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On the Stationary Distribution of Self-Sustained 
Oscillators around Bifurcation Points 
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A double expansion in powers of the damping coefficient and noise intensity is 
shown to be a powerful method for obtaining the stationary distribution of 
systems that after rescaling become weakly damped conservative ones. Systems 
undergoing Hopf bifurcations belong to this class. As an illustrative example, 
the generalized van der Pol oscillator is considered around its bifurcation point. 
A calculation is carried out up to third order in both the noise intensity and the 
bifurcation parameter (damping coefficient). 
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1. I N T R O D U C T I O N  

Time-periodic asymptotic behavior governed by a limit cycle attractor in 
the phase space is characteristic for nonequilibrium dissipative systems. 
Such self-sustained oscillations can be found in different fields of physics, 
electronics, chemistry, biology, and other disciplines. (t 6) The appearance of 
this temporal order via bifurcation is a phenomenon of special interest. 
Around instability points the external noise may play an essential role, 
which makes a stochastic description (7 12) necessary. The asymptotic 
behavior of the system is then characterized by a stationary distribution. 
To determine the stationary distribution of nonlinear oscillators around 
their bifurcation points, we use a method first applied, in leading order, to 
the problem of codimension-two bifurcations. (13) It will be illustrated here 
that the method can be developed to be a systematic one. 

The procedure is based, on one hand, on a weak noise expansion, 
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which has been applied in several cases for calculating asymptotic 
results. (14-36'13) On the other hand, it is based on the property that the 
system of interest, after rescaling, can be considered as a weakly damped 
conservative system with a damping constant proportional to the bifur- 
cation parameter. At the bifurcation point, therefore, the rescaled deter- 
ministic system is purely conservative and possesses a conserved quantity. 
These seem to be typical features of instabilities associated with Hopf bifur- 
cations (and have been known for codimension-two cases(6)). The limit 
cycle just after appearance is therefore a contour along which the conserved 
quantity is constant. As a further consequence, we show that the stationary 
distribution of the rescaled noisy system is constant along the contours of 
constant conserved quantity. Away from the bifurcation point the 
stationary distribution is demonstrated to appear as a power series in the 
bifurcation parameter. 

The van der Pol oscillator is one of the most extensively studied 
systems in nonlinear dynamics (see, e.g., Refs. 3740). The unforced system 
undergoes a Hopf bifurcation. In the vicinity of this point the deterministic 
dynamics on a sufficiently long time scale and in suitably chosen coor- 
dinates can be approximately described by a normal form. (6) This form 
possesses a potential which is identical to the laser potential. (41) The 
stationary distribution of the noisy van der Pol oscillator, just like that of 
other nonlinear oscillators, (42) is, however, dominated by this potential in a 
certain region of the parameter space only. We are interested here in how 
to determine the deviation of the distribution from the rotationally 
invariant one given by the potential of the normal form; therefore, we do 
not want to restrict ourselves to the very vicinity of the bifurcation point 
nor to asymptotically small noise intensities. It will be convenient to 
study a family of oscillators undergoing Hopf bifurcations, in which the 
van der Pol oscillator appears as a special case. We perform an expansion 
up to third nontrivial orders in both the bifurcation parameter and noise 
intensity. 

The paper is organized as follows. In Section 2 a brief summary of the 
weak noise expansion method is given for Fokker-Planck models. A 
generalized stochastic van der Pol oscillator is introduced in Section 3, and 
the rescaled problem, which at the bifurcation point corresponds to a har- 
monic oscillator dynamics, is defined in Section 4. The expansion of the 
stationary distribution in powers of the bifurcation parameter is performed 
for this system in Sections 5-7 for subsequently increasing order con- 
tributions in the noise intensity. Some technical details are relegated to the 
Appendix. The explicit expression for the stationary distribution of the 
generalized van der Pol oscillator is given in Section 8. The paper closes 
with a few concluding remarks. 
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2. T H E  W E A K  N O I S E  E X P A N S I O N  

We summarize here the weak noise expansion method for the 
stationary distribution of continuous stochastic processes. Let us consider a 
system of n variables, - o o  < q"< oo, v = 1 ..... n, the dynamics of which is 
governed by the Langevin equation 

~ = IC(q) + tl 1/2g~.~i(t) (2.1) 

where K" stands for a deterministic drift, generally nonlinear in q, and g7 
are coupling constants. The noise ~ is assumed to be a Gaussian white one 
with ( ~ ( t ) ) = 0 ,  (~i( t )~J(0))=6ab(t ) ,  and q denotes the noise intensity. 
(Summation over repeated lower and upper indices is implied.) For the 
sake of definiteness, we interpret Eq.(2.1) in the sense of Ito. The 
stationary distribution of the process can always be written as 

P(q; r/) = exp[ - ~(q; q)/tl] (2.2) 

It has been shown 06c'27c) by means of the path integral solution of the 
corresponding Fokker-Planck equation that for extremely weak noise, i.e., 
for tl ~ 0, the limit q~(q; 0)-= ~b(~ exists and that the first correction to 
~b (~ is proportional to the noise intensity. It is expected, in general, that ~b 
is analytic in t /and can be represented by the series 

~(q; q) = ~b(~ + q~b(~)(q) + t/z~b~2)(q) + ... (2.3) 

Equations for ~b (J) can then be easily derived from the time-independent 
Fokker-Planck equation by substituting (2.3) and collecting terms of the 
same order of magnitude in r/. Thus, one obtains for ~b (~ a Hamilton- 
Jacobi-type equation: 

1 #~b(o) ~r 
t-/~(q) ~ = 0 (2.4) Q V~ ~q~ ~q~ 

oq 

where the diffusion matrix is related to the coupling constants via Q VU= 
~ i  g~g~/. For the sake of simplicity QV, will be assumed here to be a 
constant. The quantity ~b (~ called the nonequilibrium potential, is of con- 
siderable interest in its own right. It is, e.g., the Liapunov function of the 
deterministic dynamics; consequently, it must be minimal on the attractors 
of the deterministic motion. (16"27) On the other hand, it generalizes the 
concept of free energy for nonequilibrium systems. As has been shown in 
Ref. 27, the coexistence of attractors may lead to the appearance of merely 
piecewise differentiable potentials. This, however, will not be the case in 
systems to be studied in this paper. From the point of view of the weak 
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noise expansion, ~b (~ is the starting point of the procedure, and is to be 
determined by solving (2.4) with the boundary condition that ~b (~ is 
minimal on the attractors. 

The equation for ~b (1) is obtained from (2.4) in the form 

-~.0~(~ O~ "~ ~K ~ 1 02~ (~ 
KV + ~d ~ J  0q----~ = ~q~ + ~ Q~" ~3q~ 0q ~ (2.5) 

This is a linear problem for ~b (1), or for the so-called prefactor z -  
e x p ( -  ~b(1)), after ~b (~ has been calculated. Since the potential is constant on 
the attractors, the dominating contribution to the stationary distribution 
on attractors is given by the prefactor z. (2s) 

Similarly, if both ~b (~ and ~b ~ are known, the third term can be 
obtained by solving 

KV+Q TM 8q~'] 8q v =~QV"\Oq--~- ~ aq ~ Oq~, j (2.6) 

We shall see that the single-valuedness of q~ prescribed as a solvability 
condition makes the solution of (2.4)-(2.6) unique. 

The main drawback of the scheme sketched above is the nonlinearity 
of Eq. (2.4). Therefore, as demonstrated in Refs. 21, 26, 27, and 13, in order 
to find analytic results one has, in general, to seek for an appropriate 
parameter and expand ~b (~ in powers of it. In the case of self-sustained 
oscillators this parameter can be chosen to be the bifurcation parameter. 

3. THE M O D E L  

We consider the generalized van der Pol oscillator, the deterministic 
dynamics of which is defined by the following equations(4~ 

. ~ = { )  

(3.1) 
= - - X  "+ {)(0{ - -  ])X 2 - -  6{) 2)  

where x and v denote the position and the velocity, respectively, of a par- 
ticle of unit mass. Here ~, 7, and 6 are real parameters. The van der Pol 
oscillator is recovered for 6 = 0. The case 7 = 0 corresponds to the Rayleigh 
equation, ~43) which can be mapped (by the transformation v ~ x) into the 
van der Pol form with 7=  36. The oscillator (3.1) exhibits a supercritical 
Hopf bifurcation at ~ = 0  for 7+  36>0,  which can easily be seen by 
applying van der Pol's method of adiabatic elimination. ~1) 
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When studying the influence of noise on this oscillator it is natural to 
allow for a Langevin force (of intensity ,/) in the momentum equation 
only. (4~ Thus, the diffusion matrix has the form 

(0 ~ 0) 

Note that the equivalence of the cases y = 0 and 6 = 0 is no longer valid, 
due to the asymmetric role the noise terms play. No exact solution is 
known for the stationary distribution of the stochastic system except the 
special case ~ = ~,(44) when "detailed balance" holds (45) and 

~b = - ~ ( x  2 + v 2) + 7(x2 + v2) 2 (3.2) 

In this case q5 is independent of the noise intensity. It is thus identical with 
the nonequilibrium potential and happens to be the same as the potential 
of the normal form mentioned in Section 1. For  y ~ 6 the quantities q~, ~b c~ 
and the potential of the normal form are different. 

4. THE  R E S C A L E D  P R O B L E M  

Scaling the parameters and the variables of the oscillator defined in 
the previous section by 

= fls, s =- sgn(~), r/= rift 
(4.1) 

x =/~1/2~, t = {, v =/~l/2~3 

and omitting bars henceforth, we obtain the equations of motion in the 
form 

(4.2) 
/} = - - X  "~ J~V(S - -  7X 2 - -  •U 2) + q 1/2~1 

The deterministic dynamics is thus that of a harmonic oscillator with a 
nonlinear damping. It is to be noted that the amplitude of the limit cycle 
now remains finite when approaching the bifurcation point from above 
(s = 1). Around the bifurcation point, i.e., /3 ~ 1, the damping is weak. 
When evaluating the stationary distribution e x p [ - q ~ ( x , v ; r l ) / q ] ,  it is 
therefore convenient to use the energy 

E = ( x  2 + v : ) / 2  (4.3) 

as a new state variable. We eliminate v by 

Ivl = v (x ,  E )  ==- ( 2 E -  X2) 1/2 (4.4) 
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and define 

45+-(x, E; tl) =- OS(x, +_v(x, E); t/) (4.5) 

where +_ corresponds to the sign of v. In what follows our aim is to 
calculate 4 • (x, E; I/) for the rescaled problem (4.2) and to turn back to the 
original variables at the end. 

5. T H E  N O N E Q U I L I B R I U M  P O T E N T I A L  

The equation for the nonequilibrium potential ~b ~~177 (x, E) = 
~b-+(x, E; r/ = 0 )  follows from (4.2) using the x, E representation of the 
Hamilton-Jacobi equation (2.4), which has the following form: 

[ v [ ( ~ )  2 8~b(~ c~b(~ (5.1) +/~ Ivl (S--] ~Xz-D ]DI2)~__ 0x 

In this and the next two sections we use I vl as a short-hand notation for 
v(x, E). 

The single-valuedness of the potential provides a solvability condition 
for (5.1). Since the contour integral of &b ~~177 along a constant E curve 
must vanish, we obtain 

- R(E) -~X e dx + 8x 

for the physically acceptable solution of (5.1), where R ( E ) =  (2E) 1/2 is the 
radius of the E = const circle in the phase space of the harmonic oscillator. 
It will be seen that the solution of (5.1) is unique (up to an additive 
constant) with condition (5.2). 

Assuming analyticity, the potential appears as a power series in ft. 
Since in a conservative system the potential is constant, (13'32) ~b(~ E) 
must be independent of (x, E) for p --, 0. Therefore, we look for a solution 
in the form 

~(0)• x '  E)~-~O~~ x, E)  "t- /~2~(O)+[x/~ '-/'2 - \  , E)  --t- ~ 3 ~ ~ 1 7 7  E)-[-  . . .  (5.3) 

where ~b~ ~177 is independent of ft. 
After substituting (5.3) into (5.1), one finds in leading order, i.e., in 

order fl, 
8(b]~ = 0 (5.4) 

It is solved by 
q~]o)• (x, E) = FI(E) (5.5) 

where FI is a still arbitrary function of E. 
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The order f12 contribution to (5.1) reads 

<~ \--Jk---/ +jvl ( s - T x Z - a l v l  + Ox 

The solvability condition (5.2) applied to ~b(2 ~ immediately determines 
Fx(E). From (5.2), (5.5), and (5.6) we find 

F'I(E)= -2 ( s -  Ivl x 2 ~ ]vl3~ (5.7) 
o lv l /  

where prime denotes differentiation, and 

1 f~(E) A(E) =-R-(-E) A(x, E) dx (5.8) 

stands for the phase space average of the quantity A along a constant E 
contour. The application of the formula 

'v]~xm=2n/2-1B( n+22 , m+2 1) Era/2 (5.9) 

(m even, B is the beta function) leads to the result 

FI(E) = -2Es  + 7 23______3_ 3 E 2 (5.10) 

Since FI(E) must be minimal on the attractor, one recovers for 7 + 36 > 0, 
s = 1 the result Ec = 2/(7 + 36), which is the radius of the limit cycle after its 
appearance (in the rescaled variables). 

It is worth noting that ~b~ ~ is the potential belonging to the normal 
form of (3.1), expressed in the rescaled variables. Furthermore, ~b~ ~ has a 
more general statistical meaning, too. Arguments along the line of Refs. 46 
and 12 show that the stationary distribution of (4.2) in the limit fl ~ 0 is 
exp [ -  ~b~ ~ (E)/t 1 ] not only for r/--* 0, but at arbitrary noise intensity. This, 
however, does not hold for finite damping coefficients. 

The rotational invariance of the nonequilibrium potential is lost by 
~b~ ~ already. This is in accord with the fact that the shape of the limit 
cycle is destorted by increasing ft. By integrating (5.6) from zero to an 
arbitrary x < R(E) and observing that arcsin[x/R(E)] terms exactly cancel, 
one obtains 
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The function F2(E) is fixed by the order 33 contribution, 

( '0(~~ 8~~177 (5.12) Ivl s-7x2-6 IvI2+---UE - )  + 

to (5.1). Applying the solvability condition (5.2) for ~b~ ~ one finds 

F'2(E) = 0 (5.13) 

since the x-dependent part of ~b(2 ~ changes sign with v. An integration of 
(5.12) over x then yields 

~b~o)+ _ 7 - 6 {x2E[6 _ (1 ly + 216) Es + 5(7 + 36)(y + 6) E 2] 
4 

- -  x 4 1 6  - -  5(57 q- 36) Es+ (7 + 38)(177 -- 38) E2]/4 

+ x 6 [ -  (77 - 36)s+ 2(~ + 38)(47 - 36)E]/6 
- x8(7 + 36)(7 -6)/8} +F3(E  ) (5.14) 

The evaluation of F3 is given in the Appendix and leads to a fourth-order 
polynomial in E. 

6. T H E  P R E F A C T O R  

The equation for the q-independent term ~(1)+(x, E) of the negative 
logarithm of the stationary distribution is obtained from (4.2) and (2.5), 
after changing in the latter to the variables x, E, as 

]vlIfl(s-Tx2-fjvl2) ---S-Y-]O~b(~ 0~b(l)-+ ]3 s -7x2-361v[2  
+ .,~ j 8E Ivl 

tv I 82~b (~ 1 ~(0)• 0~(1)• 
2 -  0E 2 2 Iv[ dE 8x 

(6.1) 

The prefactor z+-(x, E) is then given by exp(-~b(1)+). Similarly to the case 
of the nonequilibrium potential, the single-valuedness of the prefactor 
provides a solvability condition for (6.1). Its form is that of (5.2) with ~b (1)+- 
replacing ~b (~ 

Since the prefactor can be nonzero even in conservative systems, ~3"32) 
we set 

~b(1)+(x, E) -- ~b(ot)-+ (x, E) +/3~]1)-+(x, E) +/~2~b~)-+(x, E) + .-- (6.2) 
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After substitution one finds that ~b(o 1)+- does not depend on x; 
consequently, 

0 (1)+- (X, E) = Go(E) (6.3) 

where Go is an arbitrary function. 
The order/~ contribution to (6.1) can be written as 

, O~]0)• ~ ( 1 ) +  S__yX23r IV]2 Ivl S-- 7x2--(~ 

Ivl c~,/,~ ~177 1 ,~o~• c~'~• 
- -  ___ = . 0  ( 6 . 4 )  

2 0E 2 2 Iv] r ~x 

Applying the solvability condition and using (5.5.), (5.10), and (6.2) we 
obtain 

Ivl(s-Tx~-alvl~)G'o - ~-36~+7 2 \ ~ -~J -  2 ~-~ E (6.5) 

The right-hand side turns out, according to (5.9), to be zero. Thus, 

G'o(E) = 0 (6.6) 

i.e., there is no rotationally invariant contribution to the prefactor. The 
integration of (6.4) over x then yields 

~b~ 1)• = +3(7 - 6 ) x  Iv[ + G~(E) (6.7) 

after arcsin terms cancel again. As in the case of q~o)+, the solvability 
condition applied in order f12 leads to 

G'I(E ) = 0  (6.8) 

and one obtains, after integration, 

7 - 6 [36x2s_ 4(137 + 336) x2E+ (137 + 156) X 4] -~ G2(E) (6.9) 
~(21)• = 32" 

From the next order equation in/~ we find G2(E) to be proportional to E 2, 
as shown in the Appendix. 
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7. THE NEXT C O R R E C T I O N  IN THE NOISE I N T E N S I T Y  

In the variables x, E the equation for ~(2)• takes the form 

Ivl 3(~-~x~-,~ I v l~ )+- -~-  a / aE 2 aE 2 

1 + , 

2 Ivl a e  z ~x = 0  (7.1) 

with a similar solvability condition as for ~b (~ and ~b u)-+. 
By setting 

~b (z)+ (x, E) = ~b(o 2)-+ (x, E) +/~b] 2)+- (x, E) +/?2~b(22)-+ (x, E) + ..- (7.2) 

we find that ~b(0 z)-+ may depend on E only. The order/~ contribution to (7.1) 
then fixes this dependence to be a constant, and yields 

~b] 2)-+ (x, E) = II(E ) (7.3) 

with an arbitrary 11. 
The use of (6.6)-(6.9), (A.6), and of the solvability condition applied 

on the order/?2 part of (7.1) leads to the result 

I'~(E) = 0 (7.4) 

according to which the first nontrivial term in ~b r can be ~b(22)-+. By 
integration one finds then (arcsin terms cancel again) 

~b(22~-+ = 3(357 + 576)x Iv[ + I2(E) (7.5) 

The function 12 is to be determined by the order f13 contribution to (7.!). In 
this equation ~b~ ~)-+ shows up, which we have not calculated. It is, however, 
sufficient to know that ,~(a/+- and ~b(4 ~ are odd functions of v (as follows " 3  

from the results of the previous sections and of the Appendix) to see that 

I;(E) = 0 (7.6) 

is the restriction provided by the solvability condition. 

8. THE S T A T I O N A R Y  D I S T R I B U T I O N  

The formulas of Sections 5-7 and of the Appendix together with 
Eq. (2.3) provide an expression for the stationary distribution of (4.2) valid 
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up to third nontrivial orders i n / / a n d  r/. Since the degree of the polynomial 
contributions ~bl j)+- (x, E) increases linearly with i, we obtain in the rescaled 
variables 

F.r162 -~, x r 1 6 2  -1/2 (8.1) 

as a condition for the validity of the/%expansion. This is, however, not a 
very strong restriction, since the dominating part of the distribution, that 
around the deterministic attractor characterized by an E of order unity, lies 
well inside this region. Therefore, in cases when the distribution is 
normalizable, the results obtained give also a global approximation for the 
stationary distribution. 

The stationary distribution of the generalized van der Pol oscillator 
can be obtained by turning back to the original variables. By inverting the 
transformation (4.1), different fl factors appear in different polynomials, 
leading to a rearragement of the series. The highest order polynomial of 
~b~ j)-+ always gives/~-independent terms, i.e., terms that do not vanish at the 
bifurcation point. It is to be noted that no singular contributions (with a 
negative power offl) show up, due to the fact that r ~)-+, ~b~o 2)+, r are 
irrelevant. The contributions to the distribution are thus obtained as 

(~(O~(x,v) 7+ 36 4 6 I  ( = 2 E 2 -  y (7+36) xv3E-5(7+6) x2E 3 

+ m 177-36x4E2 4 7 - 3 6  Y__8_6_ ) 4 - 3 x6E + x8 

+ 1-~ - -  72 +62676+75362 E 4 

- - ~ 2 E + o ~ - I 2 x v 3 +  237 + 496 E 3  _ (117 + 216) xZE 2 
8 

+ 5(57 + 36) x4 E 
4 

6 X6 -- cr 3(E2--4x2E + x4) 

(8.2) 

(~l)(x'v)=~--~I6xv+357+8 576 E2- (137  + 336) x2E +137 +4 156 X4 ] 

+ ~ ~ - ~  9x 2 (8.3) 

~b~2~(x, v) = ~  3(357 + 576) xv (8.4) 
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The energy E - ( x 2 +  v2)/2 has een used here as a short-hand notation. 
The restriction (8.1) is now replaced by 

x, v ~ 1 (8.5) 

The dominating part of the distribution is situated in a region where x, v 
are of order cd/2. 

An essential feature of this solution is to be emphasized. Although the 
weak noise expansion applied in the rescaled variables would imply [see 
(4.1)] f / - t / /L~I~I ,  the applicability of expressions (8.2)-(8.4) with 
Eq. (2.4) is much broader; they are valid for arbitrary small values of e and 
t/. This property has been suggested by the fact that ff(J)(x, v) is found to be 
analytic in e, but it can be shown by more rigorous arguments, too. The 
Hamilton-Jacobi equation (2.4) of the original problem formulated in Sec- 
tion 3 cannot be solved by an e-expansion, since no analytic results are 
known for the nonequilibrium potential at e = 0. It is possible, however, to 
make an expansion in powers of e = (7 - 6)/(7 + 6), since for 7 = 6 an exact 
expression holds. It has been shown (36) that this e-expansion is valid for 
arbitrary e, and for e ~ 1 our results are recovered. On the other hand, a 
direct substitution of (8.2)-(8.4) into the weak noise expansion equations 
(2.4)-(2.6) of the original problem proves that (8.2)-(8.4) are indeed 
polynomial approximations for ~b (~ ~b (1), ~b (2) of the generalized van der Pol 
oscillator and are valid also at c~ = 0. 

It is worth comparing the results with those obtained by other 
methods. A direct polynomial approximation for the stationary distribution 
has been applied in Refs. 39 and 40. In the general case 7, 6 arbitrary, only 
the ( ~ -  6)-independent part of ~b ~~ and the first term of ~b (1) have been 
given/4~ For the special case 7=0 ,  6 = 1 ,  ~b (~ and ~b (1) have been 
calculated (39) up to fourth- and second-degree polynomials in x, v, respec- 
tively. These results are in agreement with ours. But, as mentioned above, 
we do not see any reason to restrict the expressions to certain regions of 
the parameter plane e, r/, in contrast to Refs. 39 and 40. The comparison 
also suggests that the method applied here is more powerful than a direct 
polynomial approximation, especially close to the bifurcation point, where 
high-degree polynomials give the main contribution. 

Finally, we note that the results also illustrate how different the 
stationary distribution of a certain problem and of its rescaled version can 
be due to the fact not only the variables, but the noise intensity should be 
rescaled as well. 

9. C L O S I N G  R E M A R K S  

It is to be mentioned that no polynomial ansatz has been incorporated 
in our method. We have thus proved that (b~i)(x,v) with j~<2 is a 
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polynomial. A similar rule is conjectured for j arbitrary. This simple struc- 
ture seems to be a consequence of the harmonic oscillator dynamics 
obtained for fl = 0. In more complex cases, e.g., for a nonlinear oscillator 
governing the dynamics at a codimension-two bifurcation, the logarithm of 
the stationary density is not a polynomial. (13) In general, a polynomial 
form that can be an appropriate local approximation is not expected to be 
a correct global form, especially if coexisting attractors characterize the 
deterministic system. 

A crucial feature of the method we applied is the property that the 
deterministic system of interest, after rescaling, becomes at the bifurcation 
point a conservative one. Close to this point, i.e., at weak but nonvanishing 
dissipation, the equipotential lines of the nonequilibrium potential turn out 
to be approximated by the trajectories of the conservative system. A 
necessary condition for the applicability of the method is the existence of 
closed trajectories; otherwise the density associated with the non- 
equilibrium potential is not normalizable. If this condition holds, the 
double expansion in powers of the noise intensity ~/nd the bifurcation 
parameter can be a powerful method for determining stationary 
distributions. 

A P P E N D I X  

A1.  C a l c u l a t i o n  of  F a 

The solvability condition (5.2) applied for the f14 contribution to 
Eq. (5.1) yields 

~lvl (~r176 + Ivl ( s -~x2-6  fvl2+~r176162176177 (A.1) 

Substituting (5.10), (5.ll), and (5.14) into (A.1), one finds an equation for 
F~. A straightforward but tedious calculation with subsequent applications 
of (5.9) leads to the equation 

[ - 2 s  + (~ + 36)E] F'3(E) = ~(E)  (A.2) 

where ~ is a fourth-order polynomial. Since ~(E)  turns out to be divisible 
by [ 2 s - ( 7  + 36)E], one obtains a polynomial expression for F~ in the 
form 

I 3E2 23~+496 
F'3(E) = (7-- 6) -- ~ + 32 E3s 

1 f359 2 +75362) E41 ~-'~-- 7 + 626~6 (A.3) 
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A2. Calculation of G2 

The order f13 contribution to Eq. (6.1) reads 

+ [vl ( s - - y x 2 - - 6  Ivl 2) 8~bt21)-+ 
0E 

Ivl ~2~3~ 1 8~bt3 ~ +8~bg u-+ 
~ 0  (A.4) 

2 8E 2 21vl 8E - Ox 

The application of the solvability condition and Eq. (5.9), after some 
algebra, leads to 

[ - 2 s  + (7 + 36)E] G'2(E) = ~(E) (A.5) 

Since ~(E) happens to be proportional to E [ 2 s - ( ~  + 36)E] we obtain 

35~ + 576 EZ (A.6) 
G2(E ) = (~ - 6) 64 

ACKNOWLEDGMENTS 

The author wishes to thank Prof. R. Graham for a stimulating 
correspondence and helpful remarks. He acknowledges useful discussions 
with Prof. W. Ebeling and Drs. H. Engel-Herbet and L. Schimansky-Geier. 
This work was supported by grants AKA 283.161 and OTKA 819 from the 
Hungarian Academy of Sciences. 

REFERENCES 
1. A. A. Andronow and C. E. Chaikin, Theory of Oscillations (Princeton University Press, 

Princeton, 1949). 
2. N. Minorsky, Nonlinear Oscillations (Van Nostrand, New York, 1962). 
3. W. Ebeling, Strukturbildung bei irreversiblen Prozessen (Teubner Verlag, Leipzig, 1976). 
4. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley, 

New York, 1977). 
5. H. Haken, Synergetics, An Introduction (Springer-Verlag, Berlin, 19~7); Advanced 

Synergetics (Springer-Verlag, Berlin, 1983). 
6. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and 

Bifurcations of Vector Fields (Springer-Verlag, Berlin, 1983). 
7. R. L. Stratonovich, Topics in the Theory of Random Noise (Gordon and Breach, 

New York, 1963). 
8. Z. Schuss, Theory and Applications of Stochastic Differential Equation (Wiley, New York, 

1980). 



Stationary Distribution of Oscillators 911 

9. N. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amster- 
dam, 1981). 

10. P. H/inggi and H. Thomas, Phys. Rep. 88:207 (1982). 
11. C. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, Berlin, 1983). 
12. H. Risken, The Fokker-Planck Equation (Springer-Verlag, Berlin, 1984). 
13. R. Graham and T. T61, Phys. Rev. A 35:1328 (1987). 
14. J. K. Cohen and R. M. Lewis, J. Inst. Math. AppL 3:266 (1967). 
15. A. D. Ventzel and M. I. Freidlin, Russ. Math. Surveys 25:1 (1970); M.I. Freidlin and 

A.D. Ventzel, Random Perturbations of Dynamical Systems (Springer-Verlag, Berlin, 
1984). 

16. (a) R. Graham, in Coherence and Quantum Optics, L. Mandel and E. Wolf, eds. (Plenum 
Press, New York, 1973); (b) in Fluctuations, Instabilities and Phase Transitions, T. Riste, 
ed. (Plenum Press, New York, 1975); (c)in Stochastic Processes in Nonequilibrium 
Systems, L. Garrido, P. Seglar, and P.J. Shephard, eds. (Springer-Verlag, Berlin, 1978); 
(d)in Stochastic Nonlinear Systems, L. Arnold and R. Lefever, eds. (Springer-Verlag, 
Berlin, 1981 ). 

17. R. Kubo, K. Matsuo, and K. Kitahara, J. Stat. Phys. 9:51 (1973). 
18. Yu. Kifer, Math. SSSR Izv. 8:1083 (1974). 
19. D. Ludwig, SIAM Rev. 17:605 (1975). 
20. K. Kitahara, Adv. Chem. Phys. 29:85 (1975). 
21. R. Graham and A. Schenzle, Phys. Rev. A 23:1302 (1981); H. Schmidt, S. W. Koch, and 

H. Haug, Z. Phys. B 51:85 (1983); P. Talkner and P. Hiinggi, Phys. Rev. A 29:768 (1984). 
22. B. J. Matkowsky and Z. Schuss, SIAM J. AppL Math. 42:822 (1982); Phys. Lett. 95A:213 

(1983); E. Ben-Jacob, D.J. Bergmann, B.J. Matkowsky, and Z. Schuss, Phys. Rev. A 
26:2805 (1982). 

23. P. Talkner and D. Ryter, Phys. Lett. 88A:163 (1982); in Noise in Physical Systems and 1If 
Noise (North-Holland, Amsterdam, 1983); D. Ryter, Physica 130A:205 (1985); 142A:103 
(1987); P. Talkner, Z. Phys. B 68:201 (1987). 

24. W. G. Faris and G. Jona-Lasinio, J. Phys. A 15:3025 (1982); G. Jona-Lasinio, in 
Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, 
N. Ghil, R. Benzi, and G. Parisi, eds. (North-Holland, Amsterdam, 1985). 

25. M. D6rfle and R. Graham, Phys. Rev. A 27:1096 (1983). 
26. R. Graham and A. Schenzle, Z. Phys. 52:61 (1983). 
27. (a) R. Graham and T. T61, Phys. Rev. Lett. 52:9 (1984); (b) J. Stat. Phys. 35:729 (1984); 

(c) Phys. Rev. A 31:1109 (1985); (d) Phys. Rev. A 33:1322 (1986). 
28. H. Lemarchand and G. Nicolis, J. Stat. Phys. 37:609 (1984). 
29. R. Graham, D. Roekaerts, and T. T61, Phys. Rev. A 31:3364 (1985); D. Roekaerts and 

F. Schwarz, J. Phys. A 20:L127 (1987). 
30. A. Schenzle and T. T61, Phys. Rev. A 32:596 (1986). 
31. H. R. Jauslin, J. Stat. Phys. 42:573 (1986); Physica 144A:179 (1987). 
32. R. Reibold, Z. Phys. B 62:397 (1986). 
33. R. Graham, Europhys. Lett. 2:901 (1986). 
34. P. Hiinggi, J. Stat. Phys. 42:105 (1986). 
35. V. Altares and G. Nicolis, J. Stat. Phys. 46:191 (1987); E. Sulpice, A. Lemarchand, and 

H. Lemarchand, Phys. Lett. 121A:67 (1987). 
36. R. Graham, Macroscopic potentials, bifurcations and noise in dissipative system, preprint 

(1987). 
37. B. van der Pol, Phil Mag. 3:65 (1927); M. L. Cartwright and J. E. Littlewood, J. Lond. 

Math. Soc. 20:180 (1945); P. Holmes and D. Rand, Q. AppL Math. 35:495 (1978); 
U. Parlitz and W. Lauterborn, Phys. Rev. A 36:1428 (1987). 



912 T61 

38. F. Baras, M. Malek Mansour and C. Van den Broeck, J. Stat. Phys. 28:577 (1982); 
D. Ryter, P. Talkner, and P. Hiinggi, Phys. Lett. 93A:447 (1983); P. H~nggi and 
P. Riseborough, Am. J. Phys. 51:347 (1983). 

39. L. Schimansky-Geier, A. V. Tolstopyatenko, and W. Ebeling, Phys. Lett. 108A:329 (1985); 
W. Ebeling and L. Simansky-Geier, Fluid Dyn. Trans. 12:7 (1985). 

40. W. Ebeling, H. Herzel, W. Richert, and L. Schimansky-Geier, Z. Angew. Math. Mech. 
66:141 (1986). 

41. H. Haken, Phys. Rev. Lett. 13:329 (1964); H. Risken, Z. Phys. 186:85 (1965); R. Graham, 
Quantum Statistics in Optics and Solid-State Physics (Springer-Verlag, 1973). 

42. K. H. Hoffman, Z. Phys. B 49:245 (1982). 
43. Lord Rayleigh, Theory of Sound, Vol. I (Dover, New York, 1945). 
44. M. O. Hongler and D. Ryter, Z. Phys. B 31:333 (1978); W. Ebeling and H. Engel-Herbert, 

Physica 104A:378 (1981). 
45. R. Graham and H. Haken, Z. Phys. 243:289 (1971); 245:141 (1971). 
46. H. Risken and K. Voigtlander, J. Star. Phys. 41:825 (1985). 


