
to a Single Cell

In the realm of classical thermodynamics heat is transported to the
boundaries of the system. If, however, there is a bend in the temperature
profile, a jump in the heat current occurs and heat is taken out at this
point.

In order to model such a situation, we consider a multibaker chain
with kinetic-energy dynamics and with fixed transition probabilities (rm=r,
lm=l, m=0, 1,..., N ). The general relation (18) and a calculation similar to
the one leading to (29) yields in the macroscopic limit for the entropy
production(18)

_(irr)=* \�xT
T +

2

+
j 2

*D
(45)

Here, j=*v&D�x* is the particle current, and *=#*D is the heat conduc-
tivity of the model. From (19)�(21) we obtain

8(th)=#*q&
vj
D

(46)

as the entropy flux let directly into the thermostat, and

j (s)=&*
�xT

T
+

e6
T

j (47)
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Fig. 5. Non-isothermal multibaker chain with thermostating localized to cell 0. The local
heat source q0 of that cell is different from that in the bulk, which is q*=&vj�D.

as the entropy current where 6 is the bulk Peltier coefficient

e6
T

=&\1+ln
*T &#

*C + (48)

and e represents the charge of the particles. Note that there is always a
possibility to ``close'' the system locally in the sense that the source term
q=qC=vj�* is chosen such that 8(th) vanishes.

We consider a periodic chain with fixed transition probabilities. The
local heating sources take the value qm=qC in the bulk m=1, ..., N, but
there is a different source q0 in cell 0. In the steady state we find a constant
particle density along the chain. Inside the bulk, the kinetic-energy equa-
tion (11) implies for the steady temperature distribution

Tm=[(1&r&l ) Tm+rTm&1+lTm+1](1+{q*) (49)

With periodic boundary conditions (Tm=0=T0 , and Tm=N+1=T0) this
equation has the general solution

Tm=
T0

sin[b(N+1)] \
r
l+

m�2

{sin[b(N+1)&bm]+\ l
r+

(N+1)�2

sin(bm)=
(50)

where

cos b=- rl \1&
{qC

(1+{qC)(r+l )+ (51)
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The solution (50) has a bend in cell zero, in the sense that the left and right
derivatives are different. Only at this location in the system the entropy flux
is not a full divergence. Applying the kinetic-energy equation (11) to cell
zero in a steady state, where the density is constant, we find that

q0=
1
{

r(T0&TN)+l(T0&T1)
(1&r&l ) T0+rTN+lT1

(52)

In the macroscopic limit

aq0 �
D
T

[�xT | (&0)&�xT | (+0)] (53)

This implies that the source density q0 is singular but the total source
Q0=aq0 inside cell 0 is finite.

It is worth comparing this with the thermodynamic treatment of this
situation where there is a jump in the entropy current, in order to have
finite entropy flux density 8 in each point, it is unavoidable to consider a
8� which is not a full divergence:

8=&�x j (s)+8� (54)

The form of 8� is obtained by integrating (54) around the point where the
jump in the derivative appears (x=0):

|
=

&=
8 dx=& j (s) | (+=)

(&=)+|
=

&=
8� dx (55)

Smoothness of 8 requires that for = � 0

|
=

&=
8� dx=& j (s) | (+0)

(&0) (56)

The multibaker result (46) implies that if q is singular as in cell 0, then
8(th)

0 =#*q0 . We then immediately see that 8 (th)
0 is the analog of 8� . Indeed,

by inserting the expression (47) for j (s) we have

|
=

&=
8� dx=

*
T

[�xT | (+0)&�xT | (&0)] (57)

which, on account of *=#*D, exactly corresponds to (53).
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We have shown, that the thermodynamic evaluation and the macro-
scopic limit of q0 lead to the same result. Physically this means, that by a
proper choice of the source terms even the singularity in the entropy flux
can be described in full harmony with thermodynamics, and up to a factor
of T the flux let into the thermostat is exactly the amount of heat that is
taken out also in the thermodynamic description of a system with a bend
in the temperature profile.

4. CROSS EFFECTS IN A MULTIBAKER MODEL

Thermodynamic cross effects, which probe the (off-diagonal) Onsager
coefficients, are difficult to observe in homogeneous systems. When two
materials are put into contact, however, they play a dominant role in
understanding the heat and entropy currents. In order to mimic such
phenomena, we consider two multibaker chains containing the cells
m=&M$ } } } &1 and m=0 } } } M, respectively, (M, M$>>1) which are
brought into contact at m=0 (cf. Fig. 6). Now, the parameters l &, s&, r&

and l +, s+, r+ in the two parts are different, and for generality we will also
assume that the constant reference densities *C, \ are different. These dif-
ferences will represent the different thermodynamic and transport proper-
ties of the materials. The difference in r and l gives rise to different drifts
(conductivities) and diffusion coefficients, and the one in the reference den-
sity might be thought of reflecting for instance a different effective mass of
the electrons.

As in the previous subsection, the dynamics of this multibaker chain
drives a density and a kinetic-energy field. In order to simplify the structure
of the steady-state density profiles, we restrict to the case r+�l +=r&�l &.
This choice is motivated by a physical interpretation of r�l. After all, the
macroscopic limit of r�l is 1+av�D, and v�D is proportional to the external
(electric) field, such that the requirement expresses that the external field

Fig. 6. Two long multibaker chains, representing materials & and +, joined together at the
junction between cells &1 and 0. The leads are in cells &M$ and M.
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should be the same in both materials. In the remainder of this section we
discuss the transport in this model in two different settings: (i) a constant
(non-vanishing) particle current and constant temperature; (ii) vanishing
particle current and an isolated system which is only thermostated at the
``junction'' m=0 and at the two ``leads'' m=&M$ and m=M, respectively.
Setting (i) allows us to discuss the Peltier effect, and setting (ii) is used to
describe the Seebeck effect.

Before turning to these specific settings, however, we discuss the steady
state profile of the (particle) density in general. One does not expect
noticeable gradients in the electron density in either material, so that we fix
them to the constant values *& and *+, leading to the spatially uniform
current [cf. (9)]

j=
a
{

(r+&l +) *+=
a
{

(r&&l &) *&

In order to have the same current also across the junction, one has to
require l &*&=l +*+ in addition. Together with the fact that v�D is fixed
for the whole system, this implies that there is a constant amount of Joule's
heating vj�D per unit length of the system, which either has to be trans-
ferred to a local thermostat [cf. (46)], or leads to a local heating, i.e.,
enforces non-uniform temperature profiles.

4.1. The Peltier Effect

The requirement of a constant temperature in the setting of the Peltier
effect requires the use of a thermostated dynamics, q=0. In that case the
Joule heating is transferred to the thermostat. Away from the junction, this
leads to the flux 8(th)=vj�D. In the entropy balance the difference in the
materials shows up only in the entropy currents. In view of (47) and (48),
they become different in the two parts of the multibaker

j (s, \)=&j \1+ln _ *\

*C\ T &#&+=
e6\

T
j

implying that at the junction (i.e., between cells m=&1 and m=0) an
additional heat flux, the Peltier heat, is directed to the thermostat. It is
characterized by the difference of the entropy currents

j (s, +)& j (s, &)=&j ln
*+�*C+

*&�*C&= j _ln
l +

l &+ln
*C+

*C&&#
e6 (+�&)

T
j
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where 6 (+�&) defines the mutual Peltier coefficient of the two materials.
It characterizes the amount of Peltier heat produced per unit electric
current, ej, and is the difference of the material Peltier coefficients [cf. (48)]

6 (+�&)=6 +&6 & (58)

as also found in thermodynamics.

4.2. The Seebeck Effect

The Seebeck effect is observed in a thermally isolated system, where
the junction is kept at a temperature Tj different from the temperature Tl

prescribed at the leads, i.e., for the multibaker we demand T&M$=TM=T l

and T&1=T0=Tj . This setup corresponds to a non-uniform temperature
field, and, due to this, also to gradients in the electro-chemical potential +.
Because of the difference in the material properties, these gradients can add
up to a net potential drop between the leads, even if both leads are kept
at the same temperature and there is no particle current. This follows
immediately from the formal definition(23) of the particle current in its dis-
crete version:

jm#&
_el

e2 _+m+1&+m

a
+e:

(Tm+1&Tm)
a & (59)

where _el is the conductivity, e the electric charge, and : the Seebeck coef-
ficient of the material. In the considered system, we then have for vanishing
current

+&M$&+M=+&M$&+&1++&1&+0++0&+M

r&e:&(T&M$&T&1)++&1&+0&e:+(T0&TM)

=e(:+&:&)(Tl&Tj )++&1&+0 (60)

Here we have assumed the Seebeck coefficients to be approximately con-
stant in the two materials. The macroscopic limit implies +&1=+0 , and we
obtain for the mutual Seebeck coefficient of the two materials(29)

:(+�&)#
+&M$&+M

e(Tl&Tj )
=:+&:& (61)

It characterizes the strength of the potential drop +&M$&+M between the
leads induced by the temperature difference Tl&Tj between the leads and
the junction.
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An expression for :(+�&) can be determined for the multibaker by
rewriting the expression (27) for the current in the form (59). Taking
immediately the macroscopic limit and observing that the electro-chemical
potential can be split into a chemical part +c and a part e, due to the
external electric field E#&�x,, one obtains

j=&
_el

e2 [�x(+c+e,)+e: �xT ]

=
_elE

e
&

_el

e2 [�* +c �x*+�T+c �xT+e: �xT ]=v*&D �x * (62)

Here

v=
_elE
e*

(63a)

D=
_el

e2 �*+c (63b)

e:=&�T+c (63c)

By the first two equations we recover well-known relations from ther-
modynamics.(23) Equation (63c) provides us with a relation for the Seebeck
coefficient. Since the equation of state of the ``multibaker gas'' is that of a
classical ideal gas(18)

+\
c =(#+1) T+T ln \*\T &#

*C\ +
one obtains

e:(+�&)=e(:+&:&)=e ln
*+T &#

l

*C+ &e ln
*&T &#

l

*C&

=e _ln
l +

l &+ln
*C+

** &=
e6 (+�&)

Tl

where (58) was used in the last step. This comparison expresses the validity
of the Onsager relation 6 (+�&)=:(+�&)T for this class of models.

5. DISCUSSION

In this paper we have described the local and global transport proper-
ties of multibakers with a density and energy dynamics. This class of

101Modeling Thermostating, Entropy Currents, and Cross Effects



maps makes an analytical modeling of transport processes by a deter-
ministic chaotic dynamics possible, and admits a macroscopic description
consistent with various aspects of irreversible thermodynamics. The macro-
scopic description comprises the time evolution of the average density and
the kinetic energy in small regions of the physical space (the cells of the
multibaker). The former density is interpreted as the particle density, and
the latter as a temperature field. The averages in the small regions are in
the spirit of local thermodynamic equilibrium, and the continuum descrip-
tion of thermodynamics arises in a macroscopic limit where the spatial
resolution of the transport process is small compared to the system size (or
any other relevant macroscopic length), and where a discrete time-scale
used in the definition of the dynamics is much smaller than macroscopic
time scales.

The relevant concept of entropy for multibakers is the Gibbs entropy
defined with respect to the average density in the cells normalized by a
temperature-dependent reference density. It is called the coarse-grained
entropy. Based on an information-theoretic interpretation of the entropy, a
local entropy balance can be derived, which in the macroscopic limit can
be fully consistent with irreversible thermodynamics. This agreement holds
provided that (i) a particular choice of local phase-space contraction and
expansion rates is incorporated in the time evolution of the density, which
we identified as a time-reversible evolution of the mapping in previous
work, (12, 14, 15) (ii) the density in the entropy is normalized by a reference
density with a power-law dependence on the average kinetic energy in the
cell, and (iii) appropriate source terms are incorporated in the evolution
equations of the kinetic-energy field. No meaningful macroscopic descrip-
tion can be found for multibakers with other choices of the phase-space
contraction factors. Modification of the source terms leads to additional
contributions in the local entropy balance, which are interpreted as local
entropy fluxes into a thermostat. In particular, for vanishing source terms
one can mimic a transport process in a system with a spatially uniform
temperature, i.e., one obtains a setting reminiscent of NEMD simulations
of transport processes.

Once the connection between the deterministic dynamics of the multi-
baker and the corresponding local thermodynamic relations is established,
one can apply it to discuss transport in different macroscopic settings.
A number of models with periodic boundary conditions were discussed in
order to shed light on the global entropy balance in such systems. We find
that, up to a trivial factor, the globally averaged phase-space contraction
rate amounts to the entropy flux to the environment. In contrast to the
claims of some authors (cf., for instance, ref. 28) the connection between
the irreversible entropy production and the phase-space contraction rate
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breaks down away from stationarity. In fact, the contraction rate is still
connected to the entropy flux in that situation, but the flux is no longer
related to the rate of irreversible entropy production. This was shown (a)
for multibakers with a uniform thermostatting (Model II), i.e., for models
reminiscent of NEMD algorithms, and (b) for systems where the driving
and thermostating is applied in a macroscopically small region of the
system (Model III), thus giving rise to sustained density gradients. In
systems with a uniform external field and localized thermostating (Model
IV) the total entropy flux contains the integral of the local heating factors
besides the phase-space contraction rate. The former two models have con-
stant temperature fields, while the latter one supports a temperature profile
with a discontinuity in the first derivative at the position of thermostating.
As expected from the existence of the local entropy balance, the results are
fully consistent with the corresponding thermodynamic description of the
transport process. They suggest an interesting conclusion on modeling
transport in bulk systems by isothermal NEMD simulations: These
methods are valid in an approximation where the considered volume is suf-
ficiently small to neglect density and temperature gradients. In steady
states, they are equivalent to models, where the currents are the same, but
thermostating is only applied at the boundaries of a macroscopic system.
Since even state-of-the-art simulations can hardly cope with more than 109

particles, i.e., with integration volumes larger than about one +m3, this
approximation seems to be well-justified in numerical studies. On the other
hand, this assumptions should be kept in mind when isothermal NEMD
modeling is taken as basis of theoretical studies of transport processes
(cf., for instance, refs. 3�5, 27).

To further demonstrate the use of multibakers with density and energy
fields, we also discussed thermoelectric cross effects. The description of the
transport properties requires in that case information on the equation of
state, since the Seebeck effect is defined in terms of differences of chemical
potentials. In previous work(17, 18) it was shown that the classical ideal-gas
equation holds for multibakers. This is meaningful since the time evolution
of the multibaker can be considered as the one of particles with phase-
space coordinates (x, p), which only interact by a (weak) mean-field like
coupling manifested in a dependence of the local parameters on the average
densities. With this input the Peltier and Seebeck effect were modeled and
the Onsager relation, connecting their respective transport coefficients, was
derived. The validity of this relation for multibakers is not a trivial result.
It heavily relies on the choices (i)�(iii) to find an entropy balance consis-
tent with irreversible thermodynamics.

Summarizing, we demonstrated that multibakers establish a straight-
forward modeling of various transport phenomena by a deterministic, chaotic
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dynamics. They give insight in the general structure of such models by
explicit analytical calculations. This was demonstrated by discussions of
thermoelectric cross effects, and of the relation between the average phase-
space contraction, entropy fluxes and the rate of irreversible entropy
production.
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