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A new type of crisis is shown to exist in a broad class of systems (including the 
Lorenz model) which leads to an anomalous band splitting or to a symmetry- 
breaking bifurcation of the strange attractor, depending on the actual values of 
the control parameters. A piecewise linear model is used to understand the 
mechanism of this crisis and to obtain exact results. 
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1. I N T R O D U C T I O N  

Symmetry breaking is a common phenomenon in nature. (1) In the field of 
dynamical systems, the symmetry-breaking bifurcation of attractors is a 
subject of special interest. For limit cycles this phenomenon has been 
studied extensively, (a) especially in the Lorenz model. (3) Less is known 
about the symmetry breaking of chaotic attractors. A symmetry-recovering 
crisis has been discovered experimentally and modeled in ref. 4. Here we 
consider the symmetry breaking of strange attractors from another point of 
view in a more general class of systems and we show that a new type of 
crisis (5) may exist leading to an anomalous band splitting (6) or to a 
symmetry-breaking transition of the strange attractor, depending on the 
actual values of the parameters. 

We investigate Lorenz-type systems characterized by the property that 
trajectories on the attractor pass close to a saddle point. This saddle has a 
two-dimensional stable and a one-dimensional unstable invariant manifold. 
Therefore, trajectories approaching the stable manifold may stay for an 
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arbitrarily long time in the vicinity of the saddle and cause singularities in 
the form of the Poincar6 map. Besides the standard Lorenz model, the 
Rikitake dynamo 17) and a model of R6ssler (8) show similar behavior. 
Different approximate forms of the corresponding Poincar6 map have been 
deduced (9-14) in the spirit of Shilnikov's method. (~5) The most general 
version seems to be the one developed in ref. 13 (see also ref. 16), which 
yields the following map: 

x ' =  ( -  1 + a [xl ~) sgn(x) + cy Ixl ~ 

y ' =  (d+ ]xl r s g n ( x ) + b y  Ixl ~ 
(1.1) 

where x and y denote suitably chosen coordinates on the Poincar6 plane, 
and a, b, c, and d are constant parameters. The exponents fi and 5 can be 
expressed as the ratios of the eigenvalues of the linearized motion around 
the saddle point of the flow. (~3) Due to the singularities of the map, the 
Jacobian is strongly position dependent: 

J ( x )  = (ab - c) fl Ixl ~+~-1  (1.2) 

The form (1.1) is exact in the vicinity of the point where the unstable 
manifold of the saddle intersects the Poincar6 plane and can be considered 
to be a good approximation outside this region. Since the flow has been 
assumed to exhibit the symmetry of the Lorenz model, the map is invariant 
under the transformation 

(x, y) ~ ( - x ,  - y )  (1.3) 

Therefore, the attractors of (1.1) must either be invariant under this trans- 
formation or appear in pairs of inverse images. In the latter case we speak 
about broken symmetry. 

We have investigated numerically the chaotic attractors of the map 
(1.1) and their structural changes. The most concise description of the 
results can be given in the form of phase diagrams (Fig. 1) exhibiting 
regions of the parameter plane associated with different types of strange 
attractors at fixed values of the parameters b, d, fl, and 3. These regions are 
bounded by crisis lines. For a broad range of the exponents fl and 5 a 
qualitatively similar behavior has been found. In all these cases the chaotic 
attractor undergoes a symmetry-breaking bifurcation. The region where a 
symmetry-broken attractor exists is bounded by three lines: by the con- 
tinuation of a normal band-splitting curve (nl on Fig. 1 ), by a new type of 
crisis line (a2) , and, from below, by the line separating chaotic and regular 
behavior (p). Along another piece of the new crises line (a2), another new 
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Fig. 1. Phase diagram of the map (1.1) with /~ = 1.2, 6 = 0.2, b = -0.1,  d =  0. To be con- 
sistent with other diagrams, the (ab - c, a + b )  plane is shown. Beneath the curve p stable 
periodic solutions are found; above the crisis line c no finite stable attractor exists. The chaotic 
region between p and c is further divided as follows. I: symmetric 2-piece strange attractor; II 
and III: band-split symmetric 4- (8-) piece attractor; IV (shaded): 4-piece attractor with 
broken symmetry; V: anomalously split 6-piece symmetric attractor. For simplicity, the 
coexisting regular attractors and the periodic windows are not displayed. 

phenomenon can be observed, an anomalous band splitting from a 2-piece 
to a 6-piece symmetrical strange attractor�9 

In order to understand these phenomena we turn to the investigation 
of a piecewise linear version of the original map. 

This strategy has been successfully applied in several other problems. 
In the case of the Lozi map, (17) which is the piecewise linear approximation 
of H6non's map, (18) exact calculations have been performed (19 22) leading to 
a qualitative understanding of the phase diagrams�9 The Lozi map has 
turned out to be a useful model also for studying the scaling structure of 
strange attractors (22) and the behavior in the Hamiltonian limit. (23) A 
discontinuous piecewise linear map (24'25) and different versions of the 
baker's transformation(26-31) have provided examples with exactly 
calculable fractal characteristics�9 Piecewise linear approximations have 
helped the understanding of deterministic diffusion (32) and of certain 
properties of the circle map. (33) 

From our point of view the main advantage of using an 
approximation like this is the fact that the strange attractor and the 
invariant manifolds of two-dimensional piecewise linear maps can be con- 
structed analytically with arbitrary precision�9 Therefore, the specification of 
crisis lines by means of numerical methods--which is, in general, quite 
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complicated and time consuming--can be avoided. On the other hand, as 
suggested by the example of the Lozi and H6non maps, a qualitatively 
similar behavior is expected in the original map and in its piecewise linear 
version. Thus, we believe that the mechanism leading to the existence of the 
new crisis line of symmetry breaking and anomalous band splitting can be 
understood through the piecewise linear problem. 

The paper is organized as follows. The piecewise linear map and a few 
properties of it are introduced in Section 2. Then, the method of con- 
structing invariant manifolds in an analytical way is summarized in Sec- 
tion 3. Usual crisis lines such as that of the boundary crisis (5) or of band 
splittings are specified in Section 4. The above-mentioned novel features are 
discussed in Section 5. Further interesting properties--the existence of a 
chaotic repellor (34) (replacing the attractor in certain regions of parameter 
space) and the fractal dimension of the strange sets--are studied in the 
Appendix. An outlook based upon the results obtained for both the 
original map and the piecewise linear one is given in Section 6. 

2. T H E  M O D E L  

In the following we consider the piecewise linear version of the map 
(1.1) obtained for ~=  1, 6=0:  

x' = ax + cy - sgn(x) 

y' = X + by + d sgn(x) 
(2.1) 

By the linear transformation (x, y)  ~ (x, [y  + dx] / [1  + ( a -  b ) d -  cd2]) 

the third term on the right-hand side of the second equation can be 
eliminated. Henceforth, we use these transformed coordinates, i.e., we study 
(2.1) with d--0. 

The trace (A) and the Jacobian (J) of this map are obtained as 

A = a + b  (2.2) 

and 

J = ab - c (2.3) 

respectively. The forthcoming results and expressions become simpler by 
using parameters A, J, and b rather than a, b, and c. For the same reason 
phase diagrams showing the behavior of the piecewise linear map (2.1) at 
fixed values of b will be displayed in the next sections on the (J, A) plane. 
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The map may possess two fixed points, z+ and z_, the solutions of 
the linear equations 

z+=T+(z+) ,  z _ = T  ( z )  (2.4) 

Here the vector notation, z = (x, y) and z '=  T(z), of (2.1) has been used, 
and T+ (T , )  stands for the restriction of T to the half-plane x > 0 (x < 0). 
The symmetry of (2.1) implies z+ = - z  and, consequently, 

1 - b  
X +  : - -  : - - X  

A - - 1 - J  

y + =  
1 

A - 1 - - J  

(2.5) 

Since sgn(x+)= +1 has been assumed, these fixed points exist only if 

1 - b  
A _ I _ j > 0  (2.6) 

holds. 
The period-2 points are obtained from the equation 

z*= T(2)(z *) (2.7) 

where T ~2) is the twofold iterated map. Two of the solutions are just the 
fixed points z+ and z_. The remaining ones, z+_ and z +, form a 
period-2 orbit with coordinates 

X + _ =  

y + _ =  

l + b  
- - X  + 

A + I + J  

- 1  
A + I + j =  - Y  + 

(2.8) 

In this case positivity of x+_ has been assumed; thus 

l + b  
A + I + j > 0  (2.9) 

should hold. 
We shall see that the map exhibits chaotic behavior when both 
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period-1 and period-2 points exist. Thus, we study the region of the 
parameter space where the inequalities 

A > I I + J I  

I b l < l  

are satisfied. 
The stability of the fixed points is governed by the eigenvalues of the 

Jacobian. It is easy to see from (2.2) and (2.3) that these are 

2_+ = [A _+ (A 2 - 4j)u23/2 (2.11) 

The fixed points are stable if both 2+ and 2 have real parts less then 
1 in modulus. This holds if A < 1 + J and IJI < 1 (see Fig. 2). The fixed 
points are unstable nodes or spirals if IJI > 1 and either A < 1 + J  or 
A < - (1  + J )  holds. If A > ]1 +J] ,  which is just the condition (2.10a), the 
eigenvalues are real and 2+ > 1 and I,~-I< 1, i,e., the fixed points are 
hyperbolic. 

The stability of the period-2 orbit is given by the eigenvalues of the 
Jacobian of the twofold iterated map T (2). Since the Jacobian of the 
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Fig. 2. Phase diagram for a map of type (2.1). Continuous heavy lines separate the regions 
of the (J, A) parameter plane where all the periodic orbits of the map (2.1) are stable (S), 
unstable (U), and hyperbolic (H); the dashed heavy line corresponds to 2+ = 2. These curves 
do not depend on b. The upper bound of the chaotic region [the function At(J) of Section 4] 
is denoted .by continuous thin curves for different values of b: (1) b =  -2 /3 ,  (2) b =  -1 /3 ,  
(3) b = 0, (4) b = 1/3, (5) b = 2/3. In each cases the dotted lines of 2 _ = b are displayed as well. 
For the same values dashed lines show the lower bound At(J) of the regions where chaotic 
repellors with regular double Cantor-set structure exist, as discussed in Appendix B. 
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original map is constant, these eigenvalues are 22+ and 22. Similarly, the 
corresponding eigenvalues for an arbitrary orbit of period n are 2+ and 2"-. 
Consequently, the stability of all periodic orbits with real eigenvalues is the 
same. This implies that no stable periodic orbit can exist in the hyperbolic 
case (2.10a); thus any finite attractor must then be a chaotic (strange) one, 
and periodic windows cannot be present in the system. 

3. THE S T R U C T U R E  OF THE S T R A N G E  A T T R A C T O R  

The unstable manifold of a periodic orbit can be obtained by deter- 
mining small pieces of this manifold in (arbitrarily small) neighborhoods of 
the periodic points and by letting these pieces be mapped several times. The 
subsequent images will grow along the unstable manifold; thus, higher and 
higher order images of the original pieces will approximate the unstable 
manifold better and better. The stable manifold can be constructed in a 
similar way by using the inverted map instead of the original one. 

This construction is difficult to perform in general cases, but is found 
to be simple and useful for piecewise linear maps. (2~ We shall extend the 
method of ref. 24 in constructing the invariant sets of (2.1). 

From the fixed point equations (2.4) one can derive the eigenvectors 
corresponding to the eigenvalues 2+ and 2" .  They are 

u_+ =(2_+ -b ,  1) (3.1) 

respectively, independently of n. These eigenvectors yield the directions of 
the unstable and stable manifolds in the neighborhood of the point 
investigated. Due to the fact that the Jacobian matrix of our piecewise 
linear map is constant, the manifolds will consist of straight line segments 
running parallel to each other with the common slope 2_+ - b .  

The first steps in constructing W+ _, the unstable manifold of the 
period-2 cycle, is shown in a chaotic case on Fig. 3, where Co and Co stand 
for the intersections of the first branches of W+_ with the y axis. The 
segment Co/~ is mapped onto C1H, which is mapped further onto Ca, i l l .  
Due to the symmetry, C o i l  ~ C a R ~ CI,~ H also holds. Consequently, the 
first branches going through the period-2 points are (71Ca,a and C~ C~.1, so 
these branches are to be chosen as the initial segments for further 
iterations. The forthcoming iteration maps Co (71,1 onto Co, a C~,2, which lies 
in the lower half-plane, so its image will be one branch, Co,2 C1,3. This new 
segment sticks into the upper half-plane, thus generating two new branches 
in the next step. From the branches of W~__ obtained this way, further 
branches can be constructed by repeating the procedure several times. 

Figure 3 also indicates the first branches of the stable manifolds W% 
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Fig. 3. The first four steps in constructing the branches of the unstable manifolds of the 
period-2 orbit lying within the parallelogram FGFG ( a =  1.85, b = 0.25, c = -0.2375, A = 2.1, 
J=0.7) .  The fixed points z+,  z_ and the period-2 points z+_ ,  z + are denoted by F, F, H, 
and /7, respectively (bar denotes inverted image). Mapping the first branch of W~ , 
one obtaines the following branches: CoCL1 ~ CojCi.z--', ~0,2~L,3---~two additional lines. 
Beginning with the branch CiC~,t, the construction yields the inverse images of these, 
belonging also to W~_ _. The dashed lines represent the first two branches of W~_ and W"_, the 
unstable manifolds of the fixed points. The dash-dotted lines are the first branches of the 
stable manifolds W~+ and W~. 
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Fig. 4. The branches of W~__ are located within the parallelogram KLK[ at a = 1.65, 
b =  -0.25, c=0.2875 (A = 1.4, J =  --0.7). The branches obtained up to the fourth step are 
Co C1.1 -'* C0.1Cl,2 --* C0,2 C2,i_ w C2,i+ Ci.3 --* further four branches. The inverted images of 
these lines are also indicated. Further notations are identical to those of Fig. 3. 
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and W" and the first two branches of the unstable manifolds W+ and W"_ 
corresponding to the fixed points, constructed in a similar way. Further 
steps of the construction would convince us that the unstable manifold of 
the period-2 points runs among the branches of W+ and W~_. Subsequent 
iterations of an arbitrary point lying between W~+ and W ~_ thus approach 
W+ _. This illustrates that the parallelogram FGFG defined by the intersec- 
tions of WS+, W ~_ and the continuations of the first branches of W"_ and 
W+ is a "trapping region" of an attractor. Since at this parameter values 
no stable finite periodic orbit can exist, this attractor will be a chaotic one. 
By this method, the basin of attraction can also be constructed; it is 
bounded by the branches of W'+ and W ~_ connected with the preimages of 
the y axis. 

Figure 4 shows the unstable manifold of the period-2 orbit constructed 
in an analogous way for a topologically different case. There are two essen- 
tial differences between Figs. 3 and 4. First, the fixed points lie now 
between the branches of W+_, because the contraction rate 2_ is negative. 
Thus, the "trapping parallelogram" is KL-K-L now, defined by the first 
branches of the stable manifolds of the fixed points and the continuations 
of the first branches of the unstable manifold of period-2 points. Second, 
the slope 2 - b  of the stable manifold is negative. 

In fact, there are four different topological structures, depending on 
the sign of )~_ and the sign of the slope (2_ - b) of the stable manifolds. In 
all these cases, as Figs. 3 and 4 suggest, the chaotic attractor is the unstable 
manifold of the period-2 orbit (more precisely, the closure of it). 

4. CRISIS C O N F I G U R A T I O N S  

In this section we discuss what happens to the strange attractor while 
the parameters of the map are being varied. 

As the stretching ratio 2+ increases (by increasing the parameter A), 
the branches of the unstable manifold W~__ become longer and longer. If 
2+ is big enough, heteroclinic points appear: the first branch of W+ (W ~_ ) 
and W+_ intersect. The parallelogram FG-ff'G of Fig. 3 or KL-R---i of Fig. 4 
(according to the sign of 2 ) will then no longer be trapping regions, since 
almost all points of these quadrilaterals sooner or later will be mapped 
outside, and will then tend to infinity along W+ or W~. 

In the critical situation of boundary crisis (5) the topmost points of the 
chaotic attractor just touch the first branch of the stable manifold W+. 
This condition holds along a critical line Ac(J ) of the parameter plane. The 
function A c(J ) can be calculated for all the topologically different cases 
discussed in the previous section. Here we give explicit formulas only for 
one case; others can be treated along similar lines. 
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If 2 < min(0, b) (see Fig. 4), the topmos t  point  of the a t t rac tor  is C1. 
The coordinates  of  this point  can be derived by taking into considerat ion 
that  C1 is the image of Co, the intersection point  of the y axis and of the 
first b ranch  of W+ _.  The latter line goes through z_  + and has the slope of 
2+ - b  [see (3.1)]. Using Eqs. (2.8) and (2.1), a simple calculation yields 

b + l  b 
x1=1+2-- ,__  Yl ( 1 + 2 ) ( 2 + - b )  (4.1) 

for the coordinates  of C1. The first b ranch  of W+ is given by the equat ion 

x = ( 2  - b ) y + 1 / ( 2 + - 1 )  (4.2) 

as follows f rom (2.5) and (3.1). Substi tuting (4 .1 ) in to  (4.2), the condi t ion 
for the crisis is found to be 

( 2 + - l ) [ - ( b + 1 ) 2 + - b ( l + 2 ) ] : ( l + A  ) ( 2 + - b )  (4.3) 

yielding a piece of the Ac(J ) function. [ F o r  the special case b = 0 this 
condit ion is equivalent to Ac = 2(1 + j)1/2.(24)] 

The full Ac(J ) function can be obta ined by joining the pieces 
corresponding to different cases. This function is plotted on Fig. 2 at 
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Fig. 5. A typical phase diagram of the map (2.1) at b = -1/3. The tips of the normal band- 
splitting lines n i are aligned along 2 = b. The regions of the 2-, 4-, 8-piece symmetric attrac- 
tors are assigned bY I, II, and III. The line a2 belongs to the homoclinic crisis of the period-4 
points. The shaded region IV locates the symmetry-broken attractor with four pieces, while 
region V denotes the anomalously split 6-piece symmetric attractor (cf. Fig. 1). The boundary 
of the regions VI and VII, belonging to the symmetric 12-piece and the asymmetric 8-piece 
attractors, respectively, is a3, the line of the homoclinic crises of period-8 orbit. 
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different values of b. Breakpoints appear on the line 2_ = b  ( c = 0 )  and 
along 2 = 0 ( J =  0), dividing the parameter plane according to the cases 
mentioned above. 

It is worth noticing that 2+ ~< 2 is a condition for this heteroclinic 
crisis, as can be seen from Fig. 2. The equality can be fulfilled only if 
2_ = b, i.e., if all the stable manifolds run parallel to the y axis [see 
Eq. (3.1)]. In this case the map (2.1) is equivalent to the generalized 
baker's transformation as defined in refs. 27 and 31. 

On the other hand, it is interesting to study what happens when 
parameter A is decreased (see Fig. 5). The 2-piece attractor (like the ones 
on Figs. 3 and 4) splits into 4-, 8-, 16-, ...-piece attractors, i.e., a band- 
splitting sequence is observed. 

Figure 6 shows the mechanism of band splitting. As the topmost point 
Po of the left-hand band gets be low the second branch 7 of the stable 
manifold W% _, its subsequent images P1, P2, P3 also get below the 
corresponding branches ~,/~, ~, while--due to the symmetry (1.3)--P 0' PI,  
/~2, and P3 will lie above  the branches 6,/~, e, and/~, respectively. This way 
a gap arises around the period-2 points; the chaotic bands will not contain 
them any longer. In fact, the attractor is not the closure of W%_, it is 
rather associated with W +  § . . . .  the unstable manifold of the period-4 
point z+ + . . . .  Band splitting is the consequence of the homoclinic crisis of 
the period-2 orbit and, simultaneously, the heteroclinic crisis with the 
unstable manifold of the period-4 orbit. 

The investigation of higher-order band splittings is carried out in an 
analogous way. Equations for the different band-splitting crisis lines can be 
derived just like (4.3). Figure 5 shows the numerical solution of these up to 
the third bifurcation for a fixed value of b. 

Along the line 2_ = b  the sequence of breakpoints where 2"-piece 
attractors split into 2"+l-piece ones happens to be at 2+ =)~)=21/2",  
yielding an explicit sequence converging to 2+ = 1. ( 2 ~ ) = 2  is just the 
boundary crisis situation.) 

An infinite sequence of band splittings can be found only if one 
approaches the line 2 + = 1 at 2_ = b. Along a general line of the parameter 
space, however, the periodic state is reached after a finite number of bifur- 
cations. This phenomenon was first found in the case of the Lozi map~2~ 
an infinite band-splitting sequence was observed there only in the limit of 
extremely strong dissipation, J ~  0. 

The map (2.1) also exhibits new, peculiar ways of changing the shape 
of the strange attractor, namely anomalous band splitting and symmetry- 
breaking transition. 
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Fig. 6. (a) Above and (b) below the normal band-splitting crisis situation. H a n d / t  are the 
period-2 points, the dash-dotted lines ~, /~, 7, and ~ are the branches of W~+. The dashed 
lines a, b, c, and d are the first branches of W~+ + _, the stable manifold of the period-4 points 
denoted by crosses.The attractor is located inside the bands. The bands are split into pieces 
by the period-2 points due to the disappearance of homoclinic intersections with W~+ . 

5. A N O M A L O U S  BAND SPLITTING AND 
SYMMETRY-BREAKING TRANSITION 

In addition to the normal band-splitting curves, Fig. 5 shows other 
crisis lines as well. Figure 7 illustrates what happens when one crosses the 
line a 2. This curve intersects the line nl of normal homoclinic crisis of 
period-2 points and reaches p at 2_ = b. Whether an anomalous band 
splitting or a symmetry-breaking transition occurs at a given point of a 2 
depends on the actual position of this point. Below the normal 
band-splitting line t/1 a symmetry-breaking transition occurs, while above it 
an anomalous band splitting appears. 
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Fig. 7. (a) The structure of a symmetrical strange attractor anomalously split into six pieces. 
Gaps around the period-4 points arise because the bands do not intersect with the dashed 
branches of W~ + . (b)The shaded and nonshaded bands involve a pair of 4-piece attrac- 
tors with broken symmetry which appears because the bands of the attractor intersect neither 
W~+ _ nor WS+ + _ _. (Notation is identical to that of Fig. 6.) 

Let us consider the latter case first, by compar ing  Figs. 6a and 7a. As 
the stretching ratio 2+ is decreased, the topmost  point  Qo of the internal 
band  on the left-hand side gets beneath the branch a of  the stable manifold 
W+ + _ _ of the period-4 orbit, and Qo gets above the branch c. New gaps 
appear  a round  the period-4 points similarly to the way discussed in the 
previous section. The a t t ractor  is still (the closure of) the unstable manifold 
of  the period-2 orbit, but, as Fig. 7b suggests, it does not  contain the 
4-cycle. Thug, the a t t ractor  has become a 6-piece one, since it lies now in 
separate pieces within the six "zones" bounded  by the branches a, b, c, and 
d of W~ + _ . We call this type of transit ion an anomalous  band  splitting, 
since the homoclinic intersections of  the period-4 orbit  disappear, while 

822/54/3-4-24 
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those of the period-2 orbit still exist. This homoclinic crisis of the 4-cycle is 
accompanied by heteroclinic crises with the unstable manifolds of other 
periodic points. 

We emphasize that the aforementioned crisis is caused by a new 
mechanism different from that of the normal band splitting. The line a2 of 
Fig. 5 is obtained as the numerical solution of the equation describing this 
anomalous band splitting of period-4 points. 

Figure 7b shows the situation arising when the parameters are 
changed so as to lie beneath both n 1 and a2. Despite the gaps around 
period-2 and period-4 points, the resulting attractor is not an 8-piece one. 
The branches of the stable manifolds His+_ and W+ +__  of period-2 and 
period-4 orbits divide the basin of attraction into zones. These are of two 
kinds: those bounded by W+_ from above and by W+ + from below, 
and those bounded by W~+ +__  from above and by W+_ from below. 
Zones of either kind are mapped now onto zones of the same type; for 
example, the zone between ~ and a is mapped onto a-b, and d-fl is mapped 
onto a-~. Similarly, a chaotic trajectory is trapped into zones of one kind. 
It implies that the chaotic bands involve two distinct strange attractors. 
These sets, shaded differently on Fig. 7b, are asymmetric, being the inverse 
images of each other. The union of zones of a given type is the basin of 
attraction of the corresponding 4-piece asymmetric strange attractor. 

Our argument is based upon the fact that 2_ > b and P2, the second 
image of the topmost point, lies on the lower half-plane. Under these 
circumstances, the absence of the homoc!inic points of period-2 and 
period-4 symmetric orbits is the condition for the existence of chaos with 
broken symmetry (see Fig. 5). 

For 2_ < b, a pair of 8-piece asymmetric attractors can be observed 
within region VII of Fig. 5. The lines n,,  n2, and a3 encircle regions of the 
parameter space where no homoclinic intersections of the respective 
period-2, -4, and -8 orbits exist. These symmetric cycles exist but do not 
belong to the strange attractor, since their stable manifolds, W+_,  
W+ +_ _, and WS+ +_ + + _, create two disjoint basins of attraction. 

On the other hand, if P2 lies on the upper half-plane, chaotic orbits 
will involve sequences keeping the same sign of the x coordinates in three 
subsequent iterations. Thus, additional bands will appear on both sides of 
the attractor containing z+ + + _ _ _  and z _ _ _  + + +, the points of a new 
symmetric period-6 orbit. These bands may recover the symmetry by trans- 
ferring orbits between zones of different type until W+ ++ . . . .  the 
unstable manifold of this cycle, traverses the branches of W+_ or 
W+ + _ _ .  Detailed investigation shows that asymmetric chaotic attractors 
result only if homoclinic points of the period-6 orbit also disappear. (The 
upper boundary of region V on Fig. 5 is the line where anomalous gaps 
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appear around both z+ + and z+ + + . . . .  The broken shape of the 
curve bounding regions IV and V is also due to this effect.) 

Summarizing this section, the onset of chaos via symmetry breaking 
has proven to be typical in this piecewise linear discontinuous system. As 
the control parameter is decreased, unstable cycles become separated from 
the strange attractor by homoclinic crises, and the attractor splits into 
several pieces. If all the existing symmetric orbits lose their homoclinic 
points, their stable manifolds divide the formerly single basin of attraction 
into two symmetric pieces. These sets become the basins of two separate 
chaotic attractors which are the images of each other under the symmetry 
of the map (2.1). 

6. C O N C L U S I O N S  

Two dimensional dissipative maps described by analytic functions 
have typical properties depending on the value of the effective Jacobian 
JE(0, 1)(35'36): the infinite sequence of band splittings and the universal 
order in the crossings of periodic windows. In this paper we have shown 
that this universal behavior is changed drastically in discontinuous map- 
pings occurring, e.g., in Lorenz-type systems. Due to the fact that the 
invariant manifolds of the periodic points of a system like this consist of 
countless disjoint branches rather than single connected curves of infinite 
length, the regular order of homo- and heteroclinic crises breaks down. 
When hyperbolic periodic orbits become separated from the chaotic attrac- 
tor independently of the normal band-splitting order, anomalous band 
splittings arise. In discontinuous systems with symmetry, due to the 
numerous anomalous band sptittings, strange attractors with broken 
symmetry may be found in large regions of the parameter space. 

In order to illuminate the mechanism of these phenomena, we have 
investigated the structure of the chaotic attractor in the symmetric 
piecewise linear map (2.1). This is a simplified version of the map (1.I), 
where symmetry breaking was found to be a typical phenomenon in a wide 
range of the parameters /~ and 6. Since in our map the branches of the 
manifolds are straight line segments, we have succeeded in determining the 
lines of several crises on the phase diagram of the system. 

On the basis of this simple example we expect the following scenario 
to be valid for general discontinuous symmetrical maps. The strange attrac- 
tor undergoes a symmetry-breaking bifurcation whenever the heteroclinic 
intersections with the stable manifolds of the existing sYmmetric cycles dis- 
appear. In other words, when two asymmetric chaotic attractors collide 
simultaneously on the boundary separating their basins, a new symmetric 
attractor with double size arises as the union of the previous ones. This 
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mechanism is essentially the same as the one described in ref. 4 for con- 
tinuous symmetrical maps. For discontinuous maps, however, a more com- 
plex behavior might result, such as the truncation of the infinite sequence 
of band splittings and the appearance of anomalous band splittings. These 
phenomena typically occur in the region of parameter space where the size 
of chaotic attractors is relatively small, that is, close to the onset of chaos. 

Finally, we mention what happens when asymmetric perturbations are 
present. In this case the symmetrical pair of attractors is replaced by two 
coexisting nonsymmetrical ones, say A and A', with their basins separated 
by B, the stable manifold of a hyperbolic periodic orbit. As the control 
parameter changes, only one of the attractors, A, might collide with the 
boundary and undergo a boundary crisis and, if so, it becomes a repellor 
transferring the orbits from its former basin toward A'. A' will collide with 
B only if the parameter is further varied. Then an internal crisis happens to 
A' since its size grows suddenly while its basin remains unchanged. The 
extended strange attractor will involve the orbit to which B belongs. The 
reversed process can be interpreted as a generalization of the symmetry- 
breaking bifurcations of chaotic attractors. 

A P P E N D I X  A. THE  F R A C T A L  D I M E N S I O N  OF THE 
S T R A N G  E A T T R A C T O  R 

The strange attractor of the map (2.1) constructed in Section 3 has a 
nontrivial fraetal dimension ~3v) D. Due to the simple structure of the map, 
it is possible to derive an exact expression for D if 12_ ]< 1/2 is supposed. 
(The case ]2_ ]> 1/2 is discussed separately at the end of this Appendix.) 
Our argument is based upon the idea of ref. 24, taking into consideration 
the more rigorous mathematical discussion of ref. 25. 

The forthcoming discussion, which is first applied to the case 0 < 
2_ < b, 2_ < 1/2, is best followed on Fig. 8. The attractor is the closure of 
the unstable manifold W+_ located within the "trapping parallelogram" 
FGFG. The smallest parallelogram of the ones covering the attractor and 
having sides parallel to the stable and unstable directions is denoted by 
FoGoFoG o. Let to be the width of this quadrilateral, i.e., the distance 
between the segments FG and FG. The image of this parallelogram consists 
of two trapeziums: G1FIAlfio.1 and its inverse image GtF1AIAo.1. These 
figures lie within FoGoFoG o and cover the strange attractor. It is possible 
to adjust the latter quadrilaterals along their sides A IAo, ~ and Ao. 1-~1, for- 
ming a single parallelogram which is )~+ times longer (along the unstable 
direction) and 2 times narrower than FoGoFoGo. Applying the map once 
more, four new figures appear as the images of the previous two. These new 
polygons are nested within the previous ones, forming four pieces of a 22+ 
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~ ~  F,/W~ 

1'~ 7 

Fig. 8. The coverage of the strange attractor. The figures bounded by dashed, dash-dotted, 
and continuous bold lines are the strips of the respective covering sets So, $1, $2. The set Si is 
constructed as the image of Si_ ~. Any strip of Si_l contains at most two strips of Si. The 
strips can be adjusted to form a single parallelogram. During the subsequent steps of the con- 
struction the strips contract to the branches of the unstable manifold W~ of the period-2 
points. The first branches of the stable and unstable manifolds of the fixed points F and F are 
indicated by thin lines. 

times longer and 2 2 - times narrower parallelogram than the original 
FoGoFoGo. Repeating this procedure n times, one can produce a covering 
set S, consisting of connected subsets nested within the previous covering 
set Sn_ 1. In the following we shall call these subsets "strips." Since the 
number of strips, say qn, is at most doubled in every step, q, ~< q', = 2" 
holds. These pieces can be adjusted to a parallelogram obtained by 
stretching (shrinking) the original one by a factor of 2+ (12_1"). Thus, the 
area of S, is proportional to 2+ 12_["= IJ[ n. As n--* oo the subsequent 
covering sets approach the strange attractor. 

Let us denote the width of the strips in the n th step by %. The number 
of squares of size e, needed to cover the strange attractor, N(e,), is equal to 
the number of squares necessary to cover all the q, strips of S,. For large n 
we find 

(2 +/1~.-I)" ~< N(e,) ~< ca(2 +/12_ I)" + c2q', (A.1) 

where the coefficients cl and c2 do not depend on n. The left-hand side of 
(A.1) gives the number of squares needed to cover the adjusted 
parallelogram in the nth step. Since the q, strips should be covered one by 
one, the multiple covering of the joint segments has to be taken into 
account as explained in the caption to Fig. 9. This yields the fight-hand 
side of (Aol), in which the first term dominates since 12_ [ < 1/2 and 2+ > 1. 
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a.) 

Fig. 9. (a) The number of boxes of size e2 needed to cover the four strips of Sz can be 
obtained by counting (b)twice the boxes covering the joint segments of the adjusted 
parallelogram. In general, boxes containing parts of m joint segments should be taken into 
account with multiplicity m. 

By taking into consideration that en~ t2 I n, the fractal dimension is 
obtained as 

D = lim log N(en) log 2+ 
- -  = 1 ( a . 2 )  

, , ~  log(1/~,,) log 12_[ 

In other, topologically different cases the same argument can be 
applied. If 2_ is negative, one should start from the "trapping 
parallelogram" KLKL instead of FGFG (Fig. 4). Since the expressions as 
formulated above contain the modulus of 2_ ,  they hold for 2 < 0 as well. 

The formula on the right-hand side of Eq. (A.2) is just the well-known 
Lyapunov dimension, (38'39) which is equal (4~ to the information 
dimension (41) in this system. Moreover, since the probability is uniformly 
distributed on the strips covering the attractor, the equality of all 
generalized dimensions (28'42) follows. 

To connect with the main idea of this paper, one may ask what 
happens to the fractal dimension when structural changes of the strange 
attractor take place. The calculation can be carried out for any other 
unstable manifold, and the expressions remain unchanged. Therefore, 
inside the chaotic region, the results obtained for the fractal dimension are 
the same on both sides of the crisis lines discussed in Sections 3-6. 

Equation (A.2) does not hold for the fractal dimension uncon- 
ditionally if 12_[ > 1/2. We have to distinguish the cases when the map 
restricted to the strange attractor is invertible and when it is not. The inver- 
tibility depends on the sign of 2_.  

Case I. If sgn(b)=  - s g n ( 2  ), the map (2.1) is strictly invertible. In 
this case, although (A.1) is still valid, the second term dominates the rhs, 
yielding the Lyapunov dimension as a lower limit for D only. Nevertheless, 
we can formulate a sufficient condition for extending the validity of 
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Eq. (A.2) to this region, too. Let us suppose that the number of strips q, 
scales as q" with some positive q. Then one obtaines 

N(G) ~ e1(2+/12_ 1)" + e2q" (a.3) 

where el and ez are functions of q. The stretching ratio is a trivial lower 
bound for the step-to-step multiplication factor. So, if q lies within the 
interval [Z+, 2+/12_ [], the Lyapunov dimension will be preserved, but to 
decide whether this condition holds, it might be a difficult task and a 
parameter-dependent problem. 

Case 2. If sgn(b)= sgn(2_), the map is not invertible. However, if 
12_ ] < 1/2 also holds, the map restricted to the attractor is invertible. But 
the strips containing the pieces of the attractor overlap as soon as 12 ] 
exceeds 1/2. A strange attractor with overlapping structure is a fat 
fractal. (43al) The fractal dimension of the fat attractor is at least the 
Lyapunov dimension and cannot be greater than the dimension of the 
phase space: 

( log2+ ) 
min 1 l o g [ 2 _ ] ' 2  ~<D~<2 (A.4) 

Although the map has a finite chaotic attractor, due to its overlapping 
property, the modulus of the Jacobian might exceed 1 (Fig. 2), i.e., 
2+ > 1/12_[. Thus, within a considerable part of the chaotic region of the 
phase space the fractal dimension is exactly 2. We cannot give an explicit 
value for D if 2+ < 1/12_t. Though the results of ref. 44 show that there 
may exist fat fractals for which the Kaplan-Yorke formula stands, they 
cannot be taken over, since one of the crucial conditions, 12_ [ < 1/2, does 
not hold. We remark, in addition, that the invariant probability dis- 
tribution supported on the attractor may be a fractal measure (4s) with a 
nontrivial multifractal spectrum. (46) This happens at 2+ =2,  2 = b =  
(x/-5-1)/2, where at least the information dimension is found to be 
different from the fractal dimension. (31) 

APPENDIX  B. THE STRUCTURE A N D  D I M E N S I O N  OF THE 
REPELLOR 

Although finite attractors may not appear if A > At(J) (as discussed in 
Section4), long-term chaotic transients can be observed due to the 
appearance of a chaotic repellor (more precisely: semiattractor). (34'3~ In 
this Appendix we try to illustrate the structure of this strange set and 
estimate its fractal dimension. 
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(b) I X 

/ 

6 

Fig. 10. (a) The first and (b) the second step in constructing the "coarse-grained" repellor in 
the case of 2 > max(0, b), when the image of the interval AoAo (dash-dotted line) lies outside 
Po =- FGFG. The subsequent images (preimages) of this parallelogram are strips lying parallel 
to the unstable (stable) directions. The intersection of these strips forms a regular double 
Cantor set. 

Due  to the proper t ies  of the map ,  if 2_  > 0 (2 < 0 ) ,  any bounde d  
invar iant  set m a y  be s i tuated only in the pa ra l l e logram FG'-P-'G (KL'K-s 

abbrev ia ted  by Po in the following. Since the repel lor  R c Po is invar iant ,  
i.e., T - " ( R )  = T I (R)  = R = T ( R )  = T " ( R )  for any  n, the re la t ions R c P0, 
R c P l  = T -  l (po)  n Po n T(Po)  ..... R c P,, =_ T -  n(po) n P ,  i n T " ( P o )  are 
satisfied. The nested sequence of P ,  app roaches  R in the l imit  n ~ ~ .  

This "coarse-gra ined"  cons t ruc t ion  of  the repel lor  is i l lus t ra ted on 
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Fig. 10, in a case where the control parameter A is large enough. [More 
precisely: we require that if X is positive (negative), the whole segment of 
AoA0 (CoCo) should be mapped out of the parallelogram Po.] This implies 
that the repellor has a very regular structure: it is the direct product of two 
Cantor sets. It is known (47'39) that the fractal dimension of a Cartesian 
product set is the sum of the dimensions of the component sets. By taking 
into account that the shrinking ratios of the two Cantor sets are 12 I and 
1/2+, the dimension turns out to be 

log 2 log 2 
D - - -  (B.1) 

log2+ log [2_1 

Figure 11 illustrates the case when the image of the segment Aoz/o 
sticks into Po. This change makes the form of the coarse-grained repellor 
irregular: it consists of truncated parallelograms now. Thus, there is no 
hope of determining D directly. However, since the repellor is a proper 
subset of the double Cantor set with the appropriate shrinking ratios, it is 
possible to estimate D from above: 

log 2 log 2 
D ~ - -  (B.2) 

log 2 + log 12_ I 

This inequality holds if 12 l <  1/2 and 2+ >2.  In other cases, since one or 
both of the one-dimensional component sets of this covering become an 
interval, the above expression should be modified as shown in Table I. 

G f.\. 

Fig. 11. If the image of A0A 0 sticks into FG-ffG, the set obtainedin the first step of the 
construction of the repellor is a proper subset of the double Cantor structure of Fig. 10a. In 
subsequent steps the images and preimages of the missing pieces (indicated by dots) lead to 
further truncations of the regular structure. 
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Table I. 

Szabb and T~m 

Results for Fractal Dimension of Repellor and 
Strange Attractor of the Map (2.1) 

12_1 < 1/2 1/2 < 12_1 < 1 

A > Ar(J) D = log 2/log 2 + - log 2/log 12 _ I D = log 2/log 2 + + 1 

D ~< log 2/log 2 + - log 2/log 12 I D ~< log 2/log 2 + + 1 

D ~< 1 -- log 2/log 12_ I D ~< 2 

D = 1 - log 2 +/log 12 _ I min(l - log 2 +/log I,;- - l ,  2) ~< D ~< 2 

A < AM),  
A>2+J/2(2+ >2)  

A < 2 + , / / 2  (2+ <2), 

A > Ao(J) 

A < At(J), 
A > I + J ( 2 + < I )  

(strange attractor) 

The lower bound of that region of the parameter plane where the 
repellor has a regular double Cantor structure with the dimension (B.1) is 
denoted by A r(J ) on Fig. 2. In the parameter region A r(J ) > A >At(J), 
between the regular double Cantor set structure and the boundary crisis of 
the strange attractor, a crossover takes place in the dimension of the 
repellor from (B.1) to (A.2). The crossover region disappears only if 
)~ =b, in the special case when (2.1) is equivalent to the generalized 
baker's transformation. Ar(J ) can be derived from the condition that the 
images of the x-axis piece A0A o (or CoCo of Fig. 4 if ) .  <0) just touch 
from outside the stable manifold of the fixed points. The equations for 
Ar(J ) turn out to be the continuation of the curves of Ac(J ) beyond the 
chaotic region. 
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